Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review
Abstract
:1. Introduction
2. Overview of Immune Checkpoint Inhibitors (ICIs)
2.1. Brief Overview of Immune Checkpoint Inhibitors
2.1.1. CTLA-4 Inhibitors
2.1.2. PD-1 Inhibitors
2.1.3. PD-L1 Inhibitors
2.1.4. LAG-3 Inhibitor
2.2. Side Effects Other Than Ocular Side Effects
2.3. Ocular and Orbital Side Effects Other Than Uveitis
- -
- Orbit;
- -
- Anterior segment;
- -
- Posterior segment
3. Pathogenesis of Uveitis Associated with ICIs
3.1. Association of ICIs with Uveitis
3.1.1. Association with Combination Therapy
3.1.2. Associations with Non-Ocular IRAEs
3.1.3. Associations with Different Cancer Types
3.1.4. Association with Different ICI Types
3.2. Mechanisms Triggering Uveitis
3.2.1. Activation of the Complement Cascade
3.2.2. Role of Innate Immunity
3.2.3. Role of Humoral and Cell-Mediated Autoimmunity
3.2.4. Loss of Immune Privilege
3.3. Genetic and Environmental Factors
3.3.1. Sex and Extracellular Hormonal Environment
3.3.2. HLA Predisposition
3.3.3. Role of the Microbiome
4. Manifestations of Uveitis Associated with ICIs
4.1. Anterior, Intermediate, Posterior, Panuveitis
- (1)
- Anterior uveitis, anterior cyclitis, iritis, or iridocyclitis, affects the anterior chamber of the eye. It is characterized by red-eye photophobia, acute blurred vision, and pain/discomfort. Typical signs of anterior chamber inflammation include conjunctival congestion, corneal edema, keratic precipitates, presence of cells and flares, and iris synechiae [115]. The number of cells may vary from trace to hypopyon formation [116];
- (2)
- Intermediate uveitis, hyalitis, posterior cyclitis, or pars planitis, refers to inflammation of the vitreous body. Symptoms include blurred vision and floaters;
- (3)
- Posterior uveitis, retinitis, neuroretinitis, chorioretinitis, or choroiditis, refers to inflammation of the retina, retinal vessels, and choroid. Principal symptoms consist of flashing lights, floaters, or vision loss. Slit lamp examination may include cells in the posterior chamber and vitreous haze. Fundus exam reveals retinal fluid or chorioretinal lesions [117,118];
- (4)
- Panuveitis occurs when inflammation is localized to more than one of the above compartments [119].
4.2. Vogt–Koyanagi–Harada-like Uveitis
4.3. Birdshot-like Posterior Uveitis
4.4. Symmetry and Laterality
4.5. Complications of Uveitis
5. VIII. Epidemiology and Risk Factors of Uveitis Associated with ICIs
5.1. Age
5.2. Sex
5.3. Ethnicity
5.4. Prior Ocular History
5.5. Past Medical History
5.6. Cancer Type
5.7. ICI Class
6. Diagnostic Tools
6.1. Diagnostic Criteria
6.2. Laboratory Investigations
6.3. Imaging Investigations
6.4. Specialized Diagnostic Tests
7. Management of Uveitis Associated with ICIs
Early Recognition and Collaboration between Oncologists and Ophthalmologists
8. Treatment Options
8.1. Topical Steroids and Systemic Corticosteroids
8.2. Immunosuppressor, Immunomodulator, and Biologics
8.3. ICI Discontinuation
9. Management of Refractory Cases
10. Prognosis and Complications
11. Monitoring and Follow-Up
Neoplastic Outcome
12. Current Research and Future Directions
12.1. Summary of Recent Studies
12.2. Future Therapeutic Strategies and Research Needs
13. Recommendations for Clinical Practice and Research
- (1)
- A baseline ophthalmology examination before initiation of ICI is recommended for patients with risk factors for ICI-induced uveitis. These include prior episodes of uveitis or other ocular inflammatory conditions, a history of ocular trauma or surgery, and patients with a medical history of autoimmune disease or renal failure. Indeed, 27% of patients with prior autoimmune diseases develop IRAEs following ICI initiation and up to 51% of patients with a prior history of uveitis develop ICI-induced uveitis [74,231,232,233]. Routine screening of at-risk populations would also facilitate the diagnosis and treatment of pre-existent diseases before the initiation of immunotherapy;
- (2)
- Clinical presentations of ICI-induced uveitis vary and include anterior, intermediate, posterior, VKH-like, and BU-like uveitis. When a patient undergoing ICI treatment presents with symptoms of ocular inflammation and reduced vision, clinical suspicions of ICI-induced uveitis must be high and need to be confirmed via a complete uveitis workup;
- (3)
- ICI-induced uveitis can present as panuveitis. Therefore, patients presenting with signs of anterior uveitis and reduced vision should undergo further imaging (e.g., OCT) to adequately rule out any posterior segment involvement. Thereby, the correct treatment modality can be initiated, leading to the preservation of visual prognosis;
- (4)
- Our treatment recommendations align with most studies in the literature. Mild anterior uveitis should be treated with topical steroids. Moderate to severe anterior, intermediate, and posterior uveitis should be treated with intravitreal, periocular, or topical steroids depending on the segment involved, along with systemic corticosteroids. ICI therapy should also be suspended following a discussion with the oncologist. We also recommend avoiding re-initiation of ICI therapy in grade 4 uveitis. Once uveitis is resolved, corticosteroids should be progressively tapered to avoid relapses of ocular inflammation;
- (5)
- Since uveitis can occur at any time along the treatment course, interdisciplinary collaboration between ophthalmologists and oncologists is crucial to allow earlier consultations in ophthalmology and to preserve visual prognosis. Oncology follow-up is frequent and represents good opportunities to screen for ocular symptoms. A standard questionnaire may be provided to the oncology team and the patient to facilitate the recognition of ophthalmic red flags. Decisions relative to the treatment of ocular adverse events should be made by consensus in a multidisciplinary meeting to ensure an optimized and individualized therapeutic strategy [202];
- (6)
- Ophthalmologists should stay aware of ocular metastatic disease. Despite the eye’s immune privilege, metastatic disease can reach ocular and periocular tissues. Several cases of masquerade uveitis later found to be ocular cancer metastases were reported. A key clinical distinction is the often bilateral and symmetric nature of uveitis [127]. However, there can be exceptions. Manusow et al. describe a case of a 36-year-old female treated with pembrolizumab for metastatic cutaneous melanoma. After complete remission, she developed bilateral vitreous metastasis without choroidal involvement, associated with retinal vasculitis detected through angiography. Retinal vasculitis is believed to be a paraneoplastic phenomenon to retinal cell antigens since it completely resolves immediately after performing a vitrectomy. Examination findings led clinicians to suspect metastatic disease and perform a vitreous biopsy. On examination, vitreous cells were atypical, adherent in small clusters without any signs of damage to the vitreous gel [64]. In a second case report, a 63-year-old woman treated with ipilimumab and prolonged high-dose steroids for metastatic malignant carcinoma presented with signs and symptoms of right panuveitis. Large vitreous opacities were present bilaterally on dilated fundus examination, with pale yellow retinal lesions. Clinicians suspected candida endophthalmitis and performed pars plana vitrectomy, which revealed metastatic disease [234]. Despite a partial lung response to immunotherapy, the vitreous and retina, considered immunologically privileged tissues, demonstrated metastatic progression.
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ICI Name | Indication | Administration Regimen | Trial | Year Approved by the FDA | Reported Incidence of Uveitis |
---|---|---|---|---|---|
Ipilimumab (YERVOY) [235] | Unresectable or metastatic melanoma | Single agent: every 3 weeks for max 4 doses, 3 mg/kg IV. | MDX010-20 [236] (NCT00094653) | 2011 | <1% |
Combination with nivolumab: every 3 weeks, 3 mg/kg IV with nivolumab 1 mg/kg for max 4 doses; maintenance with nivolumab until disease progression or unacceptable toxicity. | CHECKMATE-067 [237] (NCT01844505) | 2015–2016 | |||
Melanoma, adjuvant therapy | Every 3 weeks, 10 mg/kg for 4 doses; followed by 10 mg/kg every 12 weeks for up to 3 years. | CA184-029 [238] (NCT00636168) | 2015 | 0.2% | |
Intermediate or poor risk advanced renal cell carcinoma (RCC) | Combination with nivolumab: Every 3 weeks for 4 doses, 1 mg/kg with nivolumab 3 mg/kg; maintenance with nivolumab until disease progression or unacceptable toxicity. | CHECKMATE-214 [239] (NCT02231749) | 2018 | ||
Microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer | Combination with nivolumab: Every 3 weeks for 4 doses, 1 mg/kg with nivolumab 3 mg/kg; maintenance with nivolumab until disease progression or unacceptable toxicity. | CHECKMATE-214 [239] (NCT02231749) | 2018 | ||
Hepatocellular carcinoma (HCC) previously treated with Sorafenib | Combination with nivolumab: Every 3 weeks for 4 doses, 3 mg/kg with nivolumab 1 mg/kg; maintenance with nivolumab until disease progression or unacceptable toxicity. | CHECKMATE-040 [240] (NCT01658878) | 2020 | ||
Metastatic PD-L1-positive, EGFR-negative, ALK-negative non-small cell lung cancer (NSCLC) | Combination with nivolumab: Every 6 weeks, 1 mg/kg IV; Every 3 weeks, nivolumab 360 mg; maintenance with nivolumab for up to 2 years or unacceptable toxicity. | CHECKMATE-227 [241] (NCT02477826) | 2020 | <2% | |
Metastatic PD-L1-negative NSCLC | Combination with nivolumab: Every 6 weeks, 1 mg/kg IV; Every 3 weeks, nivolumab 360 mg; Every 3 weeks for 2 cycles, platinum-based chemotherapy; maintenance with nivolumab for up to 2 years or unacceptable toxicity. | CHECKMATE-9LA [242] (NCT03215706) | 2020 | ||
Unresectable malignant pleural mesothelioma | Combination with nivolumab: Every 6 weeks, 1 mg/kg IV; Every 3 weeks, nivolumab 360 mg; maintenance with nivolumab for up to 2 years or unacceptable toxicity. | CHECKMATE-743 [243] (NCT02899299) | 2020 | ||
Metastatic small cell lung cancer (SCLC) | Every 3 weeks, 3 mg/kg + 1 mg/kg nivolumab for 4 cycles; maintenance with nivolumab 3 mg/kg every 2 weeks until disease progression or unacceptable toxicity. | CHECKMATE-032 [244] (NCT01928394) | 2020 | ||
Unresectable advanced or metastatic esophageal squamous cell carcinoma | Combination with nivolumab: Every 6 weeks, 1 mg/kg IV; Every 2 weeks, nivolumab 360 mg OR every 3 weeks, nivolumab 3 mg/kg; maintenance with nivolumab for up to 2 years or unacceptable toxicity. | CHECKMATE-648 [245] (NCT03143153) | 2022 | ||
Tremelimumab (IMJUDO) [246] | Unresectable HCC | STRIDE regimen (single tremelimumab, regular interval durvalumab): a single dose of 300 mg IV; maintenance every 4 weeks with 1500 mg IV of durvalumab. | HIMALAYA [247] (NCT03298451) | 2022 | |
Metastatic EGFR-negative, ALK-negative NSCLC | For patients weighing >30 kg: every 3 weeks, tremelimumab 75 mg IV + durvalumab 1500 mg IV + platinum-based chemotherapy for 4 cycles; maintenance every 4 weeks with durvalumab 1500 mg + chemotherapy; at week 16, fifth tremelimumab dose (75 mg). | POSEIDON [248] (NCT03164616) | 2022 |
ICI Name | Indication | Administration Regimen | Trial | Year Approved by the FDA | Reported Incidence of Uveitis |
---|---|---|---|---|---|
Nivolumab (OPDIVO) [249] | Unresectable or metastatic melanoma | Single agent: Patients >40 kg: 240 mg every 2 weeks or 480 mg every 4 weeks until disease progression or unacceptable toxicity. Patients under 40 kg: 3 mg/kg every 2 weeks or 6 mg/kg every 4 weeks until disease progression or unacceptable toxicity. | CHECKMATE-238 [250] (NCT02388906) | 2014 | |
Combination with ipilimumab: c.f. Table 1 | |||||
Melanoma, adjuvant therapy | 240 mg every 2 weeks or 480 mg every 4 weeks for up to 1 year or unacceptable toxicity. | CHECKMATE-238 [250] (NCT02388906) | 2017 | ||
Metastatic PD-L1-positive non-small cell lung cancer (NSCLC) | Combination with ipilimumab: c.f. Table 1 | ||||
Metastatic PD-L1-negative NSCLC | Single agent: 240 mg every 2 weeks or 480 mg every 4 weeks until disease progression or unacceptable toxicity. | CHECKMATE-017 [251] (NCT01642004) CHECKMATE-057 [252] (NCT01673867) | 2015 | ||
Combination therapy: 360 mg every 3 weeks with platinum-based chemotherapy, for 3 cycles | CHECKMATE-816 [253] (NCT02998528) | 2015 | |||
Combination with ipilimumab: c.f. Table 1 | |||||
Unresectable malignant pleural mesothelioma | Combination with ipilimumab: c.f. Table 1 | ||||
Advanced RCC | 240 mg every 2 weeks or 480 mg every 4 weeks until disease progression or unacceptable toxicity. | CHECKMATE-025 [254] (NCT01668784) | 2015 | ||
Combination with cabozantinib: 240 mg every 2 weeks or 480 mg every 4 weeks for up to 2 years; cabozantinib 40 mg orally once daily without food until disease progression or unacceptable toxicity. | CHECKMATE-9ER [255] (NCT03141177) | 2021 | |||
Combination with ipilimumab: c.f. Table 1 | |||||
