A Machine Learning Predictive Model of Bloodstream Infection in Hospitalized Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. BSI Data Mart Building Procedures
2.2. Ontology and Study Design
2.3. Cohort Selection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Huerta, L.E.; Rice, T.W. Pathologic Difference between Sepsis and Bloodstream Infections. J. Appl. Lab. Med. 2019, 3, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, R.; McGuire, A.; Street, A. Association of Annual Intensive Care Unit Sepsis Caseload with Hospital Mortality from Sepsis in the United Kingdom, 2010–2016. JAMA Netw. Open 2021, 4, e2115305. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Mellhammar, L.; Rose, N.; Cassini, A.; Rudd, K.E.; Schlattmann, P.; Allegranzi, B.; Reinhart, K. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020, 46, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Executive Summary: Surviving Sepsis Campaign: International Guidelines for the Management of Sepsis and Septic Shock. Crit. Care Med. 2021, 49, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Denny, K.J.; De Waele, J.; Laupland, K.B.; Harris, P.N.A.; Lipman, J. When not to start antibiotics: Avoiding antibiotic overuse in the intensive care unit. Clin. Microbiol. Infect. 2020, 26, 35–40. [Google Scholar] [CrossRef]
- Bhavani, S.V.; Lonjers, Z.; Carey, K.A.; Afshar, M.; Gilbert, E.R.; Shah, N.S.; Huang, E.S.; Churpek, M.M. The Development and Validation of a Machine Learning Model to Predict Bacteremia and Fungemia in Hospitalized Patients Using Electronic Health Record Data. Crit. Care Med. 2020, 48, e1020–e1028. [Google Scholar] [CrossRef]
- Zoabi, Y.; Kehat, O.; Lahav, D.; Weiss-Meilik, A.; Adler, A.; Shomron, N. Predicting bloodstream infection outcome using machine learning. Sci. Rep. 2021, 11, 20101. [Google Scholar] [CrossRef]
- Tacconelli, E.; Göpel, S.; Gladstone, B.P.; Eisenbeis, S.; Hölzl, F.; Buhl, M.; Górska, A.; Cattaneo, C.; Mischnik, A.; Rieg, S.; et al. Development and validation of BLOOMY prediction scores for 14-day and 6-month mortality in hospitalised adults with bloodstream infections: A multicentre, prospective, cohort study. Lancet Infect. Dis. 2022, 22, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Jun, I.; Rich, S.N.; Marini, S.; Feng, Z.; Bian, J.; Morris, J.G.; Prosperi, M. Moving from predicting hospital deaths by antibiotic-resistant bloodstream bacteremia toward actionable risk reduction using machine learning on electronic health records. AMIA Jt. Summits Transl. Sci. Proc. 2022, 23, 274–283. [Google Scholar]
- Jin, L.; Zhao, C.; Li, H.; Wang, R.; Wang, Q.; Wang, H. Clinical Profile, Prognostic Factors, and Outcome Prediction in Hospitalized Patients with Bloodstream Infection: Results From a 10-Year Prospective Multicenter Study. Front. Med. 2021, 8, 629671. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Hung, Y.P.; Hsieh, C.C.; Ho, C.Y.; Hsu, C.Y.; Li, C.T.; Ko, W.C. Predictive models for short-term mortality and length of hospital stay among adults with community-onset bacteraemia before and during the COVID-19 pandemic: Application of early data dynamics. BMC Infect. Dis. 2023, 23, 605. