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Abstract: This study aims explore the feasibility of using neural network (NNs) and deep learning
to diagnose three common respiratory diseases with few symptom words. These three diseases are
nasopharyngitis, upper respiratory infection, and bronchitis/bronchiolitis. Through natural language
processing, the symptom word vectors are encoded by GPT-2 and classified by the last linear layer of
the NN. The experimental results are promising, showing that this model achieves a high performance
in predicting all three diseases. They revealed 90% accuracy, which suggests the implications of
the developed model, highlighting its potential use in assisting patients’ understanding of their
conditions via a remote diagnosis. Unlike previous studies that have focused on extracting various
categories of information from medical records, this study directly extracts sequential features from
unstructured text data, reducing the effort required for data pre-processing.

Keywords: natural language; remote diagnosis; GPT-2 model; deep learning; symptom words

1. Introduction

Respiratory diseases are common health problems affecting millions of people each
year. When individuals come into contact with pathogens like bacteria, viruses, and
allergens, their respiratory systems face a wide range of possibilities illnesses. Certain
populations with weak immune systems or those exposed to coronaviruses or rhinoviruses
might be more susceptible to respiratory problems. The common cold is a convenient term
to represent mild upper respiratory diseases, and it has multiple symptoms, like cough,
sneezing, sore throat, etc. [1].

To differentiate these respiratory diseases, physicians use a process called diagnostic
reasoning [2]. They begin by inquiring about the patient’s complaints, symptoms, and past
medical history, which will be collected and translated into a precise and meaningful list
that accurately represents the patient’s present condition. Subsequently, physicians corre-
late these data with their professional knowledge to either affirm or eliminate diagnostic
hypotheses. In instances where there is inadequate evidence to support a diagnosis, partic-
ularly in hospital settings, additional examinations such as radiological or hematological
tests may be conducted to validate the diagnostic hypotheses. By relying on laboratory
test evidence, physicians can enhance the accuracy of their diagnosis [3,4]. Patient infor-
mation and their corresponding diagnoses are recorded in their electronic medical records
(EMRs), where diagnostic codes follow the format defined by the International Statistical
Classification of Diseases and Related Health Problems (ICD) [5].

The complexities of recorded data are mostly owing to unstructured or non-normalized
recordings. Nowadays, patients’ medical records are recorded electronically in digital form
such as via the HIS (hospital information system). Most medical systems have unique
frameworks and policies on patient privacy. As is stated in [6], there is no standard platform
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utilized among hospitals in terms of EMRs. In addition, the unstructured information
and related medical abbreviations are a challenge for non-medical engineers to utilize and
realize these data. This causes difficulty when using the recorded data for research, and the
data usually has to be purified.

Remote diagnosis of mild respiratory diseases became necessary during the COVID-19
pandemic era in Taiwan. During the pandemic, all hospitals in Taiwan were controlled
and people with non-urgent illnesses were encouraged to stay at home or use a remote
diagnosis system such as via the telephone or on-line video consultation. This prevention
measure relieves the pressure on hospitals and medical doctors during an epidemic. Also,
it diminishes the contact between patients in hospitals. This provided the motivation for
this study, raising the following question: Is it possible to create an AI-based diagnosis
system, which can be used for people experiencing mild respiratory complications at home
or in any place outside hospital to determine a preliminary diagnosis? If yes, this system
can be set up as a website or even as an app on any mobile phone.

Compared to text data, quantifiable medical indicators such as biochemical values in
blood tests can be analyzed through data mining to identify discriminate thresholds for pre-
dicting different diseases [7]. Similarly, image understanding via machine learning or recent
deep learning has made a big leap in recent decades [8]. There are thousands of research
papers published per year. However, non-quantifiable or unstructured text data has lacked
a quantitative analysis approach in the past. A recent rise in natural language processing
has led to the era of deep learning in terms of natural language understanding. In the
field of natural language processing, language transformation has persistently encountered
challenges in achieving effective pattern transformations. Conventional encoding methods,
such as one-hot encoding or bag-of-words encoding [9], struggle to accurately capture
the features of words and lack of flexibility and/or error tolerance to express different
semantics based on contexts. Nevertheless, with the advent of Word2vec technology, we
have witnessed rapid progress in the field of natural language understanding. The key
innovation of Word2vec lies in its ability to implement dynamic encoding and learning cor-
rections through neural networks. This approach transforms words into high-dimensional
vector space representations, effectively addressing the issue of traditional fixed encoding
methods being unable to correctly express contextual relationships. The introduction of
this technology provides a more powerful and flexible tool for language transformation in
natural language processing [10].