Classical Hodgkin lymphoma, relapsed or progressed after >3 lines of therapy | 240 mg every 2 weeks or 480 mg every 4 weeks until disease progression or unacceptable toxicity. | CHECKMATE-205 [256] (NCT02181738) CHECKMATE-039 [257] (NCT01592370) | 2016 | ||
Metastatic or recurrent squamous cell carcinoma of the head and neck (SCCHN) | 240 mg every 2 weeks or 480 mg every 4 weeks until disease progression or unacceptable toxicity. | CHECKMATE-141 [258] (NCT02105636) | 2016 | ||
UC, adjuvant therapy | 240 mg every 2 weeks or 480 mg every 4 weeks for up to 1 year or unacceptable toxicity. | CHECKMATE-274 [259] (NCT02632409) | 2021 | ||
Advanced or metastatic UC | 3 mg/kg every 2 weeks until disease progression or unacceptable toxicity | CHECKMATE-275 [260] (NCT02387996) | 2017 | ||
MSI-H or dMMR metastatic colorectal cancer | 240 mg every 2 weeks or 480 mg every 4 weeks until disease progression or unacceptable toxicity. | CHECKMATE-142 [261] (NCT02060188) | 2017 | 0.8% | |
Combination with ipilimumab: c.f. Table 1 | |||||
HCC | Combination with ipilimumab: c.f. Table 1 | ||||
Metastatic small cell lung cancer (SCLC) | 3 mg/kg every 2 weeks until disease progression or unacceptable toxicity. | CHECKMATE-032 [262] (NCT01928394) | 2020 | ||
Combination with ipilimumab: c.f. Table 1 | |||||
Esophageal squamous cell carcinoma | 240 mg every 2 weeks or 480 mg every 4 weeks until disease progression or unacceptable toxicity, either alone or in combination with fluoropyrimidine- and platinum containing chemotherapy. | ATTRACTION-3 [263] (NCT02569242) | 2020 | ||
Combination with ipilimumab: c.f. Table 1 | |||||
Advanced or metastatic gastric cancer, gastroesophageal junction cancer, and esophageal adenocarcinoma | 240 mg every 2 weeks or 480 mg every 4 weeks for up to 2 years in combination with fluoropyrimidine- or platinum containing chemotherapy. | CHECKMATE-649 [264] (NCT02872116) | 2021 | ||
Esophageal and gastroesophageal junction cancer, adjuvant therapy | 240 mg every 2 weeks for 16 weeks followed by 480 mg every 4 weeks beginning at week 17 for up to 1 year or unacceptable toxicity. | CHECKMATE-577 [265] (NCT02743494) | 2021 | ||
Pembrolizumab (KEYTRUDA) [266] | Melanoma | 200 mg every 3 weeks or 400 mg every 6 weeks; 2 mg/kg (up to 200 mg) every 3 weeks for pediatrics. | KEYNOTE-006 [267] (NCT01866319) KEYNOTE-002 [268] (NCT01704287) KEYNOTE-716 [269] (NCT03553836) KEYNOTE-054 [270] (NCT02362594) | 2014 | 1.1% Grade 1–2: 100% |
NSCLC | KEYNOTE-189 [271] (NCT02578680) KEYNOTE-407 [272] (NCT03875092) KEYNOTE-042 [273] (NCT02220894) KEYNOTE-010 [274] (NCT01905657) KEYNOTE-091 [275] (NCT02504372) | 2015 | |||
Head and neck squamous cell cancer | KEYNOTE-048 [276] (NCT02358031) KEYNOTE-012 [277] (NCT01848834) | 2016 | |||
Classical Hodgkin lymphoma | KEYNOTE-204 [278] (NCT02684292) KEYNOTE-087 [279] (NCT02453594) | 2017 | 1.4% 1% | ||
Primary mediastinal large B-Cell Lymphoma | KEYNOTE-170 [280] (NCT02576990) | 2018 | |||
Urothelial carcinoma (UC) | KEYNOTE-869 [281] (NCT03288545) KEYNOTE-052 [282] (NCT02335424) KEYNOTE-045 [283] (NCT02256436) KEYNOTE-057 [284] (NCT02625961) | 2017 | |||
MSI-H or dMMR colorectal cancer | KEYNOTE-158 [285] (NCT02628067) KEYNOTE-164 [286] (NCT02460198) KEYNOTE-051 [287] (NCT02332668) KEYNOTE-177 [288] (NCT02563002) | 2017/2020 | |||
Gastric cancer | KEYNOTE-811 [289] (NCT03615326) | 2017 | |||
Esophageal cancer | KEYNOTE-590 [290] (NCT03189719) KEYNOTE-181 [291] (NCT02564263) | 2017 | |||
Cervical cancer | KEYNOTE-826 [292] (NCT03635567) KEYNOTE-158 [285] (NCT02628067) | 2018 | |||
HCC | KEYNOTE-224 [293] (NCT02702414) | 2018 | |||
Merkel cell carcinoma | KEYNOTE-017 [294] (NCT02267603) | 2018 | |||
RCC | KEYNOTE-426 [295] (NCT02853331) KEYNOTE-581 [296] (NCT02811861) KEYNOTE-564 [297] (NCT03142334) | 2019 | |||
Endometrial carcinoma | KEYNOTE-775 [298] (NCT03517449) KEYNOTE-158 [299] (NCT02628067) | 2019 | |||
Tumor mutational Burden-High cancer | KEYNOTE-158 [299] (NCT02628067) | 2020 | |||
Cutaneous squamous cell carcinoma | KEYNOTE-629 [300] (NCT03284424) | 2021 | |||
Triple-negative breast cancer | KEYNOTE-522 [301] (NCT03036488) KEYNOTE-355 [302] (NCT02819518) | 2020 | |||
Cemiplimab (LIBTAYO) [303] | Advanced cutaneous squamous cell carcinoma (CSCC) | 350 mg every 3 weeks for up to 2 years or until unacceptable toxicity. | Study 1423 [304] (NCT02383212) Study 1540 [305] (NCT02760498) | 2018 | |
Advanced basal cell carcinoma (BCC) | 350 mg every 3 weeks for up to 2 years or until unacceptable toxicity. | Study 1620 [306] (NCT03132636) | 2021 | ||
Advanced PD-1 positive NSCLC | 350 mg every 3 weeks until disease progression or unacceptable toxicity. | EMPOWER-Lung 1 [307] (NCT03088540) | 2021 | ||
Combination with chemotherapy: 350 mg every 3 weeks for 108 weeks plus platinum-based chemotherapy every 3 weeks for 4 cycles. | EMPOWER-Lung 3 [308] (NCT03409614) | 2022 |
ICI Name | Indication | Administration Regimen | Trial | Year Approved by the FDA | Reported Incidence of Uveitis |
---|---|---|---|---|---|
Atezolizumab (TECENTRIQ) [309] | PD-L1-positive NSCLC, adjuvant therapy | 840 mg every 2 weeks, 1200 mg every 3 weeks or 1680 mg every 4 weeks for up to 1 year. | IMpower010 [310] (NCT02486718) | 2021 | |
Metastatic PD-L1-positive NSCLC | 840 mg every 2 weeks, 1200 mg every 3 weeks, or 1680 mg every 4 weeks. | IMpower110 [31] (NCT02409342) | 2020 | ||
Metastatic non-squamous NSCLC, EFGR-negative, ALK-negative | 840 mg every 2 weeks, 1200 mg every 3 weeks, or 1680 mg every 4 weeks. | IMpower150 [311] (NCT02366143) | 2018 | ||
Combination with chemotherapy: 1200 mg + carboplatin 6 mg/mL/min IV on Day 1; paclitaxel 100 mg/m on Day 1, 8, and 15 of each 21-day cycle for a maximum of 4 or 6 cycles; maintenance by TECENTRIQ 1200 mg every 3 weeks until disease progression or unacceptable toxicity. | IMpower130 [312] (NCT02367781) | 2019 | |||
SCLC | 840 mg every 2 weeks, 1200 mg every 3 weeks, or 1680 mg every 4 weeks. | IMpower133 [313] (NCT02763579) | 2019 | ||
Advanced or metastatic HCC | 840 mg every 2 weeks, 1200 mg every 3 weeks, or 1680 mg every 4 weeks, with or without bevacizumab 15 mg/kg every 3 weeks | IMbrave150 [314] (NCT03434379) | 2020 | ||
Melanoma | Combination with chemotherapy: 840 mg every 2 weeks, 1200 mg every 3 weeks, or 1680 mg every 4 weeks with cobimetinib 60 mg once daily (21 days on /7 days off) and vemurafenib 720 mg twice daily. | IMspire150 [315] (NCT02908672) | 2020 | 2.2% | |
Alveolar soft part sarcoma | 840 mg every 2 weeks, 1200 mg every 3 weeks, or 1680 mg every 4 weeks | ML39345 [316] (NCT03141684) | 2022 | ||
Avelumab (BAVENCIO) [317] | Metastatic Merkel cell carcinoma | 800 mg every 2 weeks | JAVELIN Merkel 200 [318] (NCT02155647) | 2017 | |
Advanced or metastatic UC, maintenance treatment | 800 mg every 2 weeks | JAVELIN Bladder 100 [319] (NCT02603432) | 2020 | ||
Advanced RCC | Combination with axitinib: 800 mg every 2 weeks with axitinib 5 mg PO BID | JAVELIN Renal 101 [320] (NCT02684006) | 2019 | ||
Durvalumab (IMFINZI) [321] | Unresectable stage III NSCLC | 10 mg/kg every 2 weeks or 1500 mg every 4 weeks | PACIFIC [322] (NCT02125461) | 2018 | |
Metastatic NSCLC | Combination with tremelimumab: c.f. Table 2 | ||||
Extensive-stage SCLC | 1500 mg every 3 weeks in combination with chemotherapy, then 1500 mg every 4 weeks as a single agent | CASPIAN [323] (NCT03043872) | 2020 | ||
Advanced biliary tract cancer (BTC) | 1500 mg every 3 weeks in combination with chemotherapy, then 1500 mg every 4 weeks as a single agent | TOPAZ-1 [324] (NCT03875235) | 2022 | ||
Advanced or unresectable HCC | Combination with tremelimumab: c.f. Table 2 |
Appendix B
Number of Cases | Age | Sex | Cancer Type | ICI Therapy | Gene | Study |
---|---|---|---|---|---|---|
6 | 45 | 3F:1M | melanoma | s/p | s/p | Anquetil et al., 2020 [68] |
1 | 55 | M | melanoma | nivolumab | HLA-DRB1*04:10 | Arai et al., 2017 [69] |
1 | s/p | s/p | melanoma | ipilimumab | HLA-DR4/DRB1*04 | Bricout et al., 2017 [70] |
1 | 70 | M | RCC | nivolumab | s/p | Czichos et al., 2021 [134] |
1 | 68 | F | melanoma | pembrolizumab | HLA-DRB1*04:05 | Enomoto et al., 2021 [102] |
1 | 43 | M | melanoma | ipilimumab | s/p | Fierz et al., 2016 [135] |
2 | 73 | M | melanoma | nivolumab | HLA-DRB1*04:05 | Fujimura et al., 2018 [100] |
35 | F | melanoma | nivolumab | HLA-DRB1*04:05 | ||
1 | s/p | F | melanoma | nivolumab | s/p | Gambichler et al., 2020 [136] |
1 | 53 | F | melanoma | cemiplimab | HLA-B51 | Huang et al., 2023 [137] |
1 | 61 | F | ovarian | nivolumab | s/p | Hwang et al., 2022 [325] |
1 | 63 | M | hypopharyngeal | nivolumab | HLA-DRB1*04:05 | Kikuchi et al., 2020 [103] |
1 | 55 | M | melanoma | nivolumab | s/p | Madoe et al., 2023 [139] |
1 | 68 | F | melanoma | ipilimumab, nivolumab | s/p | Mihailovic et al., 2020 [140] |
1 | 73 | M | melanoma | ipilimumab, nivolumab | HLA-DR4 | Minami et al., 2021 [141] |
1 | 64 | F | melanoma | ipilimumab | s/p | Monferrer-Adsuara et al., 2021 [142] |
1 | 72 | M | gastric | nivolumab | HLA-DR4 | Nagai et al., 2023 [143] |
1 | 49 | F | RCC | ipilimumab, nivolumab | s/p | Ng et al., 2023 [145] |
3 | 62 | F | melanoma | ipilimumab, nivolumab | HLA-DR4 | Noble et al., 2020 [144] |
63 | M | melanoma | pembrolizumab | s/p | ||
30 | F | melanoma | ipilimumab | s/p | ||
1 | 63 | F | melanoma | nivolumab | HLA-A24, B61, B48, DR9 | Obata et al., 2019 [146] |
3 | 71 | F | RCC | nivolumab | s/p | Qian et al., 2024 [147] |
F | SCLC | nivolumab | s/p | |||
F | melanoma | ipilimumab, nivolumab | s/p | |||
1 | 76 | F | NSCLC | atezolizumab | HLA-DR4 | Suwa et al., 2022 [148] |
8 | 66 | F | melanoma | pembrolizumab | HLA-DRB1*04:05 | Takeuchi et al., 2023 [101] |
M | melanoma | nivolumab | HLA-DRB1*04:05 | |||
F | RCC | nivolumab | HLA-DRB1*04:05 | |||
M | melanoma | nivolumab | HLA-DRB1*04:05 | |||
F | SCLC | durvalumab | s/p | |||
M | SCLC | atezolizumab | s/p | |||
F | melanoma | nivolumab | s/p | |||
F | RCC, gastric | nivolumab | s/p | |||
M | melanoma | ipilimumab, nivolumab | s/p | |||
1 | 58 | M | NSCLC | nivolumab | HLA-DR4 | Ushio et al., 2021 [149] |
1 | 54 | M | melanoma | ipilimumab | n/a | Witmer et al., 2017 [150] |
References
- Jago, C.B.; Yates, J.; Olsen Saraiva Câmara, N.; Lechler, R.I.; Lombardi, G. Differential Expression of CTLA-4 among T Cell Subsets. Clin. Exp. Immunol. 2004, 136, 463–471. [Google Scholar] [CrossRef]
- Boyman, O.; Sprent, J. The Role of Interleukin-2 during Homeostasis and Activation of the Immune System. Nat. Rev. Immunol. 2012, 12, 180–190. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 Pathway: Current Researches in Cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Nishimura, H.; Minato, N.; Nakano, T.; Honjo, T. Immunological Studies on PD-1 Deficient Mice: Implication of PD-1 as a Negative Regulator for B Cell Responses. Int. Immunol. 1998, 10, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.D.; Chitnis, T.; Imitola, J.; Ansari, M.J.I.; Akiba, H.; Tushima, F.; Azuma, M.; Yagita, H.; Sayegh, M.H.; Khoury, S.J. Critical Role of the Programmed Death-1 (PD-1) Pathway in Regulation of Experimental Autoimmune Encephalomyelitis. J. Exp. Med. 2003, 198, 71–78. [Google Scholar] [CrossRef]
- Mozaffarian, N.; Wiedeman, A.E.; Stevens, A.M. Active Systemic Lupus Erythematosus Is Associated with Failure of Antigen-Presenting Cells to Express Programmed Death Ligand-1. Rheumatol. Oxf. Engl. 2008, 47, 1335–1341. [Google Scholar] [CrossRef]
- Previte, D.M.; Martins, C.P.; O’Connor, E.C.; Marre, M.L.; Coudriet, G.M.; Beck, N.W.; Menk, A.V.; Wright, R.H.; Tse, H.M.; Delgoffe, G.M.; et al. Lymphocyte Activation Gene-3 Maintains Mitochondrial and Metabolic Quiescence in Naive CD4+ T Cells. Cell Rep. 2019, 27, 129–141.e4. [Google Scholar] [CrossRef]
- Ruffo, E.; Wu, R.C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A.A. Lymphocyte-Activation Gene 3 (LAG3): The next Immune Checkpoint Receptor. Semin. Immunol. 2019, 42, 101305. [Google Scholar] [CrossRef] [PubMed]
- Puhr, H.C.; Ilhan-Mutlu, A. New Emerging Targets in Cancer Immunotherapy: The Role of LAG3. ESMO Open 2019, 4, e000482. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, J.; Gnjatic, S.; Mhawech-Fauceglia, P.; Beck, A.; Miller, A.; Tsuji, T.; Eppolito, C.; Qian, F.; Lele, S.; Shrikant, P.; et al. Tumor-Infiltrating NY-ESO-1-Specific CD8+ T Cells Are Negatively Regulated by LAG-3 and PD-1 in Human Ovarian Cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 7875–7880. [Google Scholar] [CrossRef]
- Ascione, A.; Arenaccio, C.; Mallano, A.; Flego, M.; Gellini, M.; Andreotti, M.; Fenwick, C.; Pantaleo, G.; Vella, S.; Federico, M. Development of a Novel Human Phage Display-Derived Anti-LAG3 scFv Antibody Targeting CD8+ T Lymphocyte Exhaustion. BMC Biotechnol. 2019, 19, 67. [Google Scholar] [CrossRef] [PubMed]
- OPDUALAG-Nivolumab and Relatlimab-Rmbw Injection. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=b22c9d83-3256-4e17-85f7-f331a504adc6 (accessed on 8 October 2023).
