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Abstract: Traditional B-mode ultrasound has difficulties distinguishing benign from malignant breast
lesions. It appears that Quantitative Ultrasound (QUS) may offer advantages. We examined the QUS
imaging system’s potential, utilizing parameters like Attenuation Coefficient (AC), Speed of Sound
(SoS), Effective Scatterer Diameter (ESD), and Effective Scatterer Concentration (ESC) to enhance
diagnostic accuracy. B-mode images and radiofrequency signals were gathered from breast lesions.
These parameters were processed and analyzed by a QUS system trained on a simulated acoustic
dataset and equipped with an encoder-decoder structure. Fifty-seven patients were enrolled over
six months. Biopsies served as the diagnostic ground truth. AC, SoS, and ESD showed significant
differences between benign and malignant lesions (p < 0.05), but ESC did not. A logistic regression
model was developed, demonstrating an area under the receiver operating characteristic curve of
0.90 (95% CI: 0.78, 0.96) for distinguishing between benign and malignant lesions. In conclusion,
the QUS system shows promise in enhancing diagnostic accuracy by leveraging AC, SoS, and ESD.
Further studies are needed to validate these findings and optimize the system for clinical use.

Keywords: breast cancer; quantitative ultrasound; artificial intelligence

1. Introduction

Breast cancer ranks as the second most common cancer worldwide and remains the
leading cause of cancer death among women [1]. Early detection plays a pivotal role in
enabling effective treatment and enhancing survival rates. Mammography serves as the
gold standard for breast cancer screening; however, its sensitivity decreases in women with
dense breast tissue, a condition more prevalent in younger women [2]. Ultrasonography has
gained recognition as a complementary tool to mammography for breast cancer screening,
especially in women with dense breasts or those with an elevated risk for breast cancer.

Quantitative ultrasonography (QUS) is an advanced imaging technique that facilitates
the quantification of multiple tissue properties through sound waves [3]. Unlike traditional
ultrasound imaging, which offers qualitative visual information about the tissue, QUS
generates numerical data, enabling more objective and precise evaluations. QUS has
proven valuable in assessing diverse medical conditions, including breast cancer [4,5]. By
supplying quantitative measurements of tissue characteristics, QUS holds the potential
to augment the accuracy of breast cancer detection, characterization, and monitoring
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and to deepen our comprehension of the underlying mechanisms driving breast cancer
development and progression.

Despite the potential advantages of QUS in breast cancer detection and management,
its implementation has encountered several obstacles. One major limitation of QUS is the
variability in its sensitivity and specificity, which depends on the specific QUS method
employed and the population being examined. Moreover, the absence of standardized
protocols for QUS acquisition and analysis, along with variability in interpretation, can
result in inconsistencies in QUS outcomes. Additionally, the cost-effectiveness of QUS in
comparison to other imaging modalities remains uncertain. These factors have impeded
the routine clinical use of QUS for breast cancer [6]. To address these challenges, we have
developed a single-probe ultrasonic imaging system capable of capturing multi-variable
QUS profiles. This system employs artificial intelligence (AI) to perform tomographic
reconstruction of attenuation coefficient (AC), speed of sound (SoS), effective scatterer
diameter (ESD), and effective scatterer concentration (ESC) [7–9] of breast ultrasound
radiofrequency (RF) signals for malignancy diagnosis, in real-time using a single scalable
neural network.

The objective of this pilot study is to validate the efficacy of our AI-based QUS
algorithm, which reconstructs AC, SoS, ESD, and ESC of breast ultrasound RF signals.
We aim to analyze these parameters and juxtapose the results with biopsy outcomes to
underscore the utility of the proposed algorithm in breast cancer diagnosis.

2. Materials and Methods

The study was divided into two phases: Phase 1, which created an algorithm with
QUS parameters to determine and analyze QUS parameters, and Phase 2, which used the
completed algorithm to observe patients with real breast masses.