Representative techniques in natural language processing models include recurrent
neural networks (RNNs) [11,12] and long short-term memory networks (LSTMs) [13–15].
These models, based on recurrent processing of textual time series data, excel in capturing
information within the context and in understanding semantic structures. Such technologies
have laid the foundation for the field of natural language processing, propelling the ability
using NNs to understand natural language.

Many algorithms or language models aim to carry out data mining and extract useful
properties in unconstructed medical texts. For example, The Unified Medical Language
System (UMLS) [16] integrates over 2 million biomedical vocabularies and includes termi-
nology used for bioinformatics. A similar study by the authors in [17] recognizes seven
categories from the EMRs based on the language model. In [18], the authors construct a
text generation system called MediExpert to assist with differential diagnoses.

However, the language processing models mentioned earlier face the issue of the
gradient vanishing when dealing with large-scale time series data. This limitation restricts
their performance with long-term data. The phenomenon of gradient vanishing implies
that the model struggles to capture long-term dependencies, resulting in inadequate global
understanding of the entire time series [19,20]. Recently, researchers have introduced
the self-attention mechanism as a replacement for traditional convolution operations.
This emerging technology not only enhances the model’s global understanding but also
effectively overcomes the problem of gradient vanishing. The self-attention mechanism
enables the model to better capture the correlation between different positions in a sequence,
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leading to significant improvements in handling long textual time series data [21]. The
drawback of gradient vanishing makes it difficult to analyze common sequenced sentences.

Figure 1 demonstrates the flowchart outlining our study. In this feasibility study,
we collected information from the EMRs of the Department of Family Medicine. In total,
30,592 EMRs were identified and some necessary information was extracted from them
such as the ICD, symptoms, and signs. We pre-processed these data and constructed a
diagnostic system with a self-attention-based language model, GPT2 [22], to encode our
minimal pre-processed data in-house and predict three upper respiratory tract diseases.
This diagnostic system can be utilized for validating the efficiency of language models in
extracting features from EMRs, serving as a benchmark for verification. This can be further
expanded in the future for remote diagnostics.

Figure 1. Flowchart of this study. Details of this flowchart are described in Section 2.

2. Materials and Methods
2.1. Dataset Collection and Brief Introduction

The EMRs consisting of patients’ information and physician diagnoses in the ICD
format for a total of 30,592 patients were collected from the Department of Family Medicine
in Tainan Municipal An-Nan Hospital, Tainan, Taiwan, China Medical University, Taichung,
Taiwan from 2017 to 2022. These data were directly extracted from the HIS as comma-
separated value (CSV) files and all sensitive personal information was de-identified. Among
these data, there are four fields not handled by the system but that are filled in by physicians



Diagnostics 2024, 14, 329 4 of 15

from patient interviews to final prescriptions. These fields are diagnoses, medical history,
medical signs, and treatment. First, physicians record the patient’s narratives, basic physical
conditions, and chief complaint in the medical history field. Then, based on previous
medical records or further inquiries, chronic illnesses, family medical history, etc., are
also recorded in the field of medical history. Furthermore, physicians carry out a physical
examination according to the patient’s symptoms and record this result in the medical
sign field. Based on the medical history and medical signs, physicians assign at least one
and up to three diagnoses for each outpatient using the ICD format for documentation.
The field of treatment is completed with the corresponding prescription provided by the
physician. Apart from the data in the field of diagnosis, the remaining three fields of
the table, namely medical history, medical signs, and treatment, were considered to be
unstructured text data, and there are some examples of these text data in Figure 2. This is
because for each outpatient, different physicians have different writing styles. However,
Taiwanese physicians are not native English speakers, resulting in the records of these three
fields containing disorganized descriptions or word fragments. Furthermore, as was found
in some records, descriptions were Chinese terms specific to traditional Chinese medicine,
having no corresponding English terminology.