- Bertrand, A.; Kostine, M.; Barnetche, T.; Truchetet, M.-E.; Schaeverbeke, T. Immune Related Adverse Events Associated with Anti-CTLA-4 Antibodies: Systematic Review and Meta-Analysis. BMC Med. 2015, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Antonia, S.J.; Topalian, S.L.; Schadendorf, D.; Larkin, J.M.G.; Sznol, M.; Liu, H.Y.; Waxman, I.; Robert, C. Safety Profile of Nivolumab (NIVO) in Patients (Pts) with Advanced Melanoma (MEL): A Pooled Analysis. J. Clin. Oncol. 2015, 33, 9018. [Google Scholar] [CrossRef]
- Topalian, S.L.; Sznol, M.; McDermott, D.F.; Kluger, H.M.; Carvajal, R.D.; Sharfman, W.H.; Brahmer, J.R.; Lawrence, D.P.; Atkins, M.B.; Powderly, J.D.; et al. Survival, Durable Tumor Remission, and Long-Term Safety in Patients with Advanced Melanoma Receiving Nivolumab. J. Clin. Oncol. 2014, 32, 1020–1030. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Sholl, L.M.; Hodi, F.S. Anti–PD-1–Related Pneumonitis during Cancer Immunotherapy. N. Engl. J. Med. 2015, 373, 288–290. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Berman, D.M.; DePril, V.; Humphrey, R.W.; Chen, T.; Messina, M.; Chin, K.M.; Liu, H.Y.; Bielefield, M.; Hoos, A. Ipilimumab Safety Profile: Summary of Findings from Completed Trials in Advanced Melanoma. J. Clin. Oncol. 2011, 29, 8583. [Google Scholar] [CrossRef]
- Downey, S.G.; Klapper, J.A.; Smith, F.O.; Yang, J.C.; Sherry, R.M.; Royal, R.E.; Kammula, U.S.; Hughes, M.S.; Allen, T.E.; Levy, C.L.; et al. Prognostic Factors Related to Clinical Response in Patients with Metastatic Melanoma Treated by CTL-Associated Antigen-4 Blockade. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2007, 13, 6681–6688. [Google Scholar] [CrossRef]
- Albandar, H.J.; Fuqua, J.; Albandar, J.M.; Safi, S.; Merrill, S.A.; Ma, P.C. Immune-Related Adverse Events (irAE) in Cancer Immune Checkpoint Inhibitors (ICI) and Survival Outcomes Correlation: To Rechallenge or Not? Cancers 2021, 13, 989. [Google Scholar] [CrossRef]
- Zimmer, L.; Goldinger, S.M.; Hofmann, L.; Loquai, C.; Ugurel, S.; Thomas, I.; Schmidgen, M.I.; Gutzmer, R.; Utikal, J.S.; Göppner, D.; et al. Neurological, Respiratory, Musculoskeletal, Cardiac and Ocular Side-Effects of Anti-PD-1 Therapy. Eur. J. Cancer 2016, 60, 210–225. [Google Scholar] [CrossRef]
- Hu, Y.-B.; Zhang, Q.; Li, H.-J.; Michot, J.M.; Liu, H.-B.; Zhan, P.; Lv, T.-F.; Song, Y. Evaluation of Rare but Severe Immune Related Adverse Effects in PD-1 and PD-L1 Inhibitors in Non-Small Cell Lung Cancer: A Meta-Analysis. Transl. Lung Cancer Res. 2017, 6, S8–S20. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- Palaskas, N.; Lopez-Mattei, J.; Durand, J.B.; Iliescu, C.; Deswal, A. Immune Checkpoint Inhibitor Myocarditis: Pathophysiological Characteristics, Diagnosis, and Treatment. J. Am. Heart Assoc. 2020, 9, e013757. [Google Scholar] [CrossRef]
- Läubli, H.; Balmelli, C.; Bossard, M.; Pfister, O.; Glatz, K.; Zippelius, A. Acute Heart Failure Due to Autoimmune Myocarditis under Pembrolizumab Treatment for Metastatic Melanoma. J. Immunother. Cancer 2015, 3, 11. [Google Scholar] [CrossRef]
- McArthur, G.A.; Gutzmer, R.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.V.; et al. Overall Survival (OS) with First-Line Atezolizumab (A) or Placebo (P) in Combination with Vemurafenib (V) and Cobimetinib (C) in BRAFV600 Mutation-Positive Advanced Melanoma: Second Interim OS Analysis of the Phase 3 IMspire150 Study. J. Clin. Oncol. 2022, 40, 9547. [Google Scholar] [CrossRef]
- Min, L.; Hodi, F.S. Anti-PD1 Following Ipilimumab for Mucosal Melanoma: Durable Tumor Response Associated with Severe Hypothyroidism and Rhabdomyolysis. Cancer Immunol. Res. 2014, 2, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Kaehler, K.C.; Egberts, F.; Lorigan, P.; Hauschild, A. Anti-CTLA-4 Therapy-Related Autoimmune Hypophysitis in a Melanoma Patient. Melanoma Res. 2009, 19, 333–334. [Google Scholar] [CrossRef] [PubMed]
- Nallapaneni, N.N.; Mourya, R.; Bhatt, V.R.; Malhotra, S.; Ganti, A.K.; Tendulkar, K.K. Ipilimumab-Induced Hypophysitis and Uveitis in a Patient with Metastatic Melanoma and a History of Ipilimumab-Induced Skin Rash. J. Natl. Compr. Cancer Netw. 2014, 12, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Zagouras, A.; Patil, P.D.; Yogi-Morren, D.; Pennell, N.A. Cases from the Immune-Related Adverse Event Tumor Board: Diagnosis and Management of Immune Checkpoint Blockade-Induced Diabetes. Oncologist 2020, 25, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.E.; Blansfield, J.A.; Tran, K.Q.; Feldman, A.L.; Hughes, M.S.; Royal, R.E.; Kammula, U.S.; Topalian, S.L.; Sherry, R.M.; Kleiner, D.; et al. Enterocolitis in Patients with Cancer after Antibody Blockade of Cytotoxic T-Lymphocyte-Associated Antigen 4. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 2283–2289. [Google Scholar] [CrossRef] [PubMed]
- Montes, G.; Duval, F.; Eldani, C.; Amico, S.; Gérard, E.; Dutriaux, C.; Herran, C.; Poullenot, F.; Sole, G.; Carla, L.; et al. Esophageal Achalasia Induced by Ipilimumab and Nivolumab Combination: A Rare Neurological Manifestation of Immune-Related Autonomic Neuropathy. J. Immunother. 2021, 44, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, S.G.; Moskalenko, M.; Pan, M.; Shah, S.; Sidhu, H.K.; Sicular, S.; Harcharik, S.; Chang, R.; Friedlander, P.; Saenger, Y.M. Elevated Rates of Transaminitis during Ipilimumab Therapy for Metastatic Melanoma. Melanoma Res. 2013, 23, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Izzedine, H.; Gueutin, V.; Gharbi, C.; Mateus, C.; Robert, C.; Routier, E.; Thomas, M.; Baumelou, A.; Rouvier, P. Kidney Injuries Related to Ipilimumab. Investig. New Drugs 2014, 32, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Loquai, C.; Pföhler, C.; Kähler, K.C.; Knauss, S.; Heppt, M.V.; Gutzmer, R.; Dimitriou, F.; Meier, F.; Mitzel-Rink, H.; et al. Myositis and Neuromuscular Side-Effects Induced by Immune Checkpoint Inhibitors. Eur. J. Cancer 2019, 106, 12–23. [Google Scholar] [CrossRef] [PubMed]
- de Velasco, G.; Bermas, B.; Choueiri, T.K. Autoimmune Arthropathy and Uveitis as Complications of Programmed Death 1 Inhibitor Treatment. Arthritis Rheumatol. 2016, 68, 556–557. [Google Scholar] [CrossRef] [PubMed]
- Numata, S.; Iwata, Y.; Okumura, R.; Arima, M.; Kobayashi, T.; Watanabe, S.; Suzuki, K.; Horiguchi, M.; Sugiura, K. Bilateral Anterior Uveitis and Unilateral Facial Palsy Due to Ipilimumab for Metastatic Melanoma in an Individual with Human Leukocyte Antigen DR4: A Case Report. J. Dermatol. 2018, 45, 113–114. [Google Scholar] [CrossRef]
- Stürmer, S.H.; Lechner, A.; Berking, C. Sudden Otovestibular Dysfunction in 3 Metastatic Melanoma Patients Treated with Immune Checkpoint Inhibitors. J. Immunother. 2021, 44, 193–197. [Google Scholar] [CrossRef]
- Tampio, A.J.F.; Dhanireddy, S.; Sivapiragasam, A.; Nicholas, B.D. Bilateral Sensorineural Hearing Loss Associated with Nivolumab Therapy for Stage IV Malignant Melanoma. Ear. Nose. Throat J. 2021, 100, 286S–291S. [Google Scholar] [CrossRef]
- Jaber, S.H.; Cowen, E.W.; Haworth, L.R.; Booher, S.L.; Berman, D.M.; Rosenberg, S.A.; Hwang, S.T. Skin Reactions in a Subset of Patients with Stage IV Melanoma Treated with Anti-Cytotoxic T-Lymphocyte Antigen 4 Monoclonal Antibody as a Single Agent. Arch. Dermatol. 2006, 142, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Lise, Q.-K.; Audrey, A.-G. Multifocal Choroiditis as the First Sign of Systemic Sarcoidosis Associated with Pembrolizumab. Am. J. Ophthalmol. Case Rep. 2017, 5, 92–93. [Google Scholar] [CrossRef]
- Murphy, K.P.; Kennedy, M.P.; Barry, J.E.; O’Regan, K.N.; Power, D.G. New-Onset Mediastinal and Central Nervous System Sarcoidosis in a Patient with Metastatic Melanoma Undergoing CTLA4 Monoclonal Antibody Treatment. Oncol. Res. Treat. 2014, 37, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, O.; Oweira, H.; Petrausch, U.; Helbling, D.; Schmidt, J.; Mannhart, M.; Mehrabi, A.; Schöb, O.; Giryes, A. Immune-Related Ocular Toxicities in Solid Tumor Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review. Expert Rev. Anticancer Ther. 2017, 17, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Fortes, B.H.; Liou, H.; Dalvin, L.A. Ophthalmic Adverse Effects of Immune Checkpoint Inhibitors: The Mayo Clinic Experience. Br. J. Ophthalmol. 2021, 105, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R.-A.; Reed, K.; et al. Nivolumab plus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2013, 369, 122–133. [Google Scholar] [CrossRef]
- Gibney, G.T.; Kudchadkar, R.R.; DeConti, R.C.; Thebeau, M.S.; Czupryn, M.P.; Tetteh, L.; Eysmans, C.; Richards, A.; Schell, M.J.; Fisher, K.J.; et al. Safety, Correlative Markers, and Clinical Results of Adjuvant Nivolumab in Combination with Vaccine in Resected High-Risk Metastatic Melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 712–720. [Google Scholar] [CrossRef]
- Goldstein, B.L.; Gedmintas, L.; Todd, D.J. Drug-Associated Polymyalgia Rheumatica/Giant Cell Arteritis Occurring in Two Patients After Treatment with Ipilimumab, an Antagonist of CTLA-4. Arthritis Rheumatol. 2014, 66, 768–769. [Google Scholar] [CrossRef]
- Chang, E.; Sabichi, A.L.; Sada, Y.H. Myasthenia Gravis After Nivolumab Therapy for Squamous Cell Carcinoma of the Bladder. J. Immunother. 2017, 40, 114–116. [Google Scholar] [CrossRef]
- Makarious, D.; Horwood, K.; Coward, J.I.G. Myasthenia Gravis: An Emerging Toxicity of Immune Checkpoint Inhibitors. Eur. J. Cancer 2017, 82, 128–136. [Google Scholar] [CrossRef]
- Papavasileiou, E.; Prasad, S.; Freitag, S.K.; Sobrin, L.; Lobo, A.-M. Ipilimumab-Induced Ocular and Orbital Inflammation--A Case Series and Review of the Literature. Ocul. Immunol. Inflamm. 2016, 24, 140–146. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Elia, M.; Materin, M.A.; Sznol, M.; Chow, J. Cyclosporine for Dry Eye Associated with Nivolumab: A Case Progressing to Corneal Perforation. Cornea 2016, 35, 399. [Google Scholar] [CrossRef]
- Cappelli, L.C.; Gutierrez, A.K.; Baer, A.N.; Albayda, J.; Manno, R.L.; Haque, U.; Lipson, E.J.; Bleich, K.B.; Shah, A.A.; Naidoo, J.; et al. Inflammatory Arthritis and Sicca Syndrome Induced by Nivolumab and Ipilimumab. Ann. Rheum. Dis. 2017, 76, 43–50. [Google Scholar] [CrossRef]
- Baughman, D.M.; Lee, C.S.; Snydsman, B.E.; Jung, H.C. Bilateral Uveitis and Keratitis Following Nivolumab Treatment for Metastatic Melanoma. Med. Case Rep. 2017, 3, 8. [Google Scholar] [CrossRef]
- Golash, V.; Almeida, G. Pembrolizumab-Related Bilateral Ocular Hypotony, Uveitis, Cataracts, Exudative Retinal, and Choroidal Detachments: An Unusual Success Story. J. Immunother. 2020, 43, 283–285. [Google Scholar] [CrossRef]
- Itzam Marin, A.; Deitz, G.A.; Mudie, L.I.; Reddy, A.K.; Palestine, A.G. Bilateral Choroidal Effusions and Angle Closure in the Setting of Systemic Capillary Leak Syndrome from HLA-Directed Vaccine and Pembrolizumab Therapy for Squamous Cell Carcinoma. Am. J. Ophthalmol. Case Rep. 2023, 29, 101777. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Hiya, F.E.; Eichenbaum, D.A. Bilateral Hypotony Maculopathy Associated with Ipilimumab and Nivolumab Therapy Unresponsive to Corticosteroid Treatment. Ophthalmic Surg. Lasers Imaging Retin. 2023, 54, 301–304. [Google Scholar] [CrossRef]
- Funagura, N.; Fukushima, S.; Inoue, T. Ipilimumab-Related Uveitis and Refractory Hypotony with a Flat Chamber in a Trabeculectomized Eye with Exfoliation Glaucoma: A Case Report. Am. J. Ophthalmol. Case Rep. 2023, 29, 101807. [Google Scholar] [CrossRef]
- Lee, J.C.; Al-Humimat, G.; Kooner, K.S. Acute Bilateral Uveitis, Hypotony, and Cataracts Associated with Ipilimumab and Nivolumab Therapy: Optical Coherence Tomography Angiography Findings. Case Rep. Ophthalmol. 2020, 11, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Islam, M.R.; Lim, S.W.; Sahu, A.; Tamjid, B. Pembrolizumab Induced Ocular Hypotony with Near Complete Vision Loss, Interstitial Pulmonary Fibrosis and Arthritis. Front. Oncol. 2019, 9, 944. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Lorigan, P.; Heimann, H.; Hovan, M. Management of Chronic Hypotony Following Bilateral Uveitis in a Patient Treated with Pembrolizumab for Cutaneous Metastatic Melanoma. Ocul. Immunol. Inflamm. 2019, 27, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Yeh, O.L.; Francis, C.E. Ipilimumab-Associated Bilateral Optic Neuropathy. J. Neuro-Ophthalmol. Off. J. North Am. Neuro-Ophthalmol. Soc. 2015, 35, 144–147. [Google Scholar] [CrossRef]