2.1. Phase 1. Development of Algorithm with New Quantitative Ultrasound Parameters for
Diagnosis of Breast Cancer

Tissue biomechanical characteristics affecting ultrasound wave propagation are di-
vided into two categories, which are acoustic and structural properties (Figure 1). Tissue
AC, SoS, and density are considered acoustic properties that determine how the tissue
interacts with ultrasound waves. The AC is the degree to which ultrasound waves are
attenuated in tissue. Hence, the tissue AC is related to the amplitude of the RF signal. The
SoS influences the propagation speed of ultrasound waves. The tissue speed of sound deter-
mines the arrival time of the pulse-echo signal and is reflected in the phase of the received
ultrasound signal. The tissue density formulates acoustic impedance in conjunction with
sound speed. The acoustic properties regulate the reflection and refraction of an ultrasound
pulse in heterogeneous tissue. The scattering of ultrasonic waves (ESC and ESD) occurs due
to the heterogeneity of speed of sound and density in tissue, and the size and concentration
of the scattering body that determines the scattering of ultrasonic waves are considered
structural properties. The geometry of micro-tissue components governs the ultrasound
scattering effect, and such tissue structural properties are recognized by analyzing envelop
statistics of the received ultrasound signal. The proposed quantitative imaging system
is configured to reconstruct the tissue AC, SoS, ESD, and ESC of the tissue by analyzing
amplitude, phase, and envelop statistics of the RF signal, respectively. These parameters
are estimated through methods that analyze the frequency domain characteristics of the
ultrasound signal.
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Figure 1. Biomechanical properties considered in the proposed quantitative imaging system.

2.1.1. Quantitative Ultrasound Parameters

(1) Attenuation Coefficient (AC)

The AC quantifies the loss of acoustic energy during the propagation of ultrasound
waves. The wave absorption, reflection, refraction, and scattering determine the magnitude
of acoustic attenuation. The acoustic attenuation coefficient is described using the unit of
decibel per centimeter per megahertz (dB/cm/MHz). The AC parameter is formulated by
analyzing the amplitude decay of the received RF signal.

(2) Speed of Sound (SoS)

The SoS refers to the ultrasound propagation speed. The tissue SoS is determined
by the square root of bulk elasticity modulus divided by the tissue density. The speed of
sound is expressed in meters per second (m/s). Heterogeneous tissue SoS distribution
affects the arrival time of the reflected ultrasound signal and results in the phase aberration
of each plane-wave signal. The proposed system extracts tissue SoS by analyzing the phase
difference of each steering angle plane wave.

(3) Effective Scatterer Diameter (ESD)

The tissue ESD quantifies the diameter of the tissue microstructures. The ESD is ex-
pressed in the unit of micro-meter (um). The geometry of the tissue microstructures affects
the aspects of the ultrasound scattering effect and is mathematically described through
the Gaussian form factor [10,11]. The system obtained the ESD feature by interpreting the
backscatter distribution of the measured RF signal.

(4) Effective Scatterer Concentration (ESC)

The ESC refers to the number of scattering sources in the unit area. The unit of ESC is
expressed as the scatterer numbers per square of the wavelength (#/wavelengthˆ2). The
ESC determines the magnitude of the ultrasound backscattering effect and is calculated
by analyzing the scatterer probability distribution of the RF signal corresponding to the
unit area.

2.1.2. Development of Quantitative Imaging Algorithm

The learning-based quantitative imaging algorithm was made to reconstruct multi-
variable quantitative images from the RF signals (Figure 2). The algorithm is implemented
based on the encoder-decoder structure, where the encoder extracts tissue property rele-
vant features q from the RF signal, and the decoder generates a QUS image using q. A
conditional feature extraction scheme is employed to adaptively re-parametrize the neural
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network with the corresponding reconstruction objective (Figure 3). Namely, when AC is
given as a condition parameter, the algorithm extracts AC-relevant quantitative features
from the RF and generates the AC images as the output. Through the conditional feature
parameterization scheme, the algorithm provides N (=4) variable QUS images with a single
learned representation.
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The acoustic dataset is generated using k-Wave [12] simulation toolbox in MATLAB
(R2022b) as proposed in [13,14]. The numerical simulation is set to cover general human
soft-tissue biomechanical features and is used to train the algorithm. The algorithm employs
RF signals, and condition variables as inputs of the system. The conditional variable is
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composed of a one-hot vector that determines the reconstruction objective of the system.
For example, [1000] indicates the attenuation coefficient parameter. If [1000] is employed
as neural network input, the attenuation coefficient image is reconstructed as an output
of the neural network. The neural network is implemented on the basis of an encoder-
decoder structure. The encoder is composed of a two-dimensional convolutional operation,
conditional instance normalization [15], a non-linear activation function, and a down-
sampling layer. The conditional instance normalization employs condition parameters
to reconfigure the mean βcond and standard deviation γcond of the received signal. The
conditional instance normalization is formulated as follows,