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Hong, K.J.; Park, J.H.; Shin, S.D.; Ro, Y.S.; Song, K.J.; Kim, K.H.; Kim, S. Prediction of bacteremia at the emergency department during triage and disposition stages using machine learning models. Am. J. Emerg. Med. 2022, 53, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Raita, Y.; Goto, T.; Faridi, M.K.; Brown, D.F.M.; Camargo, C.A.; Hasegawa, K., Jr. Emergency department triage prediction of clinical outcomes using machine learning models. Crit. Care 2019, 23, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, H.; Liu, L.; Su, T.; Ji, B. Machine learning model for the prediction of gram-positive and gram-negative bacterial bloodstream infection based on routine laboratory parameters. BMC Infect. Dis. 2023, 23, 675. [Google Scholar] [CrossRef]
- Tsai, C.M.; Lin, C.R.; Zhang, H.; Chiu, I.M.; Cheng, C.Y.; Yu, H.R.; Huang, Y.H. Using Machine Learning to Predict Bacteremia in Febrile Children Presented to the Emergency Department. Diagnostics 2020, 10, 307. [Google Scholar] [CrossRef]
- Zhou, T.; Ren, Z.; Ma, Y.; He, L.; Liu, J.; Tang, J.; Zhang, H. Early identification of bloodstream infection in hemodialysis patients by machine learning. Heliyon 2023, 9, e18263. [Google Scholar] [CrossRef]
- Lee, K.H.; Dong, J.J.; Jeong, S.J.; Chae, M.H.; Lee, B.S.; Kim, H.J.; Ko, S.H.; Song, Y.G. Early Detection of Bacteraemia Using Ten Clinical Variables with an Artificial Neural Network Approach. J. Clin. Med. 2019, 8, 1592. [Google Scholar] [CrossRef]
- Damiani, A.; Masciocchi, C.; Lenkowicz, J.; Capocchiano, N.D.; Boldrini, L.; Tagliaferri, L.; Cesario, A.; Sergi, P.D.; Marchetti, A.; Luraschi, A.; et al. Building an Artificial Intelligence Laboratory Based on Real World Data: The Experience of Gemelli Generator. Front. Comp. Sci. 2021, 3, 768266. [Google Scholar] [CrossRef]
- Stoltzfus, J. Logistic regression: A brief primer. Acad. Emerg. Med. 2011, 18, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, G.; Gottardelli, B.; Lenkowicz, J.; Patarnello, S.; Bellavia, S.; Scala, I.; Rizzo, P.; de Belvis, A.G.; Del Signore, A.B.; Maviglia, R.; et al. A novel risk score predicting 30-day hospital re-admission of patients with acute stroke by machine learning model. Eur. J. Neurol. 2024, 31, e16153. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD). Ann. Intern. Med. 2015, 162, 735–736. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Dhiman, P.; Andaur Navarro, C.L.; Ma, J.; Hooft, L.; Reitsma, J.B.; Logullo, P.; Beam, A.L.; Peng, L.; Van Calster, B.; et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021, 11, e048008. [Google Scholar] [CrossRef]
- Mahmoud, E.; Al Dhoayan, M.; Bosaeed, M.; Al Johani, S.; Arabi, Y.M. Developing Machine-Learning Prediction Algorithm for Bacteremia in Admitted Patients. Infect. Drug Resist. 2021, 14, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, N.I.; Wolfe, R.E.; Wright, S.B.; Moore, R.; Bates, D.W. Who needs a blood culture? A prospectively derived and validated prediction rule. J. Emerg. Med. 2008, 35, 255–264. [Google Scholar] [CrossRef]