- Wilson, M.A.; Guld, K.; Galetta, S.; Walsh, R.D.; Kharlip, J.; Tamhankar, M.; McGettigan, S.; Schuchter, L.M.; Fecher, L.A. Acute Visual Loss after Ipilimumab Treatment for Metastatic Melanoma. J. Immunother. Cancer 2016, 4, 66. [Google Scholar] [CrossRef]
- Manusow, J.S.; Khoja, L.; Pesin, N.; Joshua, A.M.; Mandelcorn, E.D. Retinal Vasculitis and Ocular Vitreous Metastasis Following Complete Response to PD-1 Inhibition in a Patient with Metastatic Cutaneous Melanoma. J. Immunother. Cancer 2014, 2, 41. [Google Scholar] [CrossRef]
- Tsui, E.; Gonzales, J.A. Retinal Vasculitis Associated with Ipilimumab. Ocul. Immunol. Inflamm. 2020, 28, 868–870. [Google Scholar] [CrossRef] [PubMed]
- de Vries, E.W.; Schauwvlieghe, A.-S.; Haanen, J.B.; de Hoog, J. Bilateral Serous Retinal Detachment and Uveitis Associated with Pembrolizumab Treatment in Metastatic Melanoma. Retin. Cases Brief Rep. 2022, 16, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wei, X. Ocular Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitors in Lung Cancer. Front. Immunol. 2021, 12, 701951. [Google Scholar] [CrossRef] [PubMed]
- Anquetil, C.; Salem, J.-E.; Lebrun-Vignes, B.; Touhami, S.; Desbois, A.-C.; Maalouf, G.; Domont, F.; Allenbach, Y.; Cacoub, P.; Bodaghi, B.; et al. Evolving Spectrum of Drug-Induced Uveitis at the Era of Immune Checkpoint Inhibitors Results from the WHO’s Pharmacovigilance Database. J. Autoimmun. 2020, 111, 102454. [Google Scholar] [CrossRef]
- Arai, T.; Harada, K.; Usui, Y.; Irisawa, R.; Tsuboi, R. Case of Acute Anterior Uveitis and Vogt-Koyanagi-Harada Syndrome-like Eruptions Induced by Nivolumab in a Melanoma Patient. J. Dermatol. 2017, 44, 975–976. [Google Scholar] [CrossRef]
- Bricout, M.; Petre, A.; Amini-Adle, M.; Bezza, W.; Seve, P.; Kodjikian, L.; Dalle, S.; Thomas, L. Vogt-Koyanagi-Harada-like Syndrome Complicating Pembrolizumab Treatment for Metastatic Melanoma. J. Immunother. 2017, 40, 77–82. [Google Scholar] [CrossRef]
- Bomze, D.; Meirson, T.; Hasan Ali, O.; Goldman, A.; Flatz, L.; Habot-Wilner, Z. Ocular Adverse Events Induced by Immune Checkpoint Inhibitors: A Comprehensive Pharmacovigilance Analysis. Ocul. Immunol. Inflamm. 2022, 30, 191–197. [Google Scholar] [CrossRef]
- Chaudot, F.; Sève, P.; Rousseau, A.; Maria, A.T.J.; Fournie, P.; Lozach, P.; Keraen, J.; Servant, M.; Muller, R.; Gramont, B.; et al. Ocular Inflammation Induced by Immune Checkpoint Inhibitors. J. Clin. Med. 2022, 11, 4993. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.; Getahun, D.; Chiu, V.Y.; Coleman, A.L.; Holland, G.N.; Yu, F.; Gordon, L.K.; Sun, M.M. Population-Based Frequency of Ophthalmic Adverse Events in Melanoma, Other Cancers, and After Immune Checkpoint Inhibitor Treatment. Am. J. Ophthalmol. 2021, 224, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.M.; Kelly, S.P.; Mylavarapu Bs, A.L.; Holland, G.N.; Coleman, A.L.; Yu, F.; Hsu Ms, S.; Lum, F.; Gordon, L.K. Ophthalmic Immune-Related Adverse Events after Anti-CTLA-4 or PD-1 Therapy Recorded in the American Academy of Ophthalmology Intelligent Research in Sight Registry. Ophthalmology 2021, 128, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Maberley, D.A.; Etminan, M. Ocular Adverse Events with Immune Checkpoint Inhibitors. J. Curr. Ophthalmol. 2019, 31, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Chen, H.; Hu, Y.; Zhao, B. Evaluation of Uveitis Events in Real-World Patients Receiving Immune Checkpoint Inhibitors Based on the FAERS Database. Cutan. Ocul. Toxicol. 2023, 42, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Iwama, S.; De Remigis, A.; Callahan, M.K.; Slovin, S.F.; Wolchok, J.D.; Caturegli, P. Pituitary Expression of CTLA-4 Mediates Hypophysitis Secondary to Administration of CTLA-4 Blocking Antibody. Sci. Transl. Med. 2014, 6, 230ra45. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Song, Y.; Tian, W. How to Select IgG Subclasses in Developing Anti-Tumor Therapeutic Antibodies. J. Hematol. Oncol. 2020, 13, 45. [Google Scholar] [CrossRef]
- Comin-Anduix, B.; Escuin-Ordinas, H.; Ibarrondo, F.J. Tremelimumab: Research and Clinical Development. OncoTargets Ther. 2016, 9, 1767–1776. [Google Scholar] [CrossRef]
- Yoshida, M.; Kunikata, H.; Nakazawa, T. Intraocular Concentrations of Cytokines and Chemokines in a Unique Case of Nivolumab-Induced Uveitis. Ocul. Immunol. Inflamm. 2020, 28, 850–853. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Hibbert, J.M.; Jain, V.; Singh, N.; Wilson, N.O.; Stiles, J.K. CXCL10/IP-10 in Infectious Diseases Pathogenesis and Potential Therapeutic Implications. Cytokine Growth Factor Rev. 2011, 22, 121–130. [Google Scholar] [CrossRef]
- Klein, O.; Ebert, L.M.; Nicholaou, T.; Browning, J.; Russell, S.E.; Zuber, M.; Jackson, H.M.; Dimopoulos, N.; Tan, B.S.; Hoos, A.; et al. Melan-A-Specific Cytotoxic T Cells Are Associated with Tumor Regression and Autoimmunity Following Treatment with Anti-CTLA-4. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 2507–2513. [Google Scholar] [CrossRef]
- Caspi, R.R. A Look at Autoimmunity and Inflammation in the Eye. J. Clin. Investig. 2010, 120, 3073–3083. [Google Scholar] [CrossRef]
- Broekhuyse, R.M.; Kuhlmann, E.D.; Winkens, H.J. Experimental Autoimmune Anterior Uveitis (EAAU). III. Induction by Immunization with Purified Uveal and Skin Melanins. Exp. Eye Res. 1993, 56, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Gery, I.; Mochizuki, M.; Nussenblatt, R.B. Chapter 3 Retinal Specific Antigens and Immunopathogenic Processes They Provoke. Prog. Retin. Res. 1986, 5, 75–109. [Google Scholar] [CrossRef]
- Gocho, K.; Kondo, I.; Yamaki, K. Identification of Autoreactive T Cells in Vogt-Koyanagi-Harada Disease. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2004–2009. [Google Scholar]
- Polans, A.S.; Witkowska, D.; Haley, T.L.; Amundson, D.; Baizer, L.; Adamus, G. Recoverin, a Photoreceptor-Specific Calcium-Binding Protein, Is Expressed by the Tumor of a Patient with Cancer-Associated Retinopathy. Proc. Natl. Acad. Sci. USA 1995, 92, 9176–9180. [Google Scholar] [CrossRef] [PubMed]
- Berson, E.L.; Lessell, S. Paraneoplastic Night Blindness with Malignant Melanoma. Am. J. Ophthalmol. 1988, 106, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.Z.; Mansour, H.A.; Zafar, M.K.; Uwaydat, S.H.; Chauhan, M.Z.; Mansour, H.; Zafar, M.K.; Uwaydat, S. Anti-Programmed Death Ligand-1 Induced Acute Vision Loss in a Patient with Cancer-Associated Retinopathy. Cureus 2022, 14, e21709. [Google Scholar] [CrossRef]
- Roberts, P.; Fishman, G.A.; Joshi, K.; Jampol, L.M. Chorioretinal Lesions in a Case of Melanoma-Associated Retinopathy Treated with Pembrolizumab. JAMA Ophthalmol. 2016, 134, 1184–1188. [Google Scholar] [CrossRef]
- Casselman, P.; Jacob, J.; Schauwvlieghe, P.-P. Relation between Ocular Paraneoplastic Syndromes and Immune Checkpoint Inhibitors (ICI): Review of Literature. J. Ophthalmic Inflamm. Infect. 2023, 13, 16. [Google Scholar] [CrossRef]
- Khaddour, K.; Khanna, S.; Ansstas, M.; Jakhar, I.; Dahiya, S.; Council, L.; Ansstas, G. Normalization of Electroretinogram and Symptom Resolution of Melanoma-Associated Retinopathy with Negative Autoantibodies after Treatment with Programmed Death-1 (PD-1) Inhibitors for Metastatic Melanoma. Cancer Immunol. Immunother. 2021, 70, 2497–2502. [Google Scholar] [CrossRef]
- Poujade, L.; Samaran, Q.; Mura, F.; Guillot, B.; Meunier, I.; Du-Thanh, A. Melanoma-Associated Retinopathy during Pembrolizumab Treatment Probably Controlled by Intravitreal Injections of Dexamethasone. Doc. Ophthalmol. 2021, 142, 257–263. [Google Scholar] [CrossRef]
- Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front. Immunol. 2016, 7, 550. [Google Scholar] [CrossRef]
- Sugita, S.; Usui, Y.; Horie, S.; Futagami, Y.; Aburatani, H.; Okazaki, T.; Honjo, T.; Takeuchi, M.; Mochizuki, M. T-Cell Suppression by Programmed Cell Death 1 Ligand 1 on Retinal Pigment Epithelium during Inflammatory Conditions. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2862–2870. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Duma, N.; Abdel-Ghani, A.; Yadav, S.; Hoversten, K.P.; Reed, C.T.; Sitek, A.N.; Enninga, E.A.L.; Paludo, J.; Aguilera, J.V.; Leventakos, K.; et al. Sex Differences in Tolerability to Anti-Programmed Cell Death Protein 1 Therapy in Patients with Metastatic Melanoma and Non-Small Cell Lung Cancer: Are We All Equal? Oncologist 2019, 24, e1148–e1155. [Google Scholar] [CrossRef] [PubMed]
- Kalinich, M.; Murphy, W.; Wongvibulsin, S.; Pahalyants, V.; Yu, K.-H.; Lu, C.; Wang, F.; Zubiri, L.; Naranbhai, V.; Gusev, A.; et al. Prediction of Severe Immune-Related Adverse Events Requiring Hospital Admission in Patients on Immune Checkpoint Inhibitors: Study of a Population Level Insurance Claims Database from the USA. J. Immunother. Cancer 2021, 9, e001935. [Google Scholar] [CrossRef] [PubMed]
- Thorsby, E. Invited Anniversary Review: HLA Associated Diseases. Hum. Immunol. 1997, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Kambayashi, Y.; Tanita, K.; Sato, Y.; Hidaka, T.; Otsuka, A.; Tanaka, H.; Furudate, S.; Hashimoto, A.; Aiba, S. HLA-DRB1*04:05 in Two Cases of Vogt–Koyanagi–Harada Disease-like Uveitis Developing from an Advanced Melanoma Patient Treated by Sequential Administration of Nivolumab and Dabrafenib/Trametinib Therapy. J. Dermatol. 2018, 45, 735–737. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Meguro, A.; Nakamura, J.; Chikagawa, R.; Osada, R.; Shibuya, E.; Hasumi, Y.; Yamada, N.; Ishihara, M.; Mizuki, N. HLA-DRB1*04:05 Is Involved in the Development of Vogt-Koyanagi-Harada Disease-like Immune-Related Adverse Events in Patients Receiving Immune Checkpoint Inhibitors. Sci. Rep. 2023, 13, 13580. [Google Scholar] [CrossRef]
- Enomoto, H.; Kato, K.; Sugawara, A.; Itabashi, M.; Kondo, M. Case with Metastatic Cutaneous Malignant Melanoma That Developed Vogt-Koyanagi-Harada-like Uveitis Following Pembrolizumab Treatment. Doc. Ophthalmol. Adv. Ophthalmol. 2021, 142, 353–360. [Google Scholar] [CrossRef]
- Kikuchi, R.; Kawagoe, T.; Hotta, K. Vogt-Koyanagi-Harada Disease-like Uveitis Following Nivolumab Administration Treated with Steroid Pulse Therapy: A Case Report. BMC Ophthalmol. 2020, 20, 252. [Google Scholar] [CrossRef]
- Shindo, Y.; Inoko, H.; Yamamoto, T.; Ohno, S. HLA-DRB1 Typing of Vogt-Koyanagi-Harada’s Disease by PCR-RFLP and the Strong Association with DRB1*0405 and DRB1*0410. Br. J. Ophthalmol. 1994, 78, 223–226. [Google Scholar] [CrossRef]
- Nakamura, Y.; Matsushita, T.; Sato, S.; Niino, M.; Fukazawa, T.; Yoshimura, S.; Hisahara, S.; Isobe, N.; Shimohama, S.; Watanabe, M.; et al. Latitude and HLA-DRB1*04:05 Independently Influence Disease Severity in Japanese Multiple Sclerosis: A Cross-Sectional Study. J. Neuroinflamm. 2016, 13, 239. [Google Scholar] [CrossRef] [PubMed]
- Shindo, Y.; Ohno, S.; Yamamoto, T.; Nakamura, S.; Inoko, H. Complete Association of the HLA-DRB1*04 and -DQB1*04 Alleles with Vogt-Koyanagi-Harada’s Disease. Hum. Immunol. 1994, 39, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Anukul, N.; Pathanapitoon, K.; Leetrakool, N.; Guntiya, T.; Wita, R.; Palacajornsuk, P.; Klangsinsirikul, P. HLA-DRB1*04:05 and HLA-DQB1*04:01: Alleles Potentially Associated with Vogt-Koyanagi-Harada in Northern Thai Patients. Ocul. Immunol. Inflamm. 2021, 29, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Nomizo, T.; Ozasa, H.; Tsuji, T.; Funazo, T.; Yasuda, Y.; Yoshida, H.; Yagi, Y.; Sakamori, Y.; Nagai, H.; Hirai, T.; et al. Clinical Impact of Single Nucleotide Polymorphism in PD-L1 on Response to Nivolumab for Advanced Non-Small-Cell Lung Cancer Patients. Sci. Rep. 2017, 7, 45124. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, G.; Wang, Y.; Riese, M.J.; You, M. Uncoupling Therapeutic Efficacy from Immune-Related Adverse Events in Immune Checkpoint Blockade. iScience 2020, 23, 101580. [Google Scholar] [CrossRef] [PubMed]
- Lin, P. The Role of the Intestinal Microbiome in Ocular Inflammatory Disease. Curr. Opin. Ophthalmol. 2018, 29, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Vétizou, M.; Pitt, J.M.; Daillère, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.M.; et al. Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science 2015, 350, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Brucker, A.J.; McGeehan, B.; VanderBeek, B.L. Risk of Non-Infectious Uveitis or Myasthenia Gravis in Patients on Checkpoint Inhibitors in a Large Healthcare Claims Database. Br. J. Ophthalmol. 2022, 106, 87–90. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services; National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. 2009; US Department of Health and Human Services: Washington, DC, USA, 2016.