Conditional Instance Normlization(x, cond) = γcond
x− (x)

σ (x)
+ βcond

Through the conditional instance normalization scheme, distinct mean and standard
deviation feature is trained to adaptively extract quantitative features relevant to the condi-
tion variable. Consequently, the encoder module extracts compressed quantitative features
(q ∼ R16×16×512), which contains tissue biomechanical features of a selected quantitative
parameter.

The decoder generates a high-resolution quantitative image using q. For detailed
image reconstruction, the decoder is composed of a parallel multi-resolution subnet-
work [16]. Each subnetwork is responsible for generating the corresponding resolution
(∈ R16×16, R32×32, R64×64, and R128×128)) quantitative image. The subnetwork is formu-
lated with a residual convolutional layer [17] for ease of network optimization. Outputs of
each subnetwork are up-sampled and concatenated into the highest resolution feature repre-
sentation and reconstructed the resolution-enhanced network outcome through bottleneck
convolution.

The optimization procedure of the proposed quantitative imaging neural network
is introduced in Table 1. The 16.5 k datasets are split into the train (n = 15.5 k) and test
(n = 1.0 k) datasets. Each data is composed of an RF signal, condition variable (cond), and
ground truth quantitative image (Icond). A batch of size 8 is configured for the training of
the neural network. The learning objective of the system is described as follows:

θ∗ = argmin
θ

EDataset

[
∥Icond − θ(RF, cond)∥2

]
+ LR + L2,

where, LR = ∑
R

[
∥yR − θR(RF, cond)∥2

]
and, L2 = ∑

i
w2

i

Table 1. The optimization procedure of the proposed quantitative imaging neural network.

Algorithm Optimization

Input: (RF, cond, Icond ) ∼ Dataset
Initialize: neural network parameter : θ
1: For it in iterations do
2: Split Datasettrain and Datasettest ← Dataset
3: Composed train batch: L

(
RFtr, condtr, IcondTr

)
∼ Datasettrain

4: Calculate loss: Meta DSA loss LQI
(

RFtr, condtr, IcondTr

)
5: Model Optimization θ = θ − λ

∂(LQI (RFtr , condtr , IcondTr ))
∂θ

6: end for

The neural network tries to minimize the squared difference between the neural
network output θ(RF, cond) and corresponding ground truth Icond. LR is employed to pa-
rameterize each resolution subnetwork. The L2 regularized the weight wi of convolutional
layers and prevents the neural network from over-fitting.
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Breast tissue mimicking acoustic phantoms are modeled to simulate ultrasonic wave
propagation. The anatomy of the phantom is generated using a number of MRI-driven
realistic breast tissue segments (UWCEM breast phantom repository [18]). The shape of the
breast tumor is modeled using breast B-mode images of 600 female subjects with malignant
(N = 210) and benign (N = 445) lesions [19]. The wave propagation property is set to
cover general soft-tissue biomechanical characteristics. The probe is placed along the skin
layer, and the region of interest of size 50 × 50 mm is configured correspondingly. The
ultrasound simulation is implemented using the k-Wave simulation toolbox in MATLAB
and imitates ultrasound measurement of 128 elements with a 5 MHz linear probe. Through
the simulation, an RF signal of each 128-probe element is obtained and configures the
dataset for the training of the neural network.

The choice to use a 5 MHz transducer for the study, despite breast ultrasound typically
being performed with higher frequency transducers (8–9 MHz), can be attributed to several
factors. Lower frequency transducers, like the 5 MHz, have deeper penetration capabilities,
which can be crucial for visualizing deeper breast tissues and lesions. This can be especially
beneficial in patients with denser breast tissues where higher frequencies may not penetrate
as effectively. Moreover, the 5 MHz transducer can still provide sufficient resolution for
the quantitative analysis required in this study while also allowing for a broader range of
tissue characterization due to its wavelength properties. These characteristics make the
5 MHz transducer a suitable choice for the specific requirements and objectives of the pilot
study on AI-enhanced quantitative ultrasound for breast cancer diagnosis.

