Could Tumor Necrosis Factor Serve as a Marker for Cardiovascular Risk Factors and Left Ventricular Hypertrophy in Patients with Early-Onset Coronary Artery Disease?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Group
- A history of myocardial infarction;
- Angiographically documented coronary stenosis (involving ≥50% of the left main stem coronary artery or ≥70% of the branches);
- A history of myocardial revascularization surgery (CABG or PTCA).
2.2. Diagnostic Tests
2.2.1. Physical Examination
2.2.2. Biochemical Tests
2.2.3. Testing Plasma TNF Levels by ELISA Method
2.2.4. Echocardiography Examination
2.2.5. Electrocardiographic Examination
2.3. Statistical Methods
3. Results
4. Discussion
4.1. TNF and Morphometry Parameters
4.2. TNF and Lipids
4.3. TNF and Echocardiography
4.4. TNF and Electrocardiographic Examination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wainstein, M.V.; Mossmann, M.; Araujo, G.N.; Gonçalves, S.C.; Gravina, G.L.; Sangalli, M.; Veadrigo, F.; Matte, R.; Reich, R.; Costa, F.G.; et al. Elevated serum interleukin-6 is predictive of coronary artery disease in intermediate risk overweight patients referred for coronary angiography. Diabetol. Metab. Syndr. 2017, 9, 67. [Google Scholar] [CrossRef]
- Aggarwal, A.; Srivastava, S.; Velmurugan, M. Newer perspectives of coronary artery disease in young. World J. Cardiol. 2016, 8, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.H.; Miller, J.I.; Sperling, L.S.; Weintraub, W.S. Long-term follow-up of coronary artery disease presenting in young adults. J. Am. Coll. Cardiol. 2003, 41, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Moller, M.J.; Qin, Z.; Toursarkissian, B. Tissue markers in human atherosclerotic carotid artery plaque. Ann. Vasc. Surg. 2012, 26, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Wallach, D. The cybernetics of TNF: Old views and newer ones. Semin. Cell Dev. Biol. 2016, 50, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, T.; Mitoma, H.; Harashima, S.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-alpha: Structure, function and interaction with anti-TNF agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Idriss, H.T.; Naismith, J.H. TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef]
- Holtmann, M.H.; Neurath, M.F. Differential TNF-signaling in chronic inflammatory disorders. Curr. Mol. Med. 2004, 4, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.H.; Rehman, K.; Liaqat, A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J. Cell. Biochem. 2018, 119, 105–110. [Google Scholar] [CrossRef]
- Balkwill, F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 2006, 25, 409–416. [Google Scholar] [CrossRef]
- Baugh, J.A.; Bucala, R. Mechanisms for modulating TNF alpha in immune and inflammatory disease. Curr. Opin. Drug Discov. Devel 2001, 4, 635–650. [Google Scholar]
- Müller-Ehmsen, J.; Schwinger, R.H.G. TNF and congestive heart failure: Therapeutic possibilities. Expert. Opin. Ther. Targets 2004, 8, 203–209. [Google Scholar] [CrossRef]
- Puszkarska, A.; Niklas, A.; Głuszek, J.; Lipski, D.; Niklas, K. The concentration of tumor necrosis factor in the blood serum and in the urine and selected early organ damages in patients with primary systemic arterial hypertension. Medicine 2019, 98, e15773. [Google Scholar] [CrossRef] [PubMed]