- Bloch-Michel, E.; Nussenblatt, R.B. International Uveitis Study Group Recommendations for the Evaluation of Intraocular Inflammatory Disease. Am. J. Ophthalmol. 1987, 103, 234–235. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-J.; Chen, S.-J.; Hwang, D.-K.; Liu, C.J.-L. Bilateral Anterior Uveitis after Immunotherapy for Malignant Melanoma. Taiwan J. Ophthalmol. 2018, 8, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.A.; Chaon, B.C.; Berkenstock, M.K. Ocular Complications of Checkpoint Inhibitors and Immunotherapeutic Agents: A Case Series. Ocul. Immunol. Inflamm. 2021, 29, 1585–1590. [Google Scholar] [CrossRef] [PubMed]
- Hahn, L.; Pepple, K.L. Bilateral Neuroretinitis and Anterior Uveitis Following Ipilimumab Treatment for Metastatic Melanoma. J. Ophthalmic Inflamm. Infect. 2016, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Hanna, K.S. A Rare Case of Pembrolizumab-Induced Uveitis in a Patient with Metastatic Melanoma. Pharmacotherapy 2016, 36, e183–e188. [Google Scholar] [CrossRef]
- Deschenes, J.; Murray, P.I.; Rao, N.A.; Nussenblatt, R.B. International Uveitis Study Group (IUSG): Clinical Classification of Uveitis. Ocul. Immunol. Inflamm. 2008, 16, 1–2. [Google Scholar] [CrossRef]
- The Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of Uveitis Nomenclature for Reporting Clinical Data. Results of the First International Workshop. Am. J. Ophthalmol. 2005, 140, 509–516. [Google Scholar] [CrossRef]
- Whist, E.; Symes, R.J.; Chang, J.H.; Chowdhury, V.; Lim, L.-A.; Grigg, J.R.; Lin, M.-L.; Karaconji, T.; Giblin, M.; Symons, A.; et al. Uveitis Caused by Treatment for Malignant Melanoma: A Case Series. Retin. Cases Brief Rep. 2021, 15, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Larochelle, M.; Pecen, P.; Palestine, A.; Shakoor, A.; Singh, A. Checkpoint Inhibitor-Induced Uveitis: A Case Series. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Abu Samra, K.; Valdes-Navarro, M.; Lee, S.; Swan, R.; Foster, C.S.; Anesi, S.D. A Case of Bilateral Uveitis and Papillitis in a Patient Treated with Pembrolizumab. Eur. J. Ophthalmol. 2016, 26, e46–e48. [Google Scholar] [CrossRef]
- Basilious, A.; Lloyd, J.C. Posterior Subcapsular Cataracts and Hypotony Secondary to Severe Pembrolizumab Induced Uveitis: Case Report. Can. J. Ophthalmol. 2016, 51, e4–e6. [Google Scholar] [CrossRef]
- Kanno, H.; Ishida, K.; Yamada, W.; Nishida, T.; Takahashi, N.; Mochizuki, K.; Mizuno, Y.; Matsuyama, K.; Takahashi, T.; Seishima, M. Uveitis Induced by Programmed Cell Death Protein 1 Inhibitor Therapy with Nivolumab in Metastatic Melanoma Patient. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2017, 23, 774–777. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Hrisomalos, F.; Linette, G.P.; Rao, P.K. A Case of Recurrent Bilateral Uveitis Independently Associated with Dabrafenib and Pembrolizumab Therapy. Am. J. Ophthalmol. Case Rep. 2016, 2, 23–25. [Google Scholar] [CrossRef]
- Dow, E.R.; Yung, M.; Tsui, E. Immune Checkpoint Inhibitor-Associated Uveitis: Review of Treatments and Outcomes. Ocul. Immunol. Inflamm. 2021, 29, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Martens, A.; Schauwvlieghe, P.P.; Madoe, A.; Casteels, I.; Aspeslagh, S. Ocular Adverse Events Associated with Immune Checkpoint Inhibitors, a Scoping Review. J. Ophthalmic Inflamm. Infect. 2023, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Rali, A.; Huang, Y.; Yeh, S. Cancer Immunotherapy and Uveitis: Balancing Anti-Tumor Immunity and Ocular Autoimmunity. Int. Ophthalmol. Clin. 2022, 62, 49–63. [Google Scholar] [CrossRef]
- Thurau, S.; Engelke, H.; McCluskey, P.; Symes, R.J.; Whist, E.; Teuchner, B.; Haas, G.; Allegri, P.; Cimino, L.; Bolletta, E.; et al. Uveitis in Tumor Patients Treated with Immunological Checkpoint- and Signal Transduction Pathway-Inhibitors. Ocul. Immunol. Inflamm. 2022, 30, 1588–1594. [Google Scholar] [CrossRef]
- Herbort, C.P.; Abu El Asrar, A.M.; Takeuchi, M.; Pavésio, C.E.; Couto, C.; Hedayatfar, A.; Maruyama, K.; Rao, X.; Silpa-Archa, S.; Somkijrungroj, T. Catching the Therapeutic Window of Opportunity in Early Initial-Onset Vogt-Koyanagi-Harada Uveitis Can Cure the Disease. Int. Ophthalmol. 2019, 39, 1419–1425. [Google Scholar] [CrossRef]
- Alba-Linero, C.; Alba, E. Ocular Side Effects of Checkpoint Inhibitors. Surv. Ophthalmol. 2021, 66, 951–959. [Google Scholar] [CrossRef]
- Hirooka, K.; Saito, W.; Namba, K.; Mizuuchi, K.; Iwata, D.; Hashimoto, Y.; Ishida, S. Early Post-Treatment Choroidal Thickness to Alert Sunset Glow Fundus in Patients with Vogt–Koyanagi–Harada Disease Treated with Systemic Corticosteroids. PLOS ONE 2017, 12, e0172612. [Google Scholar] [CrossRef]
- Czichos, C.; Wawrzynów, B.; Chamalis, C.; von Jagow, B. Bilateral Nivolumab-associated Vogt-Koyanagi-Harada-like Uveitis in a Patient with Metastatic Renal Cell Carcinoma. Klin. Monatsbl. Augenheilkd. 2021, 238, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Fierz, F.C.; Meier, F.; Chaloupka, K.; Böni, C. Intraocular Inflammation Associated with New Therapies for Cutaneous Melanoma—Case Series and Review. Klin. Monatsbl. Augenheilkd. 2016, 233, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Seifert, C.; Lehmann, M.; Lukas, C.; Scheel, C.; Susok, L. Concurrent Vogt-Koyanagi-Harada Disease and Impressive Response to Immune Checkpoint Blockade in Metastatic Melanoma. Immunotherapy 2020, 12, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Khan, F.; Saraiya, N.V.; Punjabi, O.S.; Gulati, V.; Erickson, A.R.; Yeh, S. Vogt-Koyanagi-Harada-like Syndrome Induced by Checkpoint Inhibitor Cemiplimab. J. Immunother. 2023, 46, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.J.; Karaca, I.; Lajevardi, S.; Or, C.; Zaidi, M.; Regenold, J.; Halim, M.S.; Uludag, G.; Yasar, C.; Bazojoo, V.; et al. Multifocal Electroretinographic Findings in Eyes with Posterior Uveitis and Angiographic Macular Leakage. Investig. Ophthalmol. Vis. Sci. 2022, 63, 754-F0406. [Google Scholar]
- Madoe, A.; Schauwvlieghe, P.-P.; Jacob, J. Vogt-Koyanagi-Harada Disease-Like Uveitis in a Patient with Advanced Melanoma Treated by Sequential Administration of Nivolumab and Dabrafenib/Trametinib Therapy. Retin. Cases Brief Rep. 2023, 17, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Mihailovic, N.; Dyballa, J.; Herz, S.; Fluck, M.; Alnawaiseh, M.; Merté, R.-L.; Eter, N. Vogt-Koyanagi-Harada-like uveitis under immune checkpoint inhibitor treatment for metastasized malignant melanoma. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 2020, 117, 467–471. [Google Scholar] [CrossRef]
- Minami, K.; Egawa, M.; Kajita, K.; Murao, F.; Mitamura, Y. A Case of Vogt-Koyanagi-Harada Disease-Like Uveitis Induced by Nivolumab and Ipilimumab Combination Therapy. Case Rep. Ophthalmol. 2021, 12, 952–960. [Google Scholar] [CrossRef]
- Monferrer-Adsuara, C.; Hernández-Bel, L.; Hernández-Garfella, M.L.; Remolí-Sargues, L.; Ortiz-Salvador, M.; Castro-Navarro, V.; Cervera-Taulet, E. Case Report: Ipilimumab-Induced Multisystem Autoimmune-like Toxicities Suggestive of Vogt-Koyanagi-Harada-like Syndrome. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2021, 98, 1309–1316. [Google Scholar] [CrossRef]
- Nagai, R.; Yamamoto, A.; Yoshida, A.; Mikawa, A. Outcome of Nivolumab-Induced Vogt-Koyanagi-Harada Disease-Like Uveitis in a Patient Managed without Intravenous Methylprednisolone Therapy. Case Rep. Ophthalmol. Med. 2023, 2023, 9565205. [Google Scholar] [CrossRef]
- Noble, C.W.; Gangaputra, S.S.; Thompson, I.A.; Yuan, A.; Apolo, A.B.; Lee, J.-M.; Papaliodis, G.N.; Kodati, S.; Bishop, R.; Magone, M.T.; et al. Ocular Adverse Events Following Use of Immune Checkpoint Inhibitors for Metastatic Malignancies. Ocul. Immunol. Inflamm. 2020, 28, 854–859. [Google Scholar] [CrossRef]
- Ng, C.C.; Ng, J.C.; Johnson, R.N.; McDonald, H.R.; Agarwal, A. Nivolumab-Induced Harada-Like Uveitis with Bacillary Detachment Mimicking Choroidal Metastasis. Retin. Cases Brief Rep. 2023, 17, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Obata, S.; Saishin, Y.; Teramura, K.; Ohji, M. Vogt-Koyanagi-Harada Disease-Like Uveitis during Nivolumab (Anti-PD-1 Antibody) Treatment for Metastatic Cutaneous Malignant Melanoma. Case Rep. Ophthalmol. 2019, 10, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Eppley, S.; Baer, D.; Melles, R.B. Characteristics of Ocular Inflammatory Side Effects Associated with Immune Checkpoint Inhibitors in a Northern California Population. Ocul. Immunol. Inflamm. 2024, 32, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Suwa, S.; Tomita, R.; Kataoka, K.; Ueno, S. Development of Vogt-Koyanagi-Harada Disease-like Uveitis during Treatment by Anti-Programmed Death Ligand-1 Antibody for Non-Small Cell Lung Cancer: A Case Report. Ocul. Immunol. Inflamm. 2022, 30, 1522–1526. [Google Scholar] [CrossRef] [PubMed]
- Ushio, R.; Yamamoto, M.; Miyasaka, A.; Muraoka, T.; Kanaoka, H.; Tamura, H.; Kaneko, A.; Izawa, A.; Hirama, N.; Teranishi, S.; et al. Nivolumab-Induced Vogt-Koyanagi-Harada-like Syndrome and Adrenocortical Insufficiency with Long-Term Survival in a Patient with Non-Small-Cell Lung Cancer. Intern. Med. Tokyo Jpn. 2021, 60, 3593–3598. [Google Scholar] [CrossRef] [PubMed]
- Witmer, M.T. Treatment of Ipilimumab-Induced Vogt-Koyanagi-Harada Syndrome with Oral Dexamethasone. Ophthalmic Surg. Lasers Imaging Retin. 2017, 48, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, J.; Rothova, A.; de Boer, J.; Radstake, T. The Immunopathogenesis of Birdshot Chorioretinopathy; a Bird of Many Feathers. Prog. Retin. Eye Res. 2015, 44, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, J.J.W.; van Setten, J.; Devall, M.; Cretu-Stancu, M.; Hiddingh, S.; Ophoff, R.A.; Missotten, T.O.A.R.; van Velthoven, M.; Den Hollander, A.I.; Hoyng, C.B.; et al. Functionally Distinct ERAP1 and ERAP2 Are a Hallmark of HLA-A29-(Birdshot) Uveitis. Hum. Mol. Genet. 2018, 27, 4333–4343. [Google Scholar] [CrossRef]
- Szpak, Y.; Vieville, J.-C.; Tabary, T.; Naud, M.-C.; Chopin, M.; Edelson, C.; Cohen, J.H.M.; Dausset, J.; de Kozak, Y.; Pla, M. Spontaneous Retinopathy in HLA-A29 Transgenic Mice. Proc. Natl. Acad. Sci. USA 2001, 98, 2572–2576. [Google Scholar] [CrossRef]
- Levinson, R.D.; Brezin, A.; Rothova, A.; Accorinti, M.; Holland, G.N. Research Criteria for the Diagnosis of Birdshot Chorioretinopathy: Results of an International Consensus Conference. Am. J. Ophthalmol. 2006, 141, 185–187. [Google Scholar] [CrossRef]
- Shah, K.H.; Levinson, R.D.; Yu, F.; Goldhardt, R.; Gordon, L.K.; Gonzales, C.R.; Heckenlively, J.R.; Kappel, P.J.; Holland, G.N. Birdshot Chorioretinopathy. Surv. Ophthalmol. 2005, 50, 519–541. [Google Scholar] [CrossRef]
- Minos, E.; Barry, R.J.; Southworth, S.; Folkard, A.; Murray, P.I.; Duker, J.S.; Keane, P.A.; Denniston, A.K. Birdshot Chorioretinopathy: Current Knowledge and New Concepts in Pathophysiology, Diagnosis, Monitoring and Treatment. Orphanet Journal of Rare Diseases 2016, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Acaba-Berrocal, L.A.; Lucio-Alvarez, J.A.; Mashayekhi, A.; Ho, A.C.; Dunn, J.P.; Shields, C.L. Birdshot-like Chorioretinopathy Associated with Pembrolizumab Treatment. JAMA Ophthalmol. 2018, 136, 1205–1207. [Google Scholar] [CrossRef] [PubMed]