2.1.3. Implementation Details

The proposed quantitative imaging system is accelerated with Geforce RTX 3090
Ti (Nvidia, Santa Clara, CA, USA) graphics processing unit. The neural network was
optimized with the stochastic gradient descent method using Adam [20] with a learning
rate 10−4 (β1 = 0.9β2 = 0.999). The neural network is trained up to 120 epochs, which is
determined based on the convergence of validation dataset assessed mean normalized
absolute error (MNAE), peak signal-to-noise ratio (PSNR), and structural similarity index
(SSIM) metrics. Dropout [19] with a retention probability of 0.5 is implemented for the
generalization of the neural network. A figure illustrating the training and validation loss
as a function of training epochs is added as a Supplementary Materials (Figure S1).

2.1.4. Quantitative Ultrasound Measurement System

A Vantage 64LE (Verasonics, Inc., Kirkland, WA, USA) ultrasound system featuring
128 elements and a 5 MHz center frequency linear array probe (5LE, Humanscan, Inc.,
Siheung, Republic of Korea) is employed to measure ultrasound signal, RF ⊂ R128×3018.
A plane-wave ultrasound signal is a transmission beamformed with steering angle θ, by
formulating pulse emission delay of each ultrasound element as:

Tdelay(θ, nelement)=
nelementdpitchsin(θ)

ctissue

The dpitch and nelement denote pitch size and order of the probe element, respectively.
The cttisue(=1540 m/s) is the average speed of the sound of tissue. The ultrasound RF signal
is received at a 62.5 MHz sampling rate and is employed to extract quantitative features of
the measured tissue.

2.1.5. QUS Formula Using AC, SoS, ESD, and ESC

The model’s results were presented in terms of odds ratios, standard errors, z-scores,
p-values, and 95% confidence intervals for AC, SoS, ESD, and ESC. The calculated log (odds)
values from the logistic regression model were then transformed into the QUS formula
using the sigmoid function [2].
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2.2. Phase 2: Using Completed Algorithm to Observe Patients with Real Breast Masses
2.2.1. Patient Enrollment

The enrollment of patients conducted over a six-month period from September
2022 to March 2023 received approval from the Institutional Review Board at Seoul Na-
tional University Bundang Hospital (IRB number: B-1910-570-301) and was registered
on ClinicalTrials.gov (identifier: NCT05836246). All procedures performed in this study
were in strict accordance with the relevant guidelines and regulations as established by the
respective overseeing institutions and ethics committees.

Participants were selected using a consecutive sampling method, encompassing in-
dividuals who had breast masses identified through ultrasound examinations and were
scheduled for a biopsy. Those who had undergone surgery or anti-cancer treatments for
breast conditions were excluded to ensure that the QUS parameters were measured from
undisturbed tissue characteristics. This selection strategy aimed to maintain the integrity
of the study’s findings and provide results generalizable to a broader patient population.
Informed consent was obtained from all individual participants included in the study.

2.2.2. Imaging and Data Acquisition

In this study, ultrasound imaging techniques were carried out in strict accordance
with standard clinical protocols, guaranteeing the trustworthiness and consistency of
the examinations. These protocols encompassed a multitude of stages, including patient
preparation prior to the ultrasound examination, proper adjustment of ultrasound device
parameters, optimal patient positioning, and execution of the ultrasound scan. Data
acquisition was undertaken by two seasoned radiologists, each with over 20 years of
experience and faculty positions at a university hospital, ensuring a high level of expertise
and accuracy in data collection. Upon the acquisition of B-mode ultrasound data, the QUS
algorithm was applied to the collected RF data to estimate the AC, SoS, ESD, and ESC
parameters of each participant’s breast mass. Following this, a biopsy was performed on
the lesion. Diagnostic reports of biopsy specimens served as the ground truth to accurately
classify the type of tumor, thus enabling a thorough comparison of the QUS results with
the histopathological findings.

2.2.3. Image Evaluation by Radiologist Readers

Two board-certified radiologists, each possessing over 20 years of professional experi-
ence in breast ultrasound, were recruited as independent readers for the image evaluation.
Both radiologists were blinded to their involvement in the study, patients’ clinical infor-
mation, biopsy results, and QUS findings. The B-mode ultrasound images were randomly
presented to the radiologists. For each patient, the radiologists independently assessed
the B-mode ultrasound images and provided Breast Imaging-Reporting and Data System
(BI-RADS) categories. The radiologists also provided comments on the image quality,
artifacts, and any difficulties encountered during the evaluation.