Figure 2. Samples of the dataset.

The study was conducted in accordance with the Declaration of Helsinki and
approved by the Institutional Review Board (IRB) of Tainan Municipal An-Nan Hos-
pital, Tainan, Taiwan, China Medical University, Taichung, Taiwan with the IRB number
TMANH112-REC030.
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2.2. Pre-Processing

Pre-processing consisted of three main steps, namely excluding Chinese and irrelevant
data, replacing abbreviations, and filtering out three types of upper respiratory tract
diseases based on the ICD classification.

First, it is challenging to translate Chinese descriptions to English automatically us-
ing standard medical terminology [23]. Therefore, our data were purified by excluding
those records using Chinese descriptions. In addition to this, we observed many clinics
conducting remote consultations during the pandemic era of COVID-19. These remote
consultations have no relevant symptom descriptions in the medical records and were all
recorded in Chinese, so this portion of the data (10,748 patients) was excluded simulta-
neously. The above exclusion steps were carried out based on the Unicode encoding of
Chinese characters. We searched the database in the medical history and medical signs
fields. If these fields contained words with the unique encoding associated with Chinese
characters, the patient’s data were removed. In total, 16,639 records were excluded.

Secondly, in terms of symptom descriptions, there are many abbreviations and
acronyms of specific medical terminology that allow physicians to conveniently record
them. However, these abbreviations can pose ambiguity for word embedding, which may
also affect the performance of the model. Medical abbreviations are commonly formed
by combining the initial letters of words, for example, “F/U” represents “follow up”, and
“N/S” signifies “normal saline”. These abbreviations can be challenging for individuals
outside of the medical field to comprehend. Moreover, medical abbreviations may exhibit
ambiguity, such as the case of “LFT”, which could refer to either “liver function test” or
“lung function test” [24]. Accurate interpretation relies on contextual references within the
EMR. Therefore, the conversion of abbreviations can alleviate instances of incomprehensi-
bility or ambiguity. Consequently, a manual review of medical records from a six-month
period was conducted to select 119 medical abbreviations and establish a dictionary for the
conversion of all other textual data,. The purpose of this was to improve the discrimina-
tion of the word vector produced from word embedding and decrease the probability of
misdiagnosis [25].

Finally, pre-processed data were filtered out based on the ICD classification. Medical
records containing the diagnostic codes for nasopharyngitis (460 according to the ICD),
upper respiratory infection (465.9 according to the ICD), and bronchitis and bronchiolitis
(466 according to the ICD) were selected for this research.

2.3. Inputs and Targets

In the database of upper respiratory tract diseases processed with the steps mentioned
Section 2.2, we extracted text data from the medical history and medical signs fields as
inputs for the diagnostic system. The diagnoses field was utilized to extract ICD codes for
subsequent training and testing targets. Providing additional clarification on the targets,
for a given patient, there may be up to three diagnosis codes, comprising one primary
diagnosis and two secondary diagnoses. These were marked as 1 if they aligned with the
focus of our study and 0 otherwise. The target for the diagnostic system was structured
with three fields corresponding to the three mentioned upper respiratory tract diseases. If
both the primary and secondary diagnoses for a patient fell within the upper respiratory
tract disease categories adopted in our experiment, these two diagnoses were concurrently
marked as 1, such as ‘[1, 1, 0]’.