- Alsaddi, M.A.M.; Hondeghem, K.; Schauwvlieghe, P.-P. Relapse of Birdshot Uveitis after Stopping Immunosuppressive Treatment and Starting Immune Checkpoint Inhibitors for Lung Cancer. Case Rep. Ophthalmol. 2022, 13, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Mito, T.; Takeda, S.; Motono, N.; Sasaki, H. Atezolizumab-Induced Bilateral Anterior Uveitis: A Case Report. Am. J. Ophthalmol. Case Rep. 2021, 24, 101205. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Kong, C.; Mehta, M.C. A Case of Melanoma-Associated Retinopathy, Uveitis, and Optic Neuritis Associated with Pembrolizumab, Managed with Topical, Intravitreal, and Intravenous Steroids. J. Vitreoretin. Dis. 2020, 4, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Mozo Cuadrado, M.; Tabuenca Del Barrio, L.; Compains Silva, E. Bilateral Drug-Induced Uveitis and Epiretinal Membrane during the Treatment of a Metastatic Cutaneous Melanoma. Ocul. Immunol. Inflamm. 2021, 29, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, O.; Thompson, N.; Clare, G.; Welsh, S.; Damato, E.; Corrie, P. Ocular Adverse Events Associated with Immune Checkpoint Inhibitors: A Novel Multidisciplinary Management Algorithm. Ther. Adv. Med. Oncol. 2021, 13, 1758835921992989. [Google Scholar] [CrossRef] [PubMed]
- Kartolo, A.; Sattar, J.; Sahai, V.; Baetz, T.; Lakoff, J.M. Predictors of Immunotherapy-Induced Immune-Related Adverse Events. Curr. Oncol. 2018, 25, e403–e410. [Google Scholar] [CrossRef]
- Lavezzo, M.M.; Sakata, V.M.; Morita, C.; Rodriguez, E.E.C.; Abdallah, S.F.; da Silva, F.T.G.; Hirata, C.E.; Yamamoto, J.H. Vogt-Koyanagi-Harada Disease: Review of a Rare Autoimmune Disease Targeting Antigens of Melanocytes. Orphanet J. Rare Dis. 2016, 11, 29. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, J.S.; Lee, J.; Lee, S.C.; Kim, T.-I.; Byeon, S.H.; Lee, C.S. Factors Associated with Ocular Adverse Event after Immune Checkpoint Inhibitor Treatment. Cancer Immunol. Immunother. CII 2020, 69, 2441–2452. [Google Scholar] [CrossRef]
- Mazharuddin, A.A.; Whyte, A.T.; Gombos, D.S.; Patel, N.; Razmandi, A.; Chaudhry, A.L.; Al-Zubidi, N.S. Highlights on Ocular Toxicity of Immune Checkpoint Inhibitors at a US Tertiary Cancer Center. J. Immunother. Precis. Oncol. 2022, 5, 98–104. [Google Scholar] [CrossRef]
- Guex-Crosier, Y. Do Naranjo Criteria Still Apply to Ipilimumab-Induced Uveitis? Klin. Monatsbl. Augenheilkd. 2016, 233, 356. [Google Scholar] [CrossRef]
- Naranjo, C.A.; Busto, U.; Sellers, E.M.; Sandor, P.; Ruiz, I.; Roberts, E.A.; Janecek, E.; Domecq, C.; Greenblatt, D.J. A Method for Estimating the Probability of Adverse Drug Reactions. Clin. Pharmacol. Ther. 1981, 30, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Bethesda, M.D. Adverse Drug Reaction Probability Scale (Naranjo) in Drug Induced Liver Injury. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. [Google Scholar]
- Pasadhika, S.; Rosenbaum, J.T. Ocular Sarcoidosis. Clin. Chest Med. 2015, 36, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, P.; Lucke, M. HLA-B27 Syndromes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Men, M.; Tsui, E. Delayed Onset Anterior Uveitis and Macular Edema after Cessation of Pembrolizumab. Am. J. Ophthalmol. Case Rep. 2022, 27, 101631. [Google Scholar] [CrossRef]
- Dolaghan, M.J.; Oladipo, B.; Cooke, C.A.; McAvoy, C.E. Metastatic Melanoma and Immunotherapy-Related Uveitis: An Incidence in Northern Ireland. Eye Lond. Engl. 2019, 33, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Ciardella, A.P.; Borodoker, N.; Costa, D.L.; Huang, S.J.; Cunningham, E.T.; Slakter, J.S. Imaging the Posterior Segment in Uveitis. Ophthalmol. Clin. N. Am. 2002, 15, 281–296. [Google Scholar] [CrossRef]
- Regatieri, C.V.; Alwassia, A.; Zhang, J.Y.; Vora, R.; Duker, J.S. Use of Optical Coherence Tomography in the Diagnosis and Management of Uveitis. Int. Ophthalmol. Clin. 2012, 52, 33–43. [Google Scholar] [CrossRef]
- Igbre, A.O.; Rico, M.C.; Garg, S.J. High-Speed Optical Coherence Tomography as a Reliable Adjuvant Tool to Grade Ocular Anterior Chamber Inflammation. Retina 2014, 34, 504–508. [Google Scholar] [CrossRef]
- Invernizzi, A.; Marchi, S.; Aldigeri, R.; Mastrofilippo, V.; Viscogliosi, F.; Soldani, A.; Adani, C.; Garoli, E.; Viola, F.; Fontana, L.; et al. Objective Quantification of Anterior Chamber Inflammation: Measuring Cells and Flare by Anterior Segment Optical Coherence Tomography. Ophthalmology 2017, 124, 1670–1677. [Google Scholar] [CrossRef]
- Sorkhabi, M.A.; Potapenko, I.O.; Ilginis, T.; Alberti, M.; Cabrerizo, J. Assessment of Anterior Uveitis Through Anterior-Segment Optical Coherence Tomography and Artificial Intelligence-Based Image Analyses. Transl. Vis. Sci. Technol. 2022, 11, 7. [Google Scholar] [CrossRef]
- Koustenis, A.; Harris, A.; Gross, J.; Januleviciene, I.; Shah, A.; Siesky, B. Optical Coherence Tomography Angiography: An Overview of the Technology and an Assessment of Applications for Clinical Research. Br. J. Ophthalmol. 2017, 101, 16–20. [Google Scholar] [CrossRef]
- Pichi, F.; Sarraf, D.; Arepalli, S.; Lowder, C.Y.; Cunningham, E.T.; Neri, P.; Albini, T.A.; Gupta, V.; Baynes, K.; Srivastava, S.K. The Application of Optical Coherence Tomography Angiography in Uveitis and Inflammatory Eye Diseases. Prog. Retin. Eye Res. 2017, 59, 178–201. [Google Scholar] [CrossRef]
- Kim, A.Y.; Rodger, D.C.; Shahidzadeh, A.; Chu, Z.; Koulisis, N.; Burkemper, B.; Jiang, X.; Pepple, K.L.; Wang, R.K.; Puliafito, C.A.; et al. Quantifying Retinal Microvascular Changes in Uveitis Using Spectral-Domain Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2016, 171, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Baumal, C.R.; de Carlo, T.E.; Waheed, N.K.; Salz, D.A.; Witkin, A.J.; Duker, J.S. Sequential Optical Coherence Tomographic Angiography for Diagnosis and Treatment of Choroidal Neovascularization in Multifocal Choroiditis. JAMA Ophthalmol. 2015, 133, 1087–1090. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Mao, Q.-Q.; Jiang, B.; Zhang, J.; Zhao, Y.-L.; Teng, X.-D.; Yang, J.-S.; Xia, Y.; Chen, S.-Q.; Stebbing, J.; et al. Bilateral Posterior Uveitis and Retinal Detachment During Immunotherapy: A Case Report and Literature Review. Front. Oncol. 2020, 10, 549168. [Google Scholar] [CrossRef] [PubMed]
- Fishman, M.L.; Tomaszewski, M.M.; Kuwabara, T. Malignant Melanoma of the Skin Metastatic to the Eye: Frequency in Autopsy Series. Arch. Ophthalmol. 1976, 94, 1309–1311. [Google Scholar] [CrossRef] [PubMed]
- Sudharshan, S.; Ganesh, S.K.; Biswas, J. Current Approach in the Diagnosis and Management of Posterior Uveitis. Indian J. Ophthalmol. 2010, 58, 29–43. [Google Scholar] [CrossRef]
- Alexandre Mendonça, J.; de Figueiredo Torres Caivano, R.; Casani Rech, I.; de Almeida Aoki, I.S.; Chagas Cavuto, C. B-Scan Ultrasound Evaluation for Uveitis in Inflammatory Arthropathies: Systematic Review. Eur. J. Rheumatol. 2023, 10, 71–83. [Google Scholar] [CrossRef]
- Telfah, M.; Whittaker, T.J.; Doolittle, G.C. Vision Loss with Pembrolizumab Treatment: A Report of Two Cases. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2019, 25, 1540–1546. [Google Scholar] [CrossRef]
- Keltner, J.L.; Thirkill, C.E.; Yip, P.T. Clinical and Immunologic Characteristics of Melanoma-Associated Retinopathy Syndrome: Eleven New Cases and a Review of 51 Previously Published Cases. J. Neuro-Ophthalmol. Off. J. North Am. Neuro-Ophthalmol. Soc. 2001, 21, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Ameri, M.; Szynkarski, D.T.; Cortez, R.; Gombos, D.S.; Patel, S.P.; Al-Zubidi, N.S. Fallacy of Disease: Equivocation. Investig. Ophthalmol. Vis. Sci. 2022, 63, 3583-A0012. [Google Scholar]
- Alexander, K.R.; Fishman, G.A.; Peachey, N.S.; Marchese, A.L.; Tso, M.O. “On” Response Defect in Paraneoplastic Night Blindness with Cutaneous Malignant Melanoma. Investig. Ophthalmol. Vis. Sci. 1992, 33, 477–483. [Google Scholar]
- Asanad, S.; Karanjia, R. Multifocal Electroretinogram. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chen, J.J.; McKeon, A.; Greenwood, T.M.; Flanagan, E.P.; Bhatti, M.T.; Dubey, D.; Pulido, J.S.; Iezzi, R.; Smith, W.M.; Sen, H.N.; et al. Clinical Utility of Antiretinal Antibody Testing. JAMA Ophthalmol. 2021, 139, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.-Y.; Liu, Q.; Peng, X.-Y.; Cao, K.; Jin, S.-S.; Xu, K. Detection of Serum Anti-Retinal Antibodies in the Chinese Patients with Presumed Autoimmune Retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1759–1764. [Google Scholar] [CrossRef]
- Adamus, G.; Champaigne, R.; Yang, S. Occurrence of Major Anti-Retinal Autoantibodies Associated with Paraneoplastic Autoimmune Retinopathy. Clin. Immunol. 2020, 210, 108317. [Google Scholar] [CrossRef] [PubMed]
- Erie, J.C. Corneal Wound Healing after Photorefractive Keratectomy: A 3-Year Confocal Microscopy Study. Trans. Am. Ophthalmol. Soc. 2003, 101, 293–333. [Google Scholar]
- Kiratli, H.; Mocan, M.C.; İrkeç, M. In Vivo Confocal Microscopy in Differentiating Ipilimumab-Induced Anterior Uveitis from Metastatic Uveal Melanoma. Case Rep. Ophthalmol. 2016, 7, 126–131. [Google Scholar] [CrossRef]
- Mocan, M.C.; Kadayifcilar, S.; Irkec, M. Keratic Precipitate Morphology in Uveitic Syndromes Including Behçet’s Disease as Evaluated with in Vivo Confocal Microscopy. Eye Lond. Engl. 2009, 23, 1221–1227. [Google Scholar] [CrossRef]
- Gan, L.; Chen, H.; Liu, X.; Zhang, L. Ophthalmic Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitors. Front. Immunol. 2023, 14, 1130238. [Google Scholar] [CrossRef]
- Sheppard, J.D.; Comstock, T.L.; Cavet, M.E. Impact of the Topical Ophthalmic Corticosteroid Loteprednol Etabonate on Intraocular Pressure. Adv. Ther. 2016, 33, 532–552. [Google Scholar] [CrossRef]
- Ramsell, T.G.; Trillwood, W.; Draper, G. Effects of Prednisolone Eye Drops. A Trial of the Effects of Prednisolone Phosphate Eye Drops on the Intra-Ocular Pressure of Normal Volunteers. Br. J. Ophthalmol. 1967, 51, 398–402. [Google Scholar] [CrossRef]
- Zhou, Y.-W.; Xu, Q.; Wang, Y.; Xia, R.-L.; Liu, J.-Y.; Ma, X.-L. Immune Checkpoint Inhibitor-Associated Ophthalmic Adverse Events: Current Understanding of Its Mechanisms, Diagnosis, and Management. Int. J. Ophthalmol. 2022, 15, 646–656. [Google Scholar] [CrossRef]
- Fardeau, C.; Bencheqroun, M.; Levy, A.; Bonnin, S.; Ferchaud, M.-A.; Fardeau, L.; Coscas, F.; Bodaghi, B.; Lebrun-Vignes, B. Uveitis Associated with Cancer Immunotherapy: Long-Term Outcomes. Immunotherapy 2021, 13, 1465–1481. [Google Scholar] [CrossRef]
- Matsuo, T.; Yamasaki, O. Vogt-Koyanagi-Harada Disease-like Posterior Uveitis in the Course of Nivolumab (Anti-PD-1 Antibody), Interposed by Vemurafenib (BRAF Inhibitor), for Metastatic Cutaneous Malignant Melanoma. Clin. Case Rep. 2017, 5, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Horvat, T.Z.; Adel, N.G.; Dang, T.-O.; Momtaz, P.; Postow, M.A.; Callahan, M.K.; Carvajal, R.D.; Dickson, M.A.; D’Angelo, S.P.; Woo, K.M.; et al. Immune-Related Adverse Events, Need for Systemic Immunosuppression, and Effects on Survival and Time to Treatment Failure in Patients with Melanoma Treated with Ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 3193–3198. [Google Scholar] [CrossRef] [PubMed]
- Oray, M.; Tuğal-Tutkun, İ. Treatment of Juvenile Idiopathic Arthritis-Associated Uveitis. Turk. J. Ophthalmol. 2016, 46, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, M.; Namba, K.; Mizuuchi, K.; Iwata, D.; Hase, K.; Suzuki, K.; Hirooka, K.; Kitaichi, N.; Hiraoka, M.; Ishida, S. The Steroid-Sparing Effect of Adalimumab in the Treatment for the Recurrent Phase of Vogt-Koyanagi-Harada Disease. Ocul. Immunol. Inflamm. 2023, 31, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Khachatryan, N.; Kempen, J.H. Immunosuppressive Therapy and Cancer Risk in Ocular Inflammation Patients: Fresh Evidence and More Questions. Ophthalmology 2015, 122, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Yates, W.B.; Vajdic, C.M.; Na, R.; McCluskey, P.J.; Wakefield, D. Malignancy Risk in Patients with Inflammatory Eye Disease Treated with Systemic Immunosuppressive Therapy: A Tertiary Referral Cohort Study. Ophthalmology 2015, 122, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Hottinger, A.F. Neurologic Complications of Immune Checkpoint Inhibitors. Curr. Opin. Neurol. 2016, 29, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Garweg, J.G. Induction of Uveitis by Immune-Oncologic Therapies, Namely Checkpoint Inhibitors. Klin. Monatsbl. Augenheilkd. 2022, 239, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Tugan, B.; Ozkan, B.; Sonmez, O. Recurrent Episodes with Serous Retinal Detachment and Anterior Uveitis in a Patient Using Nivolumab (Anti -PD-1 Antibody) Therapy: A Case Report and Literature Review. Semin. Ophthalmol. 2021, 36, 794–799. [Google Scholar] [CrossRef]