- Jeppesen, K.N.; Dalsgaard, M.L.; Ovesen, S.H.; Rønsbo, M.T.; Kirkegaard, H.; Jessen, M.K. Bacteremia Prediction with Prognostic Scores and a Causal Probabilistic Network—A Cohort Study of Emergency Department Patients. J. Emerg. Med. 2022, 63, 738–746. [Google Scholar] [CrossRef]
- Schinkel, M.; Paranjape, K.; Nannan Panday, R.S.; Skyttberg, N.; Nanayakkara, P.W.B. Clinical applications of artificial intelligence in sepsis: A narrative review. Comput. Biol. Med. 2019, 115, 103488. [Google Scholar] [CrossRef]
- Fleuren, L.M.; Klausch, T.L.T.; Zwager, C.L.; Schoonmade, L.J.; Guo, T.; Roggeveen, L.F.; Swart, E.L.; Girbes, A.R.J.; Thoral, P.; Ercole, A.; et al. Machine learning for the prediction of sepsis: A systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 2020, 46, 383–400. [Google Scholar] [CrossRef]
- Ratzinger, F.; Ratzinger, F.; Haslacher, H.; Perkmann, T.; Pinzan, M.; Anner, P.; Makristathis, A.; Burgmann, H.; Heinze, G.; Dorffner, G. Machine learning for fast identification of bacteraemia in SIRS patients treated on standard care wards: A cohort study. Sci. Rep. 2018, 8, 12233. [Google Scholar] [CrossRef]
- Pai, K.C.; Wang, M.S.; Chen, Y.F.; Tseng, C.H.; Liu, P.Y.; Chen, L.C.; Sheu, R.K.; Wu, C.L. An Artificial Intelligence Approach to Bloodstream Infections Prediction. J. Clin. Med. 2021, 10, 2901. [Google Scholar] [CrossRef]
- Rodic, S.; Hryciw, B.N.; Selim, S.; Wang, C.Q.; Lepage, M.F.; Goyal, V.; Nguyen, L.H.; Fergusson, D.A.; van Walraven, C. Concurrent external validation of bloodstream infection probability models. Clin. Microbiol. Infect. 2023, 29, 61–69. [Google Scholar] [CrossRef]
- Coburn, B.; Morris, A.M.; Tomlinson, G.; Detsky, A.S. Does this adult patient with suspected bacteremia require blood cultures? JAMA 2012, 308, 502–511. [Google Scholar] [CrossRef]
- Masciocchi, C.; Gottardelli, B.; Savino, M.; Boldrini, L.; Martino, A.; Mazzarella, C.; Massaccesi, M.; Valentini, V.; Damiani, A. Federated Cox Proportional Hazards Model with multicentric privacy-preserving LASSO feature selection for survival analysis from the perspective of personalized medicine. In Proceedings of the 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), Shenzen, China, 21–23 July 2022. [Google Scholar]
Characteristic | All Patients | Training Subset | Validation Subset | ||||||
---|---|---|---|---|---|---|---|---|---|
N = 5660 | BSI (N = 1904) | Non-BSI (N = 3756) | N = 4026 | BSI (N = 1369) | Non-BSI (N = 2657) | N = 1634 | BSI (N = 535) | Non-BSI (N = 1099) | |
Demographics | |||||||||
Age, years, median (IQR) | 71 (58; 80) | 72 (62; 81) | 70 (57; 79) | 70 (58; 80) | 72 (61; 81) | 69 (56; 79) | 71 (60; 80) | 73 (63; 81) | 71 (58; 80) |
Male (%) | 3248 (57.4) | 1063 (55.8) | 2185 (58.2) | 2343 (58.2) | 770 (56.2) | 1573 (59.2) | 905 (55.4) | 293 (54.8) | 612 (55.7) |
Length of stay, days, median (IQR) | 19 (12; 30) | 25 (16; 41) | 17 (11; 26) | 20 (13; 32) | 27 (17; 43) | 18 (11; 27) | 17 (11; 27) | 22 (14; 35) | 15 (10; 23) |
Death (%) | 1169 (20.7) | 562 (29.5) | 607 (16.2) | 848 (21.1) | 410 (29.9) | 438 (16.5) | 321 (19.6) | 152 (28.4) | 169 (15.4) |