- Beatty, C.; Richardson, K.P.; Tran, P.M.H.; Satter, K.B.; Hopkins, D.; Gardiner, M.; Sharma, A.; Purohit, S. Multiplex analysis of inflammatory proteins associated with risk of coronary artery disease in type-1 diabetes patients. Clin. Cardiol. 2024, 47, e24143. [Google Scholar] [CrossRef]
- Dziedziejko, V.; Pauli, N.; Kuligowska, A.; Safranow, K.; Goschorska, M.; Chlubek, D.; Rać, M. Significant limitations associated with the analysis of human plasma soluble CD36 performed by ELISA. Pomeranian J. Life Sci. 2018, 64, 5–7. [Google Scholar] [CrossRef]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J. Recommendations for chamber quantification. Eur. J. Echocardiogr. 2006, 7, 79–108. [Google Scholar] [CrossRef]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef] [PubMed]
- de Simone, G.; Daniels, S.R.; Devereux, R.B.; Meyer, R.A.; Roman, M.J.; de Divitiis, O.; Alderman, M.H. Left ventricular mass and body size in normotensive children and adults: Assessment of allometric relations and impact of overweight. J. Am. Coll. Cardiol. 1992, 20, 1251–1260. [Google Scholar] [CrossRef]
- Szczeklik, A.; Tendera, M. Kardiologia, 1st ed.; Wyd. Medycyna Praktyczna: Kraków, Poland, 2010. [Google Scholar]
- Baranowski, R.; Wojciechowski, D.; Maciejewska, M. Zalecenia dotyczące stosowania rozpoznań elektrokardiograficznych PTK. Kardiol. Pol. 2010, 68 (Suppl. IV), 335–390. [Google Scholar]
- Krzystolik, A.; Dziedziejko, V.; Safranow, K.; Kurzawski, G.; Rać, M.; Sagasz-Tysiewicz, D.; Poncyljusz, W.; Jakubowska, K.; Chlubek, D.; Rać, M.E. Is plasma soluble CD36 associated with cardiovascular risk factors in early-onset coronary artery disease patients? Scand. J. Clin. Lab. Investig. 2015, 75, 398–406. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Contois, J.H.; Langlois, M.R.; Cobbaert, C.; Sniderman, A.D. Standardization of Apolipoprotein B, LDL-Cholesterol, and Non-HDL-Cholesterol. J. Am. Heart Assoc. 2023, 12, e030405. [Google Scholar] [CrossRef]
- Jortveit, J.; Pripp, A.H.; Langørgen, J.; Halvorsen, S. Incidence, risk factors and outcome of young patients with myocardial infarction. Heart 2020, 106, 1420–1426. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, P.; Chen, M.; Zhang, W.; Yu, L.; Yang, X.C.; Fan, Q. Aging might increase myocardial ischemia / reperfusion-induced apoptosis in humans and rats. Age 2012, 34, 621–632. [Google Scholar] [CrossRef]
- Parish, R.C.; Todman, S.; Jain, S.K. Resting Heart Rate Variability, Inflammation, and Insulin Resistance in Overweight and Obese Adolescents. Metab. Syndr. Relat. Disord. 2016, 14, 291–297. [Google Scholar] [CrossRef]
- Gidding, S.S.; Bacha, F.; Bjornstad, P.; Levitt Katz, L.E.; Levitsky, L.L.; Lynch, J.; Tryggestad, J.B.; Weinstock, R.S.; Ghormli, L.E.; Lima, J.A.C. Cardiac Biomarkers in Youth with Type 2 Diabetes Mellitus: Results from the TODAY Study. J. Pediatr. 2018, 192, 86–92.e5. [Google Scholar] [CrossRef]
- González-Clemente, J.M.; Giménez-Pérez, G.; Richart, C.; Broch, M.; Caixàs, A.; Megia, A.; Giménez-Palop, O.; Simón, I.; Mauricio, D.; Vendrell, J. The tumor necrosis factor (TNF)-α system is activated in accordance with pulse pressure in normotensive subjects with type 1 diabetes mellitus. Eur. J. Endocrinol. 2005, 153, 687–691. [Google Scholar] [CrossRef]
- Doumatey, A.P.; Lashley, K.S.; Huang, H.; Zhou, J.; Chen, G.; Amoah, A.; Agyenim-Boateng, K.; Oli, J.; Fasanmade, O.; Adebamowo, C.A.; et al. Relationships among obesity, inflammation, and insulin resistance in African Americans and West Africans. Obesity 2010, 18, 598–603. [Google Scholar] [CrossRef]