2.4. Word Embedding

The fundamental unit of a sentence is a word; however, employing individual words
as the model input is not a prudent choice. Given the fact that a paragraph may comprise
thousands of words, this imposes significant pressure on computer memory. Therefore,
it is critical to effectively compress paragraphs. In this study, we chose to tokenize input
sentences using the byte-pair encoding (BPE) technique mentioned in GPT-2 [22]. This
technique strikes a well-balanced equilibrium between characters and words, preserving
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representativeness while efficiently compressing the input sentence. For recurrent symbols,
the technique merges them into a new token, and this process iterates until the tokenization
is complete [26]. Subsequently, each token undergoes transformation based on corpus data,
converting it into a unique numerical code. This numerical code serves as the model input,
referred to as word embedding, as illustrated in Figure 2. After word embedding, the initial
numerical encoding undergoes transformation through the language model (as Figure 2),
resulting in a set of 768-dimensional vector features. These features are then utilized for
subsequent disease diagnosis.

2.5. Language Model

GPT-2, developed by OpenAI in 2018, is a transformer-based language model and an
evolution of its predecessor, GPT [21,22]. The self-attention module, a crucial component
of the transformer architecture, plays a significant role in GPT-2. It generates query (Q),
key (K), and value (V) sets as inputs and applies the following self-attention in Equation (1):

Attention(Q, K, V) = so f tmax(
QKT
√

dK
)V, (1)

where the self-attention mechanism generates a set comprising query (Q), key (K), and
value (V) combinations for each feature input vector [21]; KT is the transpose of K; and

√
dK

is a scale. This allows feature vectors from different positions to undergo global attention
operations. Such global operations aid in overcoming the locality bias present in CNN mod-
els, addressing the issue of gradient vanishing. Consequently, this enhances the model’s
capability to handle long-range dependencies among complex features. Self-attention
has emerged as a crucial technique for promoting model performance improvement. The
complete GPT-2 model consists of 12 blocks incorporating multi-head self-attention, mul-
tilayer perception (MLP), and layer normalization, shown in Figure 3 [27]. Multi-head
self-attention, as compared to one-head self-attention, allows the generation of multiple sets
of global attention mechanisms from the input [21]. Following the extraction of features
through 12 blocks, connecting a normalization layer proves beneficial for normalizing
the features to facilitate subsequent analysis. GPT-2 closely resembles the original GPT
structure, with the exception of the placement of layer normalization and positioning before
the self-attention and MLP layers [22]. Notably, GPT-2 models offer numerous advantages
over previous language models, like RNN or LSTM, as they mitigate several limitations
and allow for the training of larger models in an unsupervised manner [27]. In this study,
we employed the GPT-2 model as the backbone to extract features from the tokenized input
for our disease classification. This GPT-2 model is constructed based on a model set of
Huggingface [28], which is a company providing the platform combining lots of models
and applications. We chose the model in the Pytorch version [29].

Figure 3. Diagnostic system architecture, which is able to classify three diseases.
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2.6. Classifier

This study turns the disease classification problem to a multi-label classification
task [30]. We adopted a multi-task classification approach, treating each disease as an
independent sub-task. Specifically, we employed multiple linear layers, with each layer
dedicated to classifying a specific disease, shown in Figure 3. The linear layer, namely
the fully connected layer, is composed of two hidden layers: the first hidden layer ac-
cepts features from the layer norm and performs feature dimension reduction, producing
1024 channels for the next linear layer. The second linear layer accepts features from the
previous linear layer and generates two channel outputs for each disease, representing
the probability of the existence of that particular disease. This approach possesses several
advantages, such as having dedicated classifiers for each disease and facilitating the precise
capture of specific features associated with each disease. Additionally, the interpretability
of results from each channel is strong, making the model predictions easily understand-
able. The overall diagnostic model, as illustrated in Figure 3, was implemented using the
PyTorch framework.