Time to BSI, days, median (IQR) | 6 (3; 12) | 10 (5; 18) | 5 (3; 9) | 7 (3; 13) | 10 (5; 19) | 5 (3; 10) | 5 (3; 10) | 9 (4; 15.5) | 5 (3; 8) |
Number of previous hospitalization, median (IQR) | 0 (0; 1) | 0 (0; 1) | 0 (0; 1) | 0 (0; 1) | 0 (0; 1) | 0 (0; 1) | 0 (0; 1) | 0 (0; 1) | 0 (0; 1) |
Previous BSI (%) | 232 (4.1) | 107 (5.6) | 125 (3.3) | 149 (3.7) | 66 (4.8) | 83 (3.1) | 83 (5.1) | 41 (7.7) | 42 (3.8) |
Comorbidities | |||||||||
Index CM, number, median (IQR) | 1 (1; 2) | 1 (1; 2) | 1 (1; 1) | 1 (1; 2) | 1 (1; 2) | 1 (1; 1) | 1 (1; 2) | 1 (1; 2) | 1 (0; 2) |
Diabetes (%) | 939 (16.6) | 334 (17.5) | 605 (16.1) | 639 (15.9) | 237 (17.3) | 402 (15.1) | 300 (18.4) | 97 (18.1) | 203 (18.5) |
Immunodepression (%) | 945 (16.7) | 339 (17.8) | 606 (16.1) | 646 (16) | 226 (16.5) | 420 (15.8) | 299 (18.3) | 113 (21.1) | 186 (16.9) |
Renal failure (%) | 1050 (18.6) | 406 (21.3) | 644 (17.1) | 744 (18.5) | 284 (20.7) | 460 (17.3) | 306 (18.7) | 122 (22.8) | 184 (16.7) |
Neoplasm (%) | 2425 (42.8) | 859 (45.1) | 1566 (41.7) | 1699 (42.2) | 600 (43.8) | 1099 (41.4) | 726 (44.4) | 259 (48.4) | 467 (42.5) |
Neurological diseases (%) | 993 (17.5) | 389 (20.4) | 604 (16.1) | 756 (18.8) | 297 (21.7) | 459 (17.3) | 237 (14.5) | 92 (17.2) | 145 (13.2) |
Vital signs | |||||||||
Hypoxemia (%) | 928 (16.4) | 345 (18.1) | 583 (15.5) | 629 (15.6) | 228 (16.7) | 401 (15.1) | 299 (18.3) | 117 (21.9) | 182 (16.6) |
Dyspnea (%) | 581 (10.3) | 223 (11.7) | 358 (9.5) | 418 (10.4) | 153 (11.2) | 265 (10) | 163 (10) | 70 (13.1) | 93 (8.5) |
Fever (%) | 4347 (76.8) | 1542 (81) | 2805 (74.7) | 3113 (77.3) | 1123 (82) | 1990 (74.9) | 1234 (75.5) | 419 (78.3) | 815 (74.2) |
Hypotension (%) | 1221 (21.6) | 541 (28.4) | 680 (18.1) | 880 (21.9) | 392 (28.6) | 488 (18.4) | 341 (20.9) | 149 (27.9) | 192 (17.5) |
Altered mental status (%) | 1857 (32.8) | 737 (38.7) | 1120 (29.8) | 1352 (33.6) | 529 (38.6) | 823 (31) | 505 (30.9) | 208 (38.9) | 297 (27) |
Tachycardia (%) | 903 (16) | 365 (19.2) | 538 (14.3) | 624 (15.5) | 259 (18.9) | 365 (13.7) | 279 (17.1) | 106 (19.8) | 173 (15.7) |
Devices | |||||||||
Urinary catheter (%) | 3764 (66.5) | 1370 (72) | 2394 (63.7) | 2718 (67.5) | 1008 (73.6) | 1710 (64.4) | 1046 (64) | 362 (67.7) | 684 (62.2) |
Central venous catheter (%) | 1707 (30.2) | 822 (43.2) | 885 (23.6) | 1233 (30.6) | 594 (43.4) | 639 (24) | 474 (29) | 228 (42.6) | 246 (22.4) |
Laboratory | |||||||||
White blood cells [WBC], ×109/L 3, median (IQR) | 9.8 (6.7; 14.1) | 9.4 (6.3; 13.7) | 10.1 (6.9; 14.3) | 10.0 (6.7; 14.3) | 9.5 (6.3; 14.0) | 10.2 (7.0;14.4) | 9.7 (6.6; 13.6) | 9.2 (6.4; 13.3) | 9.9 (6.8; 13.9) |
Neutrophils, ×109/L, median (IQR) | 8.0 (5.2; 12.0) | 7.9 (5.1; 12.1) | 8.1 (5.2; 11.9) | 8.3 (5.4; 11.9) | 8.3 (5.2; 11.8) | 8.4 (5.4; 12.0) | 8.0 (5.1; 11.5) | 8.0 (5.1; 11.7) | 8.0 (5.1; 11.4) |
Platelet, ×109/L, median (IQR) | 225 (150; 314) | 212 (129; 302) | 232 (160; 322) | 222 (145; 311) | 212 (125; 303) | 227 (155; 315) | 233 (161; 328) | 214 (141; 300) | 244 (172; 338) |
Blood urea nitrogen, mg/dL, median (IQR) | 19 (13; 31) | 21 (14; 33) | 18 (12; 29) | 20 (13; 31) | 21 (15; 34) | 19 (13; 29) | 18 (12; 29) | 21 (14; 30) | 17 (12; 28) |