- Schadendorf, D.; Wolchok, J.D.; Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Chesney, J.; et al. Efficacy and Safety Outcomes in Patients with Advanced Melanoma Who Discontinued Treatment with Nivolumab and Ipilimumab Because of Adverse Events: A Pooled Analysis of Randomized Phase II and III Trials. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 3807–3814. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Venkat, A.G.; Arepalli, S.; Sharma, S.; Karthik, N.; Lowder, C.; Ehlers, J.P.; Singh, A.; Goshe, J.; Srivastava, S. Local Therapy for Cancer Therapy-Associated Uveitis: A Case Series and Review of the Literature. Br. J. Ophthalmol. 2020, 104, 703–711. [Google Scholar] [CrossRef]
- Wang, W.; Lam, W.-C.; Chen, L. Recurrent Grade 4 Panuveitis with Serous Retinal Detachment Related to Nivolumab Treatment in a Patient with Metastatic Renal Cell Carcinoma. Cancer Immunol. Immunother. CII 2019, 68, 85–95. [Google Scholar] [CrossRef]
- Miserocchi, E.; Cimminiello, C.; Mazzola, M.; Russo, V.; Modorati, G.M. New-Onset Uveitis during CTLA-4 Blockade Therapy with Ipilimumab in Metastatic Melanoma Patient. Can. J. Ophthalmol. 2015, 50, e2–e4. [Google Scholar] [CrossRef]
- Guedj, M.; Quéant, A.; Funck-Brentano, E.; Kramkimel, N.; Lellouch, J.; Monnet, D.; Longvert, C.; Gantzer, A.; Brézin, A.P. Uveitis in Patients with Late-Stage Cutaneous Melanoma Treated with Vemurafenib. JAMA Ophthalmol. 2014, 132, 1421–1425. [Google Scholar] [CrossRef]
- Sihota, R.; Konkal, V.L.; Dada, T.; Agarwal, H.C.; Singh, R. Prospective, Long-Term Evaluation of Steroid-Induced Glaucoma. Eye 2008, 22, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.D.; Woolley, T.W.; Adams, C.M. Identification of High Intraocular Pressure Responders to Topical Ophthalmic Corticosteroids. J. Ocul. Pharmacol. Ther. 1993, 9, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Rajpal, R.K.; Roel, L.; Siou-Mermet, R.; Erb, T. Efficacy and Safety of Loteprednol Etabonate 0.5% Gel in the Treatment of Ocular Inflammation and Pain after Cataract Surgery. J. Cataract Refract. Surg. 2013, 39, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Razeghinejad, M.R.; Myers, J.S.; Katz, L.J. Iatrogenic Glaucoma Secondary to Medications. Am. J. Med. 2011, 124, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Razeghinejad, M.R.; Katz, L.J. Steroid-Induced Iatrogenic Glaucoma. Ophthalmic Res. 2011, 47, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Garbe, E.; LeLorier, J.; Boivin, J.-F.; Suissa, S. Risk of Ocular Hypertension or Open-Angle Glaucoma in Elderly Patients on Oral Glucocorticoids. Lancet 1997, 350, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Smeeth, L.; Boulis, M.; Hubbard, R.; Fletcher, A.E. A Population Based Case-Control Study of Cataract and Inhaled Corticosteroids. Br. J. Ophthalmol. 2003, 87, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Sen, H.N.; Vitale, S.; Gangaputra, S.S.; Nussenblatt, R.B.; Liesegang, T.L.; Levy-Clarke, G.A.; Rosenbaum, J.T.; Suhler, E.B.; Thorne, J.E.; Foster, C.S.; et al. Periocular Corticosteroid Injections in Uveitis: Effects and Complications. Ophthalmology 2014, 121, 2275–2286. [Google Scholar] [CrossRef]
- Miraldi Utz, V.; Angeles-Han, S.T.; Mwase, N.; Cassedy, A.; Hennard, T.; Lovell, D.J.; Lopper, S.; Brunner, H.I.; Dosunmu, E.O.; Grom, A.A.; et al. Alternative Biologic Therapy in Children Failing Conventional TNFα Inhibitors for Refractory, Noninfectious, Chronic Anterior Uveitis. Am. J. Ophthalmol. 2022, 244, 183–195. [Google Scholar] [CrossRef]
- Tradtrantip, L.; Asavapanumas, N.; Verkman, A.S. Therapeutic Cleavage of Anti-Aquaporin-4 Autoantibody in Neuromyelitis Optica by an IgG-Selective Proteinase. Mol. Pharmacol. 2013, 83, 1268–1275. [Google Scholar] [CrossRef]
- Tradtrantip, L.; Ratelade, J.; Zhang, H.; Verkman, A.S. Enzymatic Deglycosylation Converts Pathogenic Neuromyelitis Optica Anti-Aquaporin-4 Immunoglobulin G into Therapeutic Antibody. Ann. Neurol. 2013, 73, 77–85. [Google Scholar] [CrossRef]
- Howard, J.F.; Bril, V.; Burns, T.M.; Mantegazza, R.; Bilinska, M.; Szczudlik, A.; Beydoun, S.; Garrido, F.J.R.D.R.; Piehl, F.; Rottoli, M.; et al. Randomized Phase 2 Study of FcRn Antagonist Efgartigimod in Generalized Myasthenia Gravis. Neurology 2019, 92, e2661–e2673. [Google Scholar] [CrossRef]
- Bril, V.; Benatar, M.; Andersen, H.; Vissing, J.; Brock, M.; Greve, B.; Kiessling, P.; Woltering, F.; Griffin, L.; Van den Bergh, P.; et al. Efficacy and Safety of Rozanolixizumab in Moderate to Severe Generalized Myasthenia Gravis: A Phase 2 Randomized Control Trial. Neurology 2021, 96, e853–e865. [Google Scholar] [CrossRef]
- Johnson, D.B.; Sullivan, R.J.; Ott, P.A.; Carlino, M.S.; Khushalani, N.I.; Ye, F.; Guminski, A.; Puzanov, I.; Lawrence, D.P.; Buchbinder, E.I.; et al. Ipilimumab Therapy in Patients with Advanced Melanoma and Preexisting Autoimmune Disorders. JAMA Oncol. 2016, 2, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, Y.; Masuda, T.; Yamaguchi, K.; Sakamoto, S.; Horimasu, Y.; Nakashima, T.; Miyamoto, S.; Tsutani, Y.; Iwamoto, H.; Fujitaka, K.; et al. Pre-Existing Interstitial Lung Abnormalities Are Risk Factors for Immune Checkpoint Inhibitor-Induced Interstitial Lung Disease in Non-Small Cell Lung Cancer. Respir. Investig. 2019, 57, 451–459. [Google Scholar] [CrossRef] [PubMed]
- El-Refai, S.M.; Brown, J.D.; Black, E.P.; Talbert, J.C. Immune Checkpoint Inhibition and the Prevalence of Autoimmune Disorders Among Patients with Lung and Renal Cancer. Cancer Inform. 2017, 16, 1176935117712520. [Google Scholar] [CrossRef] [PubMed]
- Kanavati, S.; Ottensmeier, C.; Foria, V.; Krishnan, R. Bilateral Metastatic Cutaneous Melanoma to Retina and Vitreous after Ipilimumab Treated with Pars Plana Vitrectomy and Radiotherapy. Retin. Cases Brief Rep. 2018, 12, 184–187. [Google Scholar] [CrossRef] [PubMed]
- YERVOY-Ipilimumab Injection. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=2265ef30-253e-11df-8a39-0800200c9a66 (accessed on 17 September 2023).
- McDermott, D.; Haanen, J.; Chen, T.-T.; Lorigan, P.; O’Day, S. MDX010-20 investigators Efficacy and Safety of Ipilimumab in Metastatic Melanoma Patients Surviving More than 2 Years Following Treatment in a Phase III Trial (MDX010-20). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 2694–2698. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Chiarion-Sileni, V.; Grob, J.-J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; et al. Adjuvant Ipilimumab versus Placebo after Complete Resection of High-Risk Stage III Melanoma (EORTC 18071): A Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2015, 16, 522–530. [Google Scholar] [CrossRef]
- Albiges, L.; Tannir, N.M.; Burotto, M.; McDermott, D.; Plimack, E.R.; Barthélémy, P.; Porta, C.; Powles, T.; Donskov, F.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib for First-Line Treatment of Advanced Renal Cell Carcinoma: Extended 4-Year Follow-up of the Phase III CheckMate 214 Trial. ESMO Open 2020, 5, e001079. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lee, J.-S.; Ciuleanu, T.-E.; Bernabe Caro, R.; Nishio, M.; Urban, L.; Audigier-Valette, C.; Lupinacci, L.; Sangha, R.; Pluzanski, A.; et al. Five-Year Survival Outcomes with Nivolumab plus Ipilimumab versus Chemotherapy as First-Line Treatment for Metastatic Non-Small-Cell Lung Cancer in CheckMate 227. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 1200–1212. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-Line Nivolumab plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (CheckMate 9LA): An International, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-Line Nivolumab plus Ipilimumab in Unresectable Malignant Pleural Mesothelioma (CheckMate 743): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Lond. Engl. 2021, 397, 375–386. [Google Scholar] [CrossRef]
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; et al. Nivolumab Alone and Nivolumab plus Ipilimumab in Recurrent Small-Cell Lung Cancer (CheckMate 032): A Multicentre, Open-Label, Phase 1/2 Trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Doki, Y.; Ogata, T.; Motoyama, S.; Kawakami, H.; Ueno, M.; Kojima, T.; Shirakawa, Y.; Okada, M.; Ishihara, R.; et al. First-Line Nivolumab plus Ipilimumab or Chemotherapy versus Chemotherapy Alone in Advanced Esophageal Squamous Cell Carcinoma: A Japanese Subgroup Analysis of Open-Label, Phase 3 Trial (CheckMate 648/ONO-4538-50). Esophagus Off. J. Jpn. Esophageal Soc. 2023, 20, 291–301. [Google Scholar] [CrossRef]
- IMJUDO-Tremelimumab Injection, Solution. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=6690679c-be2f-4588-a2e4-89fff74dd6be (accessed on 17 September 2023).
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Johnson, M.L.; Cho, B.C.; Luft, A.; Alatorre-Alexander, J.; Geater, S.L.; Laktionov, K.; Kim, S.-W.; Ursol, G.; Hussein, M.; Lim, F.L.; et al. Durvalumab with or without Tremelimumab in Combination with Chemotherapy as First-Line Therapy for Metastatic Non–Small-Cell Lung Cancer: The Phase III POSEIDON Study. J. Clin. Oncol. 2023, 41, 1213–1227. [Google Scholar] [CrossRef]
- OPDIVO-Nivolumab Injection. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f570b9c4-6846-4de2-abfa-4d0a4ae4e394 (accessed on 17 September 2023).
- Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017, 377, 1824–1835. [Google Scholar] [CrossRef]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Engert, A.; Younes, A.; Fanale, M.; Santoro, A.; Zinzani, P.L.; Timmerman, J.M.; Collins, G.P.; Ramchandren, R.; Cohen, J.B.; et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1428–1439. [Google Scholar] [CrossRef]
- Ansell, S.; Gutierrez, M.E.; Shipp, M.A.; Gladstone, D.; Moskowitz, A.; Borello, I.; Popa-Mckiver, M.; Farsaci, B.; Zhu, L.; Lesokhin, A.M.; et al. A Phase 1 Study of Nivolumab in Combination with Ipilimumab for Relapsed or Refractory Hematologic Malignancies (CheckMate 039). Blood 2016, 128, 183. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 2102–2114. [Google Scholar] [CrossRef]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in Metastatic Urothelial Carcinoma after Platinum Therapy (CheckMate 275): A Multicentre, Single-Arm, Phase 2 Trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Lenz, H.-J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Ready, N.E.; Ott, P.A.; Hellmann, M.D.; Zugazagoitia, J.; Hann, C.L.; de Braud, F.; Antonia, S.J.; Ascierto, P.A.; Moreno, V.; Atmaca, A.; et al. Nivolumab Monotherapy and Nivolumab plus Ipilimumab in Recurrent Small Cell Lung Cancer: Results from the CheckMate 032 Randomized Cohort. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2020, 15, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.-Y.; Chin, K.; Kadowaki, S.; Ahn, M.-J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab versus Chemotherapy in Patients with Advanced Oesophageal Squamous Cell Carcinoma Refractory or Intolerant to Previous Chemotherapy (ATTRACTION-3): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- KEYTRUDA-Pembrolizumab Injection, Powder, Lyophilized, for Solution. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=9333c79b-d487-4538-a9f0-71b91a02b287 (accessed on 17 September 2023).