2.7. Training

We adopted the pretrained weights consisting of 117 M parameters released by Ope-
nAI [11] for our GPT-2 encoder. We then conducted fine-tuning of the model using our
database and employed cross entropy as our loss function. The cross-entropy loss function
was implemented using the ‘’nn.CrossEntropyLoss()” module in PyTorch. This module
applies the logsoftmax activation function to the input logits and calculates the negative
log-likelihood loss with respect to the target values. The ‘’nn.CrossEntropyLoss()” formula
can be described as:

Loss = −log
exp

(
xn,yn

)
∑C

c=1 exp (xn,c)
, (2)

where x is the input logic, y is the target, C is the number of classes, and n is the mini-batch
dimension [29]. Each linear layer produces an output computed with the target by the
cross-entropy function. The three cross-entropy values multiplied by 0.2, 0.4, and 0.4,
respectively, were summed as a joint loss function for backpropagation and for updating
the weights. Joint loss is described as Equation (3):

Joint loss = losslinear1 × 0.2 + losslinear2 × 0.4 + losslinear3 × 0.4. (3)

The weighting factor of 0.2 (mentioned above) was used for nasopharyngitis because
this disease represented the largest proportion of our dataset. Therefore, we were keen
to lower its weight. Other settings and hyperparameters were as follows: we utilized the
Adam optimizer [31], the learning rate was set to 1 × 10−5, the max length of input was set
to 256, the feature dimensions from the encoder were set to 768, epochs were set to 10, and
the batch size was set to 16. This training was executed with one A100 SXM 80 GB HBM.

2.8. Evaluation

For evaluation, we employed a confusion matrix to individually analyze the model’s
performance for each disease, calculating the values of true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) for further evaluation. Additionally, we
utilized metrics such as accuracy, sensitivity, specificity, precision, and F1 score, as shown in
Equations (4)–(8), to assess the model’s discriminatory performance across various diseases.

Accuracy =
TP + TN

TP + FP + TN + FN
, (4)

Sensitivity =
TP

TP + FN
, (5)

Speci f icity =
TN

TN + FP
, (6)
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Precision =
TP

TP + FP
, and (7)

F1 score = 2
sensitivity × precision
sensitivity + precision

. (8)

Accuracy serves as a straightforward metric to assess the model’s overall correctness
in diagnosing upper respiratory tract diseases. Sensitivity quantifies the proportion of true
positive instances among the actual positive cases, offering an indication of the model’s abil-
ity to correctly identify positive instances. Conversely, specificity calculates the proportion
of true negative instances among the actual negative cases, assessing the model’s accuracy
in correctly identifying negative instances. Both metrics contribute to a comprehensive
evaluation of the model. Precision, on the other hand, computes the proportion of true
positive instances among those instances diagnosed as positive by the model. Meanwhile,
the F1 score represents the harmonic mean of sensitivity and precision, with an ideal value
of 1 indicating a scenario where both sensitivity and precision are equal to 1. This metric is
particularly useful for evaluating the intersection between sensitivity and precision [32,33].
In addition to evaluation metrics, computational efficiency was also evaluated to identify
the trade-off between performance and executing time.

2.9. Validation

The overall training and evaluation process was performed using 10-fold cross val-
idation [34]. The ten-fold cross-validation approach involves initially partitioning the
dataset into ten equal unique subsets, extracting one subset for testing, and allocating the
remaining nine segments to be training and validation sets. The ratio of training, validation,
and testing set is 7:2:1. By balancing the differences among the different groups, we can
effectively evaluate the model’s performance. In this way, we ensure that the results are
not influenced solely by the distribution of the data.

3. Results
3.1. Screened Dataset

After the data purification described in Sections 2.1 and 2.2, a total of 20,210 records
were collected, and its distribution is shown in Figure 4. There were 7407 cases of na-
sopharyngitis, 7574 cases of upper respiratory infections, and only 23 cases of bronchitis
and bronchiolitis in the single-diagnosis group. However, many patients were diagnosed
with not only one case but with two cases. In the two-case diagnosis group, the highest
majorities were nasopharyngitis accompanied by bronchitis with 4247 cases, followed by
upper respiratory infections accompanied by bronchitis with 956 cases. There were only
three instances of nasopharyngitis accompanied by respiratory tract infection.