Creatinine, mg/dL, median (IQR) | 0.9 (0.7; 1.3) | 0.9 (0.6; 1.4) | 0.9 (0.7; 1.3) | 0.9 (0.7; 1.3) | 0.9 (0.6; 1.4) | 0.9 (0.7; 1.3) | 0.9 (0.7; 1.4) | 1.0 (0.6; 1.4) | 0.9 (0.7; 1.3) |
Total Bilirubin, mg/dL, median (IQR) | 0.7 (0.5; 1.3) | 0.7 (0.5; 1.5) | 0.7 (0.5; 1.2) | 0.9 (0.5; 1.7) | 1 (0.5; 1.7) | 0.9 (0.5; 1.7) | 0.8 (0.5; 1.7) | 0.9 (0.5; 1.7) | 0.8 (0.5; 1.7) |
C-reactive protein, mg/L, median (IQR) | 123 (59; 187) | 116 (59; 184) | 126 (58; 188) | 135 (66; 176) | 132 (67; 171) | 135 (64; 178) | 131 (60; 186) | 123 (55; 188) | 135 (63; 186) |
Procalcitonin, ng/mL, median (IQR) | 0.38 (0.15; 1.62) | 0.91 (0.25; 5.22) | 0.28 (0.13; 0.89) | 0.41 (0.15; 1.71) | 0.95 (0.26; 5.33) | 0.31 (0.13; 0.94) | 0.32 (0.13; 1.41) | 0.8 (0.22; 5.19) | 0.23 (0.11; 0.75) |
Variables | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
p-Value | Odds Ratio | Coefficients | 95% CI | p-Value | |
Time BSI > 12 days | <0.05 | 3.42 | 1.15 | 0.99–1.31 | <0.05 |
Procalcitonin > 1 ng/mL | <0.05 | 3.07 | 1.14 | 0.99–1.29 | <0.05 |
Presence of a CVC | <0.05 | 2.42 | 0.72 | 0.56–0.88 | <0.05 |
Platelets < 50 × 109/mm3 | <0.05 | 2.3 | 0.59 | 0.28–0.91 | <0.05 |
Hypotension | <0.05 | 1.78 | 0.27 | 0.09–0.44 | <0.05 |
Blood urea nitrogen> 13 mg/dl | <0.05 | 1.71 | 0.35 | 0.17–0.55 | <0.05 |
Presence of urinary catheter | <0.05 | 1.55 | |||
Fever | <0.05 | 1.53 | 0.72 | 0.53–0.90 | <0.05 |
Tachycardia | <0.05 | 1.47 | |||
Altered mental status | <0.05 | 1.4 | 0.22 | 0.05–0.38 | 0.01 |
Total bilirubin > 2 mg/dl | <0.05 | 1.35 | 0.19 | −0.03–0.41 | 0.09 |
Index CM ≥ 2 | <0.05 | 1.33 | 0.25 | 0.08–0.41 | <0.05 |
Serum creatinine > 3 mg/dl | 0.04 | 1.32 | |||
Age > 80 years | <0.05 | 1.28 | 0.36 | 0.18–0.54 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murri, R.; De Angelis, G.; Antenucci, L.; Fiori, B.; Rinaldi, R.; Fantoni, M.; Damiani, A.; Patarnello, S.; Sanguinetti, M.; Valentini, V.; et al. A Machine Learning Predictive Model of Bloodstream Infection in Hospitalized Patients. Diagnostics 2024, 14, 445. https://doi.org/10.3390/diagnostics14040445
Murri R, De Angelis G, Antenucci L, Fiori B, Rinaldi R, Fantoni M, Damiani A, Patarnello S, Sanguinetti M, Valentini V, et al. A Machine Learning Predictive Model of Bloodstream Infection in Hospitalized Patients. Diagnostics. 2024; 14(4):445. https://doi.org/10.3390/diagnostics14040445
Chicago/Turabian StyleMurri, Rita, Giulia De Angelis, Laura Antenucci, Barbara Fiori, Riccardo Rinaldi, Massimo Fantoni, Andrea Damiani, Stefano Patarnello, Maurizio Sanguinetti, Vincenzo Valentini, and et al. 2024. "A Machine Learning Predictive Model of Bloodstream Infection in Hospitalized Patients" Diagnostics 14, no. 4: 445. https://doi.org/10.3390/diagnostics14040445
APA StyleMurri, R., De Angelis, G., Antenucci, L., Fiori, B., Rinaldi, R., Fantoni, M., Damiani, A., Patarnello, S., Sanguinetti, M., Valentini, V., Posteraro, B., & Masciocchi, C. (2024). A Machine Learning Predictive Model of Bloodstream Infection in Hospitalized Patients. Diagnostics, 14(4), 445. https://doi.org/10.3390/diagnostics14040445