- Azizian, M.; Mahdipour, E.; Mirhafez, S.R.; Shoeibi, S.; Nematy, M.; Esmaily, H.; Aa Ferns, G.; Ghayour-Mobarhan, M. Cytokine profiles in overweight and obese subjects and normal weight individuals matched for age and gender. Ann. Clin. Biochem. 2016, 53, 663–668. [Google Scholar] [CrossRef]
- Reyes-Castillo, P.; González-Vázquez, R.; Gutiérrez-Nava, A.; Mendoza-Pérez, F.; Navarro González, M.C.; Salgado-Sguayo, A.; Torres-Maravilla, E.; Reyes, L.M.; Azaola-Espinosa, A. Anthropometric measure and adipokine levels of a young undergraduate population with a usual diet. Nutr. Hosp. 2019, 36, 80–86. [Google Scholar]
- Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Faßhauer, M.; Stumvol, M.; et al. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity. PLoS ONE 2015, 10, e0121971. [Google Scholar] [CrossRef]
- Amato, M.C.; Pizzolanti, G.; Torregrossa, V.; Misiano, G.; Milano, S.; Giordano, C. Visceral Adiposity Index (VAI) Is Predictive of an Altered Adipokine Profile in Patients with Type 2 Diabetes. PLoS ONE 2014, 9, e91969. [Google Scholar] [CrossRef]
- Li, T.; Yang, L.; Zhao, S.; Zhang, S. Correlation Between Apolipoprotein M and Inflammatory Factors in Obese Patients. Med. Sci. Monit. 2018, 24, 5698–5703. [Google Scholar] [CrossRef] [PubMed]
- Rość, D.; Adamczyk, P.; Boinska, J.; Szafkowski, R.; Ponikowska, I.; Stankowska, K.; Góralczyk, B.; Ruszkowska-Ciastek, B. CRP, but not TNF or IL-6, decreases after weight loss in patients with morbid obesity exposed to intensive weight reduction and balneological treatment. J. Zhejiang Univ. Sci. B 2015, 16, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Supriya, R.; Tam, B.T.; Yu, A.P.; Lee, P.H.; Lai, C.W.; Cheng, K.K.; Yau, S.Y.; Chan, L.W.; Yung, B.J.; Sheridan, S.; et al. Adipokines demonstrate the interacting influence of central obesity with other cardiometabolic risk factors of metabolic syndrome in Hong Kong Chinese adults. PLoS ONE 2018, 13, e0201585. [Google Scholar] [CrossRef] [PubMed]
- Spranger, J.; Kroke, A.; Möhlig, M.; Hoffmann, K.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F.H. Inflammatory Cytokines and the Risk to Develop Type 2 Diabetes: Results of the Prospective Population-Based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003, 52, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Stępień, M.; Stepien, A.; Wlazel, R.N.; Paradowski, M.; Banach, M.; Rysz, J. Obesity indices and inflammatory markers in obese non-diabetic normo- and hypertensive patients: A comparative pilot study. Lipids Health Dis. 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, L.; Zhan, Y.; Zhang, Z.; Chen, D.; Xiang, Y.; Xie, C. The expression of SAH, IL-1β, Hcy, TNF-α and BDNF in coronary heart disease and its relationship with the severity of coronary stenosis. BMC Cardiovasc. Disord. 2022, 22, 101. [Google Scholar] [CrossRef]
- Fang, C.; Chen, Z.; Zhang, J.; Pan, J.; Jin, X.; Yang, M.; Huang, L. The value of serum YKL-40 and TNF-α in the diagnosis of acute ST-segment elevation myocardial infarction. Cardiol. Res. Pract. 2022, 2022, 4905954. [Google Scholar] [CrossRef]
- Wilczyński, M.; Krejca, M.; Stepinski, P.; Rozalski, M.; Golanski, J. Platelet reactivity expressed as a novel platelet reactivity score is associated with higher inflammatory state after coronary artery bypass grafting. Arch. Med. Sci. 2023, 19, 392–400. [Google Scholar] [CrossRef]