Figure 4. The data distribution; of a single-diagnosis and two-case diagnosis.
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3.2. Training and Validation

For each patient record, we extracted the “symptoms” field from the text data, repre-
senting patient’s current condition, as the input for disease prediction. Figure 5 depicts the
loss during the training and validation process. The red and blue curves denote the training
and validation loss, respectively. We note that the training loss monotonically decreases
to approximately 0.002 in 10 epochs. However, the validation loss shows oscillation in a
small range. In order to prevent over-fitting, we stopped the training at 10 epochs to allow
error tolerance. We further examined accuracy during the training phase, as shown in
Figure 6. In Figure 6A, the prediction accuracy curve for nasopharyngitis steadily increases
from an initial 0.87 to 0.99 with respect to epochs, which is almost overlapping with the
prediction accuracy curve for upper respiratory tract infection. However, bronchitis and
bronchiolitis showed only 0.93 in accuracy. Figure 6B demonstrates the prediction accuracy
curves for validation data, which are lower than those for the training data. However, the
trend remains consistent with the training data.

Figure 5. The red and blue curves denote the loss of training and validation with respect to epochs,
respectively. The validation loss seems to oscillate in a small range during the first 10 epochs.

3.3. Evaluation

To evaluate the model’s performance, we used a test set, showing the prediction
accuracies are 0.93, 0.93, and 0.89 for nasopharyngitis, upper respiratory infection, and
bronchitis and bronchiolitis, respectively. The sensitivity, specificity, and precision for
nasopharyngitis and respiratory infection are above 0.9. For bronchitis and bronchiolitis,
the sensitivity is poor at only 0.84. The confusion matrices are shown in Figure 5. The data
in the confusion matrix are aggregated based on the number of patients, resulting in an
equal sum for all three matrices. As is depicted in Figure 7, the matrices for diagnosing
nasopharyngitis and upper respiratory infection exhibit similar trends. Overall evaluation
of performance is listed in Table 1; they represent the averages of ten-fold cross validation,
which are close to the reality. According to the evaluation result, it is observed that the
diagnosis of nasopharyngitis and upper respiratory infection both achieve an accuracy of
0.93, while bronchitis and bronchiolitis reaches a slightly lower accuracy of 0.89. In terms of
sensitivity, bronchitis and bronchiolitis exhibit a lower value of 0.84, indicating a higher rate
of false positives. A similar pattern is observed in precision and F1 score as well. However,
in terms of specificity, bronchitis and bronchiolitis reach a peak of 0.96.
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Figure 6. Accuracy curves in training phase. (A) Training; (B) validation.

Figure 7. The confusion matrices of three disease predictions.
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Table 1. The evaluation of the trained model. The value is the average of 10-fold cross validation.

Disease Accuracy Sensitivity Specificity Precision F1 Score

Nasopharyngitis 0.93 0.93 0.92 0.94 0.94
Upper respiratory infection 0.93 0.92 0.94 0.92 0.92
Bronchitis and bronchiolitis 0.89 0.84 0.96 0.88 0.86

3.4. Comparison

The comparative system differs from the originally proposed system in that the en-
coder portion has been replaced with BERT [35], while the remaining classifier and hyper-
parameter configurations remain the same. The experimental results, as depicted in Table 2,
show that there is no significant difference in diagnostic accuracy between the two systems.
In terms of the number of parameters, the BERT-based system has a slightly larger count
compared to the proposed method. Regarding FLOPs, the BERT-based system outperforms
the proposed method; however, there is no substantial difference in terms of iterations per
second between the two.

Table 2. Comparison with other SOTA model. The value is the average of 10-fold cross validation.

Method Accuracy Parameter Flops Iteration

GPT-2-based 0.93 604 M 1 B 4.87 it/s
BERT-based 0.93 690 M 35.8 B 5.15 it/s

Additionally, we also studied replacing the purposed multiple classifiers with a sole
classifier, which outputted three channels to carry out the multi-label task. The result is
shown in Appendix B.

4. Discussion

This study explored the feasibility of using few symptom words and a neural network
language model (GPT-2) to predict three upper respiratory tract diseases, representing the
most common diseases causing patients to seek help from family physicians. Computer-
aided diagnosis assists outpatients in rapidly identifying common upper respiratory tract
diseases, which might offer information to allow outpatients to seek further medical help.
This could be the first step in the remote diagnosis of an upper respiratory tract problem.