2.2.4. Image Confirmation by Biopsy

To validate the findings from the QUS and B-mode ultrasound images, biopsy out-
comes were used as the reference standard to confirm the presence or absence of malignant
lesions in the breast tissue. Patients with suspicious findings on B-mode ultrasound images
underwent a biopsy procedure to obtain tissue samples for histopathological analysis. The
biopsies were performed using either ultrasound-guided core needle biopsy or fine needle
aspiration techniques, as deemed appropriate by the radiologist. Fine Needle Aspiration
Biopsy plays a critical role in breast cancer diagnosis as it involves the extraction of cells
from breast lesions for microscopic examination. FNAB serves as a minimally invasive
method to obtain tissue samples, which are then analyzed to differentiate between various
pathologies, including Invasive Ductal Carcinoma (IDC), Ductal Carcinoma In Situ (DCIS),
and benign lesions. The pathology report generated from FNAB is considered the ground
truth because it provides a definitive diagnosis. The biopsy samples were then sent for

ClinicalTrials.gov
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histopathological evaluation by a board-certified pathologist. The pathologist evaluated
the biopsy samples for the presence of malignant cells, as well as the histological type and
grade of the tumor, if present. The results of the histopathological analysis were used as
the reference standard to classify the lesions as benign or malignant.

2.3. Outcomes
2.3.1. Primary Outcome

The main objective of this study was to determine the ability of QUS imaging param-
eters, including AC, SoS, ESD, and ESC, to differentiate between benign and malignant
breast lesions.

2.3.2. Secondary Outcomes

The secondary objectives of this study included evaluating the correlation between
QUS parameters and Breast Imaging-Reporting and Data System (BI-RADS) categories,
assessing the performance of a logistic regression model incorporating QUS parameters
in predicting benign and malignant breast tumors and investigating the differences in
QUS parameters between Invasive Ductal Carcinoma (IDC) and Ductal Carcinoma In
Situ (DCIS).

2.3.3. Statistical Analysis

The classification model was evaluated by quantifying the subject’s breast mass using
our QUS AI model and comparing it with biopsy results. Data are expressed either as
mean ± standard deviation [median; interquartile range] for continuous data or median
(range) for categorical data. Nonparametric analysis (Mann–Whitney U test) was utilized
for continuous data that did not follow a normal distribution. The rank sum test was also
used to compare paired data and to compare grades. In the logistic regression analysis, we
utilized independent variables AC, SoS, ESD, and ESC to predict the binary outcome of
benign and malignant tumors. The model’s results were presented in terms of odds ratios,
standard errors, z-scores, p-values, and 95% confidence intervals for each independent
variable. The calculated log (odds) values from the logistic regression model were then
transformed into probabilities using the sigmoid function [21]. This conversion allowed
for the determination of the likelihood of a tumor being benign or malignant based on the
specified threshold value. Receiver operating characteristic curves (ROC) and the respective
areas under the ROC (AUC) were calculated. The 95% confidence interval (CI) for the
AUC was estimated by bootstrapping, and the CIs for metrics were calculated with the use
of the Clopper-Pearson test. The analyses were performed with Stata software (version
17.0; Stata). A two-sided p-value less than 0.05 was considered to indicate a statistically
significant difference.

3. Results
3.1. QUS Formula Using AC, SoS, ESD, and ESC

Using the logistic regression analysis (Table 2) with independent variables AC, SoS,
ESD, and ESC, we predict benign or malignant tumor outcomes. The formula is:

log (odds) = −31.7558 + 10.6396 ∗ AC + 0.0210 ∗ SOS− 0.0975 ∗ ESD + 0.0805 ∗ ESC

We can apply the sigmoid function [sigmoid(x) = 1/(1 + exp(−x))] to the obtained
log(odds) value to estimate the probability of a tumor being benign or malignant, which
aids in distinguishing between the two outcomes.
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Table 2. Logistic regression of QUS parameters for differential diagnosis between benign and
malignancy.