- Abbasifard, M.; Kandelouei, T.; Aslani, S.; Razi, B.; Imani, D.; Fasihi, M.; Cicero, F.G.; Sahebkar, A. Effect of statins on the plasma/serum levels of inflammatory markers in patients with cardiovascular disease, a systematic review and meta-analysis of randomized clinical trials. Inflammopharmacology 2022, 30, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Charakida, M.; Halcox, J.P.J. Tumor Necrosis Factor-Alpha in Heart Failure: More Questions Than Answers. Rev. Esp. Cardiol. 2005, 58, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ogita, H.; Sato, A.; Minamidate, N.; Hachiro, K. Differences Between Patients with and without Atherosclerosis in Expression Levels of Inflammatory Mediators in the Adipose Tissue Around the Coronary Artery. Int. Heart J. 2021, 62, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, X.; Bian, F.; Wu, P.; Xing, S.; Xu, G.; Li, W.; Chi, J.; Ouyang, C.; Zheng, T. TNF promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: Crosstalk between NF-κB and PPAR-γ. J. Mol. Cell. Cardiol. 2014, 72, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.G.; Sandri, S.; Campa, A. High-density lipoprotein prevents SAA-induced production of TNF in THP-1 monocytic cells and peripheral blood mononuclear cells. Mem. Inst. Oswaldo Cruz 2011, 106, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.K.; Williams, H.; Li, S.C.H.; Fletcher, J.P.; Medbury, H.J. Monocyte inflammatory profile is specific for individuals and associated with altered blood lipid levels. Atherosclerosis 2017, 263, 15–23. [Google Scholar] [CrossRef]
- Gilani, S.T.A.; Khan, D.A.; Rauf, A.; Haroon, H.; Khan, K.A.; Hassan, F.U.J. Early Diagnosis of Coronary Artery Disease by Inflammatory Biomarkers of Atherosclerosis in Patients with Angina. J. Interferon Cytokine Res. 2022, 42, 493–500. [Google Scholar] [CrossRef]
- Dong, L.; Hou, R.; Xu, Y.; Yuan, J.; Li, L.; Zheng, C.; Zhao, H. Analyzing the Correlation between the Level of Serum Markers and Ischemic Cerebral Vascular Disease by Multiple Parameters. Comput. Math. Methods Med. 2015, 2015, 972851. [Google Scholar] [CrossRef]
- Vangaveti, V.; Shashidhar, V.; Collier, F.; Carnovale, A.; Rossetti, M.; Lococo, E.; Buchetti, B.; Filetti, S.; Lenti, L.; Morano, S. 9- and 13-HODE regulate fatty acid binding protein-4 in human macrophages, but does not involve HODE/GPR132 axis in PPAR-γ regulation of FABP4. J. Atheroscler. Thromb. 2010, 17, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, A.; Raza, S.; Sun, J.L.; Anstrom, K.J.; Tracy, R.; Steiner, J.; VanBuren, P.; LeWinter, M.M. Pro-Inflammatory Biomarkers in Stable Versus Acutely Decompensated Heart Failure with Preserved Ejection Fraction. J. Am. Heart Assoc. 2018, 7, e007385. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, Y.; Ke, H.; Jin, Y.; Jiang, Z.Y.; Zhon, G.O. Plasma oxidative stress and inflammatory biomarkers are associated with the sizes of the left atrium and pulmonary vein in atrial fibrillation patients. Clin. Cardiol. 2017, 40, 89–94. [Google Scholar] [CrossRef]
- Ambale-Venkatesh, B.; Yang, X.; Wu, C.O.; Liu, K.; Hundley, W.G.; McClelland, R.; Gomes, A.S.; Folsom, A.R.; Shea, S.; Guallar, E.; et al. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ. Res. 2017, 121, 1092–1101. [Google Scholar] [CrossRef]
- Nikolic, V.N.; Jevtovic-Stoimenov, T.; Stokanovic, D.; Milovanovic, M.; Velickovic-Radovanovic, R.; Pesic, S.; Stoiljkovic, M.; Pesic, G.; Ilic, S.; Deljanin-Ilic, M.; et al. An inverse correlation between TNF alpha serum levels and heart rate variability in patients with heart failure. J. Cardiol. 2013, 62, 37–43. [Google Scholar] [CrossRef]