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Puzanov, I.; Dummer, R.; Schadendorf, D.; Hamid, O.; Robert, C.; Hodi, F.S.; Schachter, J.; Pavlick, A.C.; Lewis, K.D.; et al. Pembrolizumab versus Investigator-Choice Chemotherapy for Ipilimumab-Refractory Melanoma (KEYNOTE-002): A Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 2015, 16, 908–918. [Google Scholar] [CrossRef]
- Luke, J.J.; Ascierto, P.A.; Carlino, M.S.; Gershenwald, J.E.; Grob, J.-J.; Hauschild, A.; Kirkwood, J.M.; Long, G.V.; Mohr, P.; Robert, C.; et al. KEYNOTE-716: Phase III Study of Adjuvant Pembrolizumab versus Placebo in Resected High-Risk Stage II Melanoma. Future Oncol. Lond. Engl. 2020, 16, 4429–4438. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma (EORTC 1325-MG/KEYNOTE-054): Distant Metastasis-Free Survival Results from a Double-Blind, Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2021, 22, 643–654. [Google Scholar] [CrossRef]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab plus Pemetrexed and Platinum in Nonsquamous Non-Small-Cell Lung Cancer: 5-Year Outcomes from the Phase 3 KEYNOTE-189 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, L.; Hu, J.; Wang, D.; Hu, C.; Zhou, J.; Wu, L.; Cao, L.; Liu, J.; Zhang, H.; et al. Pembrolizumab Plus Chemotherapy for Chinese Patients with Metastatic Squamous NSCLC in KEYNOTE-407. JTO Clin. Res. Rep. 2021, 2, 100225. [Google Scholar] [CrossRef] [PubMed]
- de Castro, G.; Kudaba, I.; Wu, Y.-L.; Lopes, G.; Kowalski, D.M.; Turna, H.Z.; Caglevic, C.; Zhang, L.; Karaszewska, B.; Laktionov, K.K.; et al. Five-Year Outcomes with Pembrolizumab versus Chemotherapy as First-Line Therapy in Patients with Non-Small-Cell Lung Cancer and Programmed Death Ligand-1 Tumor Proportion Score ≥ 1% in the KEYNOTE-042 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 1986–1991. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. Lancet Lond. Engl. 2016, 387, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. Pembrolizumab versus Placebo as Adjuvant Therapy for Completely Resected Stage IB-IIIA Non-Small-Cell Lung Cancer (PEARLS/KEYNOTE-091): An Interim Analysis of a Randomised, Triple-Blind, Phase 3 Trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.J.; Burtness, B.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G.; Psyrri, A.; Brana, I.; Basté, N.; Neupane, P.; et al. Pembrolizumab with or without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III KEYNOTE-048 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for Patients with PD-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; Fogliatto, L.M.; Goncalves, I.; de Oliveira, J.S.R.; Buccheri, V.; et al. Pembrolizumab versus Brentuximab Vedotin in Relapsed or Refractory Classical Hodgkin Lymphoma (KEYNOTE-204): An Interim Analysis of a Multicentre, Randomised, Open-Label, Phase 3 Study. Lancet Oncol. 2021, 22, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Pembrolizumab in Relapsed or Refractory Hodgkin Lymphoma: 2-Year Follow-up of KEYNOTE-087. Blood 2019, 134, 1144–1153. [Google Scholar] [CrossRef]
- Armand, P.; Rodig, S.; Melnichenko, V.; Thieblemont, C.; Bouabdallah, K.; Tumyan, G.; Özcan, M.; Portino, S.; Fogliatto, L.; Caballero, M.D.; et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 3291–3299. [Google Scholar] [CrossRef]
- Hoimes, C.J.; Flaig, T.W.; Milowsky, M.I.; Friedlander, T.W.; Bilen, M.A.; Gupta, S.; Srinivas, S.; Merchan, J.R.; McKay, R.R.; Petrylak, D.P.; et al. Enfortumab Vedotin Plus Pembrolizumab in Previously Untreated Advanced Urothelial Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Vuky, J.; Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Bellmunt, J.; Powles, T.; Bajorin, D.; Hahn, N.M.; Savage, M.J.; et al. Long-Term Outcomes in KEYNOTE-052: Phase II Study Investigating First-Line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced or Metastatic Urothelial Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2658–2666. [Google Scholar] [CrossRef] [PubMed]
- Fradet, Y.; Bellmunt, J.; Vaughn, D.J.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; Necchi, A.; et al. Randomized Phase III KEYNOTE-045 Trial of Pembrolizumab versus Paclitaxel, Docetaxel, or Vinflunine in Recurrent Advanced Urothelial Cancer: Results of >2 Years of Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 970–976. [Google Scholar] [CrossRef]
- Balar, A.V.; Kamat, A.M.; Kulkarni, G.S.; Uchio, E.M.; Boormans, J.L.; Roumiguié, M.; Krieger, L.E.M.; Singer, E.A.; Bajorin, D.F.; Grivas, P.; et al. Pembrolizumab Monotherapy for the Treatment of High-Risk Non-Muscle-Invasive Bladder Cancer Unresponsive to BCG (KEYNOTE-057): An Open-Label, Single-Arm, Multicentre, Phase 2 Study. Lancet Oncol. 2021, 22, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.C.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Geoerger, B.; Kang, H.J.; Yalon-Oren, M.; Marshall, L.V.; Vezina, C.; Pappo, A.; Laetsch, T.W.; Petrilli, A.S.; Ebinger, M.; Toporski, J.; et al. Pembrolizumab in Paediatric Patients with Advanced Melanoma or a PD-L1-Positive, Advanced, Relapsed, or Refractory Solid Tumour or Lymphoma (KEYNOTE-051): Interim Analysis of an Open-Label, Single-Arm, Phase 1–2 Trial. Lancet Oncol. 2020, 21, 121–133. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 Trial of Dual PD-1 and HER2 Blockade in HER2-Positive Gastric Cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab plus Chemotherapy versus Chemotherapy Alone for First-Line Treatment of Advanced Oesophageal Cancer (KEYNOTE-590): A Randomised, Placebo-Controlled, Phase 3 Study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.H.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Updated Efficacy and Safety of KEYNOTE-224: A Phase II Study of Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib. Eur. J. Cancer 2022, 167, 1–12. [Google Scholar] [CrossRef]
- Nghiem, P.; Bhatia, S.; Lipson, E.J.; Sharfman, W.H.; Kudchadkar, R.R.; Brohl, A.S.; Friedlander, P.A.; Daud, A.; Kluger, H.M.; Reddy, S.A.; et al. Durable Tumor Regression and Overall Survival in Patients with Advanced Merkel Cell Carcinoma Receiving Pembrolizumab as First-Line Therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 693–702. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Eto, M.; Motzer, R.; Giorgi, U.D.; Buchler, T.; Basappa, N.S.; Méndez-Vidal, M.J.; Tjulandin, S.; Park, S.H.; Melichar, B.; et al. Lenvatinib plus Pembrolizumab versus Sunitinib as First-Line Treatment of Patients with Advanced Renal Cell Carcinoma (CLEAR): Extended Follow-up from the Phase 3, Randomised, Open-Label Study. Lancet Oncol. 2023, 24, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.-H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Makker, V.; Colombo, N.; Casado Herráez, A.; Santin, A.D.; Colomba, E.; Miller, D.S.; Fujiwara, K.; Pignata, S.; Baron-Hay, S.; Ray-Coquard, I.; et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N. Engl. J. Med. 2022, 386, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Grob, J.-J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulats, J.M.; Bauman, J.R.; et al. Pembrolizumab Monotherapy for Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Trial (KEYNOTE-629). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2916–2925. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- LIBTAYO-Cemiplimab-Rwlc Injection. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=4347ae1f-d397-4f18-8b70-03897e1c054a (accessed on 17 September 2023).
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef]
- Migden, M.R.; Khushalani, N.I.; Chang, A.L.S.; Lewis, K.D.; Schmults, C.D.; Hernandez-Aya, L.; Meier, F.; Schadendorf, D.; Guminski, A.; Hauschild, A.; et al. Cemiplimab in Locally Advanced Cutaneous Squamous Cell Carcinoma: Results from an Open-Label, Phase 2, Single-Arm Trial. Lancet Oncol. 2020, 21, 294–305. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Sekulic, A.; Peris, K.; Bechter, O.; Prey, S.; Kaatz, M.; Lewis, K.D.; Basset-Seguin, N.; Chang, A.L.S.; Dalle, S.; et al. Cemiplimab in Locally Advanced Basal Cell Carcinoma after Hedgehog Inhibitor Therapy: An Open-Label, Multi-Centre, Single-Arm, Phase 2 Trial. Lancet Oncol. 2021, 22, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer with PD-L1 of at Least 50%: A Multicentre, Open-Label, Global, Phase 3, Randomised, Controlled Trial. Lancet Lond. Engl. 2021, 397, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Gogishvili, M.; Melkadze, T.; Makharadze, T.; Giorgadze, D.; Dvorkin, M.; Penkov, K.; Laktionov, K.; Nemsadze, G.; Nechaeva, M.; Rozhkova, I.; et al. Cemiplimab plus Chemotherapy versus Chemotherapy Alone in Non-Small Cell Lung Cancer: A Randomized, Controlled, Double-Blind Phase 3 Trial. Nat. Med. 2022, 28, 2374–2380. [Google Scholar] [CrossRef] [PubMed]
- TECENTRIQ-Atezolizumab Injection, Solution. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=6fa682c9-a312-4932-9831-f286908660ee (accessed on 20 September 2023).
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. Adjuvant Atezolizumab after Adjuvant Chemotherapy in Resected Stage IB-IIIA Non-Small-Cell Lung Cancer (IMpower010): A Randomised, Multicentre, Open-Label, Phase 3 Trial. Lancet Lond. Engl. 2021, 398, 1344–1357. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; et al. IMpower150 Final Overall Survival Analyses for Atezolizumab plus Bevacizumab and Chemotherapy in First-Line Metastatic Nonsquamous NSCLC. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2021, 16, 1909–1924. [Google Scholar] [CrossRef] [PubMed]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in Combination with Carboplatin plus Nab-Paclitaxel Chemotherapy Compared with Chemotherapy Alone as First-Line Treatment for Metastatic Non-Squamous Non-Small-Cell Lung Cancer (IMpower130): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
- Liu, S.V.; Reck, M.; Mansfield, A.S.; Mok, T.; Scherpereel, A.; Reinmuth, N.; Garassino, M.C.; De Castro Carpeno, J.; Califano, R.; Nishio, M.; et al. Updated Overall Survival and PD-L1 Subgroup Analysis of Patients with Extensive-Stage Small-Cell Lung Cancer Treated with Atezolizumab, Carboplatin, and Etoposide (IMpower133). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Gutzmer, R.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Lewis, K.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.; et al. Atezolizumab, Vemurafenib, and Cobimetinib as First-Line Treatment for Unresectable Advanced BRAFV600 Mutation-Positive Melanoma (IMspire150): Primary Analysis of the Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Lond. Engl. 2020, 395, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Naqash, A.R.; O’Sullivan Coyne, G.H.; Moore, N.; Sharon, E.; Takebe, N.; Fino, K.K.; Ferry-Galow, K.V.; Hu, J.S.; Van Tine, B.A.; Burgess, M.A.; et al. Phase II Study of Atezolizumab in Advanced Alveolar Soft Part Sarcoma (ASPS). J. Clin. Oncol. 2021, 39, 11519. [Google Scholar] [CrossRef]
- BAVENCIO-Avelumab Injection, Solution, Concentrate. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=5cd725a1-2fa4-408a-a651-57a7b84b2118 (accessed on 19 September 2023).
- D’Angelo, S.P.; Lebbé, C.; Mortier, L.; Brohl, A.S.; Fazio, N.; Grob, J.-J.; Prinzi, N.; Hanna, G.J.; Hassel, J.C.; Kiecker, F.; et al. First-Line Avelumab in a Cohort of 116 Patients with Metastatic Merkel Cell Carcinoma (JAVELIN Merkel 200): Primary and Biomarker Analyses of a Phase II Study. J. Immunother. Cancer 2021, 9, e002646. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Park, S.H.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Ullén, A.; Loriot, Y.; Sridhar, S.S.; Sternberg, C.N.; Bellmunt, J.; et al. Avelumab First-Line Maintenance for Advanced Urothelial Carcinoma: Results From the JAVELIN Bladder 100 Trial After ≥2 Years of Follow-Up. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 3486–3492. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- IMFINZI-Durvalumab Injection, Solution. Package Insert. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=8baba4ea-2855-42fa-9bd9-5a7548d4cec3&audience=consumer (accessed on 19 September 2023).
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Goldman, J.W.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab, with or without Tremelimumab, plus Platinum-Etoposide versus Platinum-Etoposide Alone in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): Updated Results from a Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 51–65. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Ruth He, A.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Ah Lee, M.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef]
- Hwang, G.E.; Lee, J.W.; Jeon, S.; Cho, I.H.; Kim, H.D. Vogt-Koyanagi-Harada Syndrome-like Uveitis after Nivolumab Administration as a Treatment for Ovarian Cancer. Doc Ophthalmol 2022, 144, 153–162. [Google Scholar] [CrossRef] [PubMed]
Organ System | Reported Adverse Events |
---|---|
Cardiovascular | Arrhythmia [21] Cardiac failure [22] Hypertension [23] Myocardial infarction [22] Myocarditis [24,25] Stroke [22] |
Endocrine | Hypothyroidism, hyperthyroidism [26,27] Hypophysitis [28,29] Hyperglycemia [30] Loss of appetite [26,31] |
Gastrointestinal/renal | Colitis/Diarrhea [32] Constipation [26] Esophageal achalasia [33] Hepatitis [34] Nausea [26] Nephritis [35] Pancreatitis [26] |
General | Fatigue [31] Pyrexia [31] |
Musculoskeletal | Inflammatory myopathy [36] Arthropathy [37] |
Nervous | Encephalopathy [20] Facial palsy [38] Hearing loss, vertigo [39,40] Neuropathy [23] |
Dermatological | Alopecia [23] Dermatitis [14] Rash [26] Pruritus [26] Photosensitivity [26] Vitiligo [26,41] |
Respiratory | Cough [31] Dyspnea [31] Pneumonitis [26] |
Other | Sarcoidosis [42,43] Hematological disturbances |
Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|
Anterior uveitis with trace cells | Anterior uveitis with 1+ or 2+ cells | Anterior uveitis with 3+ or greater cells; intermediate posterior or pan-uveitis | Best corrected visual acuity of 20/200 or worse in the affected eye |
Question | Yes | No | |
---|---|---|---|
1. Are there previous conclusive reports on this reaction? | +1 | 0 | |
2. Did the adverse event appear after the suspected drug was administered? | +2 | −1 | |
3. Did the adverse event improve when the drug was discontinued, or a specific antagonist was administered? | +1 | 0 | |
4. Did the adverse event reappear when the drug was readministered? | +2 | −1 | |
5. Are there alternative causes that could on their own have caused the reaction? | −1 | +2 | |
6. Did the reaction reappear when a placebo was given? | −1 | +1 | |
7. Was the drug detected in blood or other fluids in concentrations known to be toxic? | +1 | 0 | |
8. Was the reaction more severe when the dose was increased or less severe when the dose was decreased? | +1 | 0 | |
9. Did the patient have a similar reaction to the same or similar drugs in any previous exposure? | +1 | 0 | |
10. Was the adverse event confirmed by any objective evidence? | +1 | 0 | |
Total score | Interpretation of Scores | ||
≥9 | Definite. The reaction (1) followed a reasonable temporal sequence after a drug or in which a toxic drug level had been established in body fluids or tissues, (2) followed a recognized response to the suspected drug, and (3) was confirmed by improvement on withdrawing the drug and reappeared on re-exposure. | ||
5 to 8 | Probable. The reaction (1) followed a reasonable temporal sequence after a drug, (2) followed a recognized response to the suspected drug, (3) was confirmed by withdrawal but not by exposure to the drug, and (4) could not be reasonably explained by the known characteristics of the patient’s clinical state. | ||
1 to 4 | Possible. The reaction (1) followed a temporal sequence after a drug, (2) possibly followed a recognized pattern to the suspected drug, and (3) could be explained by characteristics of the patient’s disease. | ||
≤0 | Doubtful. The reaction was likely related to factors other than a drug. |
ASCO 2018 | STIC 2017 | NCCN 2019 | |
---|---|---|---|
Grade 1 | Continue ICI | Continue ICI | Continue ICI |
Artificial tears | Artificial tears | ||
Grade 2 | Suspend ICI | Suspend ICI | Suspend ICPI |
Systemic corticosteroids | PO prednisone | Prednisone or methylprednisolone | |
Resume ICI once off systemic corticosteroids (SC), or if on SC for other organ maintenance at less than 10 mg/day | PO prednisone 0.5–1 mg/kg/day or IV methylprednisolone 0.5–1 mg/kg/day. If no improvement, increase dose to 2 mg/kg/day. If improved to Grade 1 or less, taper over 4–6 weeks. | Resume ICPI once symptoms are Grade 1 or less without corticosteroids | |
Topical corticosteroids, cycloplegic agents | Local corticosteroids | ||
Grade 3 | Suspend ICPI | Suspend ICPI, permanently discontinue if symptoms do not improve over 4–6 weeks | Permanently discontinue ICPI |
Prednisone 1–2 mg/kg/day or methylprednisolone 1–2 mg/kg/day, tapered over 4–6 weeks | Prednisone 1–2 mg/kg/day or equivalent dose of methylprednisolone. If no improvement over 2–3 days, add additional immunosuppressant. If improved to Grade 1 or less, taper over 4–6 weeks. | Prednisone or methylprednisolone | |
Local corticosteroids | |||
Grade 4 | Permanent discontinuation of ICPI | Permanent discontinuation of immunotherapy | Permanently discontinue ICPI |
IV prednisone 1–2 mg/kg/day or methylprednisolone 0.8–1.6 mg/kg | Prednisone 1–2 mg/kg/day or equivalent dose of methylprednisolone. If no improvement over 2–3 days, add additional immunosuppressant. | Prednisone or methylprednisolone | |
Intravitreal, periocular, or topical corticosteroids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Houadj, L.; Wu, K.Y.; Tran, S.D. Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review. Diagnostics 2024, 14, 336. https://doi.org/10.3390/diagnostics14030336
Zhang H, Houadj L, Wu KY, Tran SD. Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review. Diagnostics. 2024; 14(3):336. https://doi.org/10.3390/diagnostics14030336
Chicago/Turabian StyleZhang, Huixin, Lysa Houadj, Kevin Y. Wu, and Simon D. Tran. 2024. "Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review" Diagnostics 14, no. 3: 336. https://doi.org/10.3390/diagnostics14030336
APA StyleZhang, H., Houadj, L., Wu, K. Y., & Tran, S. D. (2024). Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review. Diagnostics, 14(3), 336. https://doi.org/10.3390/diagnostics14030336