QUS Parameter Odds Ratio Standard Error z p-Value 95% CI

AC 41,734.12 144,309.9 3.08 0.002 47.55–3.66 × 107

SoS 1.02 0.016 1.33 0.183 0.99–1.05
ESD 0.91 0.032 −2.70 0.007 0.85–0.97
ESC 1.08 0.48 0.18 0.86 0.46–2.57

AC = Attenuation Coefficient (dB/cm/MHz), SoS = Speed of Sound (m/s), ESD = Effective Scatterer Diameter
(µm), ESC = Effective Scatterer Concentration (#/wavelengthˆ2).

3.2. Using Completed Algorithm to Observe Patients with Real Breast Masses
3.2.1. Participant Characteristics

During the six-month study period, ultrasound B-mode images and QUS were ob-
tained from 55 patients. A comparison of benign and malignant lesions among study
participants is presented based on age, tumor size, BI-RADS categories, and pathology
outcomes (Table 3). The mean age for benign lesions is 41.9 (±1.8), while the mean age
for malignant lesions is 53.8 (±2.3). The median tumor size is 14 mm (IQR 10–17 mm) for
benign lesions and 20.5 mm (IQR 14–28 mm) for malignant lesions. Regarding the BI-RADS
categories, all lesions in categories 1 and 2 (3% and 14% of the total, respectively) are benign.
Category 3 has a total of 6 lesions (17% of the total), with 5 benign and 1 malignant lesion.
Category 4 has a total of 3 lesions (8% of the total), with 2 benign and 1 malignant lesion.
Categories 5 and 6 have 1 (3% of the total) and 20 lesions (64% of the total), respectively,
with all lesions in category 6 being malignant. Regarding pathology outcomes, out of the
total number of lesions, 32 (58%) were benign, 18 (33%) were identified as invasive ductal
carcinoma (IDC), and 3 (5%) were classified as ductal carcinoma in situ (DCIS). Among the
34 lesions that are neither IDC nor DCIS, 2 were identified as malignant. The ROC analysis
of the logistic regression model (Figure 4), based on 55 observations, demonstrates an AUC
of 0.90 with a standard error of 0.04. The 95% confidence interval for the AUC ranges from
0.78 to 0.96.

Table 3. Patient and Lesion Characteristics (N = 55).

Benign, 32 (58) Malignant, 23 (42) Total, 55 (100)

Age (mean ± SD) 41.9 (1.8) 53.8 (2.3)

Tumor size (mm), median (IQR) 14 (10–17) 20.5 (14–28)

BI-RADS category, n (%)
1 1 (3) 0 (0) 1 (3)
2 5 (14) 0 (0) 5 (14)
3 5 (14) 1 (3) 6 (17)
4 2 (6) 1 (3) 3 (8)
5 0 (0) 1 (3) 1 (3)
6 0 (0) 20 (64) 20 (64)

Pathology outcome, n (%)
IDC 0 (0) 18 (33) 18 (33)

DCIS 0 (0) 3 (5) 3 (5)
N/A 32 (58) 2 (4) 34 (6)

BI-RADS = Breast Imaging-Reporting and Data System, SD = standard deviation, IQR = interquartile range,
IDC = Invasive Ductal Carcinoma, DCIS = Ductal Carcinoma In Situ, AC = Attenuation Coefficient, SoS = Speed
of Sound, ESD = Effective Scatterer Diameter, ESC = Effective Scatterer Concentration, N/A=Not Applicable.
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3.2.2. QUS Parameters According to the Final Diagnosis and Pathologic Outcome

The actual representation of the QUS parameters is illustrated in Figure 5. The median
AC value for benign lesions is 0.506 with an IQR of 0.402–0.623, while for malignant lesions,
the median value is 0.666 with an IQR of 0.609–0.731 and a statistically significant p-value
of <0.001 (Table 4).
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Figure 5. The actual representation of the QUS parameters.

For the SoS parameter, the median value for benign lesions is 1542 (IQR: 1525–1558.5),
and for malignant lesions, it is 1565 (IQR: 1550–1579), with a significant p-value of 0.002.
The ESD has a median value of 91.53 (IQR: 86.46–97.71) for benign lesions and 83.76
(IQR: 74–90.6) for malignant lesions, with a p-value of 0.001. However, the ESC shows no
significant difference between benign and malignant lesions, with median values of 2.396
(IQR: 1.926–3.008) and 2.6 (IQR: 1.987–3.733), respectively, and a p-value of 0.16.