- Szewieczek, J.; Gąsior, Z.; Duława, J.; Francuz, T.; Legierska, K.; Batko-Szwaczka, A.; Hornik, B.; Janusz-Jenczeń, M.; Włodarczyk, I.; Wilczyński, K. ECG low QRS voltage and wide QRS complex predictive of centenarian 360-day mortality. Age 2016, 38, 44. [Google Scholar] [CrossRef]
- Solaro, R.J.; Rosas, P.C.; Langa, P.; Warren, C.M.; Wolska, B.M.; Goldspink, P.H. Mechanisms of troponin release into serum in cardiac injury associated with COVID-19 patients. Int. J. Cardiol. Cardiovasc. Dis. 2021, 1, 41–47. [Google Scholar] [CrossRef]
- Sordillo, P.P.; Sordillo, D.C.; Helson, L. The Prolonged QT Interval: Role of Pro-inflammatory Cytokines, Reactive Oxygen Species and the Ceramide and Sphingosine-1 Phosphate Pathways. In Vivo 2015, 29, 619–636. [Google Scholar] [PubMed]
- Galeone, A.; Grano, M.; Brunetti, G. Tumor Necrosis Factor Family Members and Myocardial Ischemia-Reperfusion Injury: State of the Art and Therapeutic Implications. Int. J. Mol. Sci. 2023, 24, 4606. [Google Scholar] [CrossRef] [PubMed]
- Gonzálvez, M.; Ruiz-Ros, J.A.; Pérez-Paredes, M.; Lozano, M.J.; García-Almagro, F.J.; Martínez-Corbalán, F.; Giménez, D.M.; Carrillo, A.; Carnero, A.; Cubero, T.; et al. Prognostic value of tumor necrosis factor-alpha in patients with ST-segment elevation acute myocardial infarction. Rev. Esp. Cardiol. 2007, 60, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Medenwald, D.; Swenne, C.A.; Loppnow, H.; Kors, J.A.; Pietzner, D.; Tiller, D.; Thiery, J.; Nuding, S.; Greiser, K.H.; Haerting, J.; et al. Prognostic relevance of the interaction between short-term, metronome-paced heart rate variability, and inflammation: Results from the population-based CARLA cohort study. Europace 2017, 19, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Valaperti, A.; Li, Z.; Vonow-Eisenring, M.; Probst-Müller, E. Diagnostic methods for the measurement of human TNF-alpha in clinical laboratory. J. Pharm. Biomed. Anal. 2020, 179, 113010. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Gender (% males) | 75% |
Age of patients (years) | 49.9 ± 5.91 |
Past MI | 70% |
Age of the first MI (years) | 44.0 ± 5.6 |
Time since diagnosis of MI to joining the program (years) | 3.20 ± 0.74 |
History of hypertension | 66% |
Age at diagnosis of hypertension (years) | 42.6 ± 8.6 |
Past PTCA | 71% |
Past CABG | 37% |
Past smoking | 89% |
Years smoking | 18.9 ± 9.8 |
Diabetes type 2 | 13% |
Statins | 96% |
Anti-platelet drugs (Aspirin) | 90% |
ACEI | 80% |
Beta-blockers | 88% |
Diuretics | 31% |
ARB | 17% |
Calcium channel blockers | 18% |
Parameter | CAD n = 100 |
---|---|
BMI (kg/m2) | 28.1 ± 3.98 |
WHR | 0.96 ± 0.09 |
Weight (kg) | 83.4 ± 17.0 |
Waist (cm) | 98.3 ± 12.5 |
MAP (mmHg) | 93.8 ± 9.35 |
Systolic BP (mmHg) | 127 ± 14.2 |
Diastolic BP (mmHg) | 77.0 ± 9.01 |
Glucose (mg/dL) | 107 ± 24.8 |
hsCRP (mg/L) | 1.82 ± 2.7 |
WBC (G/L) | 6.80 ± 0.22 |
Platelets (G/L) | 218 ± 44.6 |
MPV (fL) | 10.6 ± 0.09 |
Hemoglobin (g/dL) | 14.8 ± 1.14 |
Hematocrit (%) | 43.9 ± 3.17 |
RBC (T/L) | 4.91 ± 0.42 |
MCV (fL) | 89.6 ± 4.40 |
Total cholesterol (mg/dL) | 173 ± 40.4 |
LDL cholesterol (mg/dL) | 102 ± 36.2 |
HDL cholesterol (mg/dL) | 48.4 ± 11.5 |
ApoA1 (mg/dL) | 154 ± 38.4 |
ApoB/ApoA1 | 0.53 ± 0.15 |
Lp(a) (mg/dL) | 40.3 ± 49.3 |
Triacylglycerols (mg/dL) | 136 ± 57.1 |
TNF (pg/mL) | 1.33 ± 0.36 |
IL-6 (pg/mL) | 1.