Previous studies [17,36] have focused on building annotation systems for electronic
medical or health records to extract data such as that regarding symptoms, treatments,
and test results. Those data are used for causal inference or defining standard thresholds
for subsequent research. However, those applications cannot be directly accessible to the
general public. Unlike physicians, the general public has less medical knowledge on the
normal ranges of test results but rather focuses on identifying the specific disease they may
be suffering from. In this study, we used symptoms recorded by physicians as the input
for a language model to infer the disease an outpatient was suffering from. The trained
model acts as an artificial diagnostician with extensive experience, helping outpatients
understand their conditions.

Compared to the handling of structured text data, this study took a different approach
from that of previous research, which extracted various categories of information from
the text. Instead, the model directly extracts sequential features from unformatted data
to predict diseases. This method reduces the effort required for subsequent data analysis
in various categories and eliminates the need for building a guide decision model. Fur-
thermore, the results of this study demonstrate that the model has sufficient capability
to determine reliable diagnoses from unstructured text data, indirectly suggesting that
physicians can maintain their own writing styles, since the data can be utilized by the
language model without requiring adjustments.

Based on the dataset utilized in our study, it was observed that approximately 75%
of patients are diagnosed with either nasopharyngitis or an upper respiratory infection.
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The rationale behind this phenomenon lies in the diagnostic process for nasopharyngitis,
wherein physicians can employ visual examination of the throat combined with the patient’s
symptom description. For upper respiratory tract infection, even in the absence of overt
signs of throat inflammation, the diagnosis is made based on the presence of symptoms
related to the upper respiratory tract in the patient’s description. Depending on the severity
of the patient’s symptoms, further bacterial culture tests may be necessary for effective
treatment. Notably, according to our dataset, patients simultaneously diagnosed with
both of the aforementioned conditions constitute a very small minority. Consequently,
the distinction in diagnosing these two conditions holds clinical significance, suggesting
it is likely that they are not coexisting ailments. Our experimental results demonstrate
that our model achieved an accuracy of 93% in diagnosing both of these diseases on
the test set. Although there is a slight variance in precision, the results underscore the
considerable discriminatory power of our computer-aided diagnostic system. Furthermore,
the experimental outcomes indicate that employing different linear classifiers for these
two upper respiratory diseases yields satisfactory discriminatory effects, requiring only a
minimal number of iterations to achieve a stable diagnostic performance.

In the dataset used in this study, outpatients diagnosed solely with bronchitis or bron-
chiolitis accounted for only 0.1% of the total, while the data for outpatients diagnosed with
these diseases along with nasopharyngitis or upper respiratory tract infections increased
to approximately 25% of the total. This data distribution indicates that only a very small
portion of patients are independently diagnosed without nasopharyngeal infections or up-
per respiratory tract infections. In other words, patients with bronchitis or bronchiolitis are
usually diagnosed with multiple diseases. Additionally, we infer that physicians generally
do not rely solely on symptoms to diagnose bronchitis or bronchiolitis in the absence of
chest X-ray evidence.

Regarding the model’s performance, we observe the effectiveness of the GPT-2 model
with regard to transfer learning. In terms of the diagnostic accuracy shown in the first
epoch of the training process, the accuracy rates for various diseases reach a good level,
as shown in Figure 4. This result also implies that the model performs well in terms of
few-shot learning, greatly increasing the feasibility of expanding the range of diseases to
be diagnosed. After fine-tuning with a relatively small dataset, the transformed learning
further improves the performance, especially when acquiring medical data is not trivial. In
this study, particularly for the diagnosis of nasopharyngitis and upper respiratory infection,
an accuracy rate of 93% was achieved, with sensitivity and specificity both exceeding 90%.
Even for diseases with a smaller amount of data, such as bronchitis and bronchiolitis, an
accuracy rate of 0.89 was achieved.