Additionally, the data provides a comparison of QUS parameters between IDC (n = 18,
86%) and DCIS (n = 3, 14%) lesions. The AC, SoS, ESD, and ESC values for both IDC and
DCIS lesions are reported with their respective median values and IQRs. Due to small
sample sizes, p-values were not calculated in this smaller subgroup analysis.
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Table 4. Measurement of quantitative ultrasound parameters according to the final diagnosis and
pathologic outcome.

QUS Parameters Benign, 32 (58) Malignant, 23 (42) p-Value

AC, median (IQR) 0.506 (0.402–0.623) 0.666 (0.609–0.731) <0.001
SoS, median (IQR) 1542 (1525–1558.5) 1565 (1550–1579) 0.002
ESD, median (IQR) 91.53 (86.46–97.71) 83.76 (74–90.6) 0.001
ESC, median (IQR) 2.396 (1.926–3.008) 2.6 (1.987–3.733) 0.16

IDC, 18 (86) DCIS, 3 (14)

AC, median (IQR) 0.664 (0.616–0.73) 0.682 (0.577–0.877) . . . *
SoS, median (IQR) 1565 (1552–1577) 1577 (1525–1579) . . .
ESD, median (IQR) 83.2 (74–88.8) 97 (90.33–101.9) . . .
ESC, median (IQR) 2.684 (2.22–3.804) 3.148 (2.525–3.733) . . .

* Due to small sample sizes, p-values were not calculated in this smaller subgroup analysis. AC, Attenuation
Coefficient, quantifies the loss of acoustic energy during the propagation of ultrasound waves, and it is measured
in dB/cm/MHz; SoS, Speed of Sound, refers to the ultrasound propagation speed in tissue, which is measured in
m/s; ESD, Effective Scatterer Diameter quantifies the diameter of tissue microstructures and is measured in µm;
ESC, Effective Scatterer Concentration refers to the number of scattering sources in the unit area and is measured
in #/wavelengthˆ2. IDC = Invasive Ductal Carcinoma, DCIS = Ductal Carcinoma In Situ.

3.3. Quantitative Ultrasound Parameters Help Identify Unclear Tumor Types in Traditional
B-Mode Images

Figure 6 presents QUS image reconstructions of the cases where the tumor type
is hardly characterized through the conventional B-mode image. The cyst (Figure 6a)
is mostly composed of water, hence showing a significantly low attenuation coefficient
(0.1570 dB/cm/MHz) compared to the malignant tumor (Figure 6c) (1.012 dB/cm/MHz).
Speed of sound is another biomarker for differentiating benign tumors and malignant
lesions. The malignant lesion demonstrates a higher speed-of-sound value (1571 m/s) com-
pared to the benign tumor (Figure 6b) (1551 m/s). The malignant tumor (Figure 6c) shows a
lower scatter diameter and higher scatter concentration than the benign tumors (Figure 6b).
The malignant tumor shows a lower scatter diameter and higher scatter concentration than
one of the benign tumors. In Figure 6c, the position and actual geometrical shape of the
malignant lesion are rarely possible to be identified with the B-mode image. However, the
QUS images, especially the attenuation coefficient and speed-of-sound images, visualize
where the abnormal biomechanical properties are shown and make it possible to delineate
lesion location with precision.

For BI-RADS categories 3 and 4, the QUS parameters for the five benign lesions and
one malignant lesion are provided (Table 5). For BI-RADS category 3, the AC values range
from 0.39 to 0.560, SoS values range from 1492 to 1590, ESD values range from 64.94 to 103,
and ESC values range from 1.293 to 2.847. For BI-RADS category 4, the QUS parameters for
the three lesions are listed. The AC values range from 0.427 to 0.52, SoS values range from
1507 to 1538, ESD values range from 55.6 to 94.12, and ESC values range from 1.58 to 4.153.
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Figure 6. Quantitative ultrasound parameter extraction. (a) cyst, (b) benign tumor and (c) malignant
tumor.

Table 5. Quantitative ultrasound parameters in Bi-RADS categories 3 and 4.

BI-RADS
Category QUS Parameter

Benign, 7 Malignant, 2

Lesion 1 Lesion 2 Lesion 3 Lesion 4 Lesion 5 Lesion 6

3 AC 0.39 0.507 0.560 0.461 0.505 0.8061
SoS 1508 1542 1492 1530 1557 1590
ESD 86.67 103 77.53 64.94 96.12 89.88
ESC 2.4 1.293 2.392 2.847 2.118 1.976

Lesion 7 Lesion 8 Lesion 9

4 AC 0.52 0.427 0.432
SoS 1538 1507 1525
ESD 94 94.12 55.6
ESC 4.153 3.247 1.58

Comparing the values of AC, SoS, ESD, and ESC, a perfect distinction is difficult to achieve, but some differences
do exist. For example, malignant lesions tend to have higher AC values and lower ESD values. However, these
patterns do not apply to all lesions, making it difficult to perfectly differentiate them using these values alone.
AC = Attenuation Coefficient (dB/cm/MHz), SoS = Speed of Sound (m/s), ESD = Effective Scatterer Diameter
(µm), ESC = Effective Scatterer Concentration (#/wavelengthˆ2).

4. Discussion

In this initial investigation, our objective was to assess the effectiveness of a quantita-
tive ultrasound (QUS) algorithm that utilizes artificial intelligence for the reconstruction of
attenuation coefficient (AC), speed of sound (SoS), effective scatterer diameter (ESD), and
effective scatterer concentration (ESC) in breast ultrasound radiofrequency (RF) signals. We
analyzed the QUS parameters in comparison with biopsy results to evaluate the algorithm’s
ability to differentiate between benign and malignant breast lesions. Our results indicate
that the inclusion of QUS parameters alongside conventional B-mode ultrasound has the
potential to improve diagnostic accuracy, particularly for lesions that present challenges
with unclear characteristics.

The results demonstrated that the QUS parameters AC, SoS, and ESD showed signif-
icant differences between benign and malignant lesions. The median values of AC and
SoS were higher in malignant lesions than in benign lesions, while the ESD median value
was lower in malignant lesions. These findings align with previous studies reporting that
malignant breast lesions generally exhibit higher attenuation coefficients and speeds of
sound, along with smaller scatterer sizes [22]. Quantitative ultrasound techniques, such as
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QUS, have been increasingly utilized in breast cancer detection due to their ability to pro-
vide objective and reproducible measurements of tissue properties [23,24]. However, ESC
showed no significant difference between benign and malignant lesions, which is consistent
with other studies showing that ESC has limited discriminatory power for distinguishing
between benign and malignant lesions [25,26]. Some researchers have also suggested that
the combination of multiple QUS parameters may improve the diagnostic performance of
breast ultrasound [27,28]. We also observed that the QUS parameters provided valuable
information in the intermediate BI-RADS categories 3 and 4, which are often challenging to
classify based on conventional B-mode ultrasound alone. The quantitative nature of QUS
parameters may help improve the diagnostic accuracy of breast ultrasound, especially in
lesions with ambiguous findings [29,30].

A logistic regression model was developed using the QUS parameters, which achieved
an AUC of 0.8995, indicating a high diagnostic performance for discriminating between
benign and malignant breast lesions. This result suggests that the proposed QUS algorithm
has the potential to enhance the diagnostic accuracy of breast ultrasound and may serve
as a valuable adjunct to conventional B-mode imaging for breast cancer detection and
characterization [31].

There are some limitations to our study. Firstly, the sample size was relatively small,
and the majority of malignant lesions were IDC. Further studies with larger and more
diverse patient populations are needed to confirm the generalizability of our findings.
Secondly, the algorithm’s performance in specific subgroups, such as women with dense
breasts or those at high risk for breast cancer, was not evaluated in this study. Future
research could explore the potential expansion of the algorithm’s applications, such as in
monitoring treatment response, predicting prognosis, or evaluating other breast-related
conditions.

5. Conclusions

Our pilot study preliminarily indicates that integrating AI with quantitative ultra-
sound analysis, specifically through reconstruction of attenuation coefficient, speed of
sound, effective scatterer diameter, and effective scatterer concentration, shows promise for
enhancing breast cancer detection and characterization accuracy. This combined approach
could potentially improve diagnostics, especially for lesions with unclear B-mode ultra-
sound findings. However, the impact of the case distribution on our findings underscores
the need for further research with a more balanced representation of benign and malignant
cases to confirm these initial results.
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