Based on our experimental findings, we demonstrate the high credibility of diagnosing
using the GPT-2 model, leveraging text vector features generated through the description
of symptoms by medical professionals. Each distinct linear layer focuses on examining the
relevance within the text features, providing an accurate diagnosis for the specific disease
it is tasked with, akin to different specialized physicians. Importantly, these layers are not
influenced by biases or preconceptions, allowing for the most precise diagnosis. By em-
ploying multiple linear layers for diagnosis, not only does it enhance the interpretability of
the classifier, but it also facilitates future expansion to diagnose other diseases. We have the
capability to freeze or separate previously trained, fully connected layer weights, enabling
the addition of new linear layers without the need for extensive retraining. Furthermore,
there is no requirement to adjust output dimensions to accommodate the types of newly
added diseases, thereby further enhancing the flexibility of the model. All of these are our
contributions.

Since 2020, the outbreak of COVID-19 has led to a rapid increase in the number of
patients with upper respiratory symptoms, resulting in insufficient medical capacity. To
prevent the outbreak of large-scale infections, the Taiwanese government conducted self-
health management policies to request positively diagnosed outpatients to quarantine at
home if their symptoms were not serious [37]. The motivation for this study was to provide
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preliminary help to the general public who suffered with respiratory problems anywhere
outside hospitals. In the future, we will extend the language model developed in this study
to include the classification of additional respiratory infections such as lung infections.

In our study, a notable limitation is the exclusive use of non-public data from a
single center for investigation, leading to significant constraints in terms of the bias of
the research results. In future investigations, we aim to validate our model with external
data, extending its application to a broader spectrum of diseases by introducing additional
classifiers or integrating our trained diagnostic system with other domains. In addition,
this study verifies the precision of diagnosing upper respiratory tract diseases using a
diagnostic system built on self-attention-based language models. For future research,
exploring the integration of voice communication software, like LINE application, LINE
Plus Corporation (Yotsuya Office, Yotsuya, Shinjuku-ku, Tokyo, Japan) to allow users to
input data could enhance the system’s accessibility and practicality, providing users with
accurate preliminary diagnoses in real time.

5. Conclusions

We adopted and modified a GPT-based language model applying unstructured med-
ical text data to classify three common respiratory diseases. This method successfully
differentiates different diseases from the symptoms recorded by physicians. The resultant
performance suggests that this model has capabilities of dealing with complicated text
data through NLP. Currently this is only a feasibility study, which is not mature for clinical
usage. We demonstrate the possibility that this method has the potential to be used in
remote diagnosis.
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Appendix A

Table A1. Description of the ten-fold accuracy.

Fold Training Validation Test

1 0.964231 0.936302 0.887459
2 0.963404 0.937317 0.931188
3 0.96346 0.932558 0.935149
4 0.963554 0.936327 0.936964
5 0.963248 0.937094 0.933828
6 0.962105 0.935981 0.939934
7 0.96392 0.929226 0.930033
8 0.963535 0.934513 0.943234
9 0.964254 0.935552 0.914521

10 0.963743 0.932401 0.938944
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Appendix B

This appendix describes the GPT-2-based diagnostic system with a sole classifier. The
encoder of this diagnostic system was the same as that in the proposed method, but we
only utilized one classifier to classify three upper respiratory tract diseases. To fit with our
demand, the classifier outputted three channels rather than the proposed two channels,
and the activation changed to Sigmond because Softmax activation transforms the sum of
all channels to 1, which cannot meet our multi-label target. Then, the loss function was
replaced by binary cross entropy to compute the loss of each channel. Other hypermeters
were set in accordance with the proposed method. The experimental result is shown in
Table A2.

Table A2. The experimental result of GPT-2-based diagnostic system with sole classifier.

Disease Accuracy Sensitivity Specificity Precision F1 Score

Nasopharyngitis 0.94 0.93 0.94 0.95 0.94
Upper respiratory infection 0.93 0.94 0.93 0.91 0.93
Bronchitis and bronchiolitis 0.92 0.84 0.95 0.87 0.85

Table A3. The computational efficiency and parameters of GPT-2-based diagnostic system with
sole classifier.

Parameter Flops Iteration

201 M 354 M 5.46 it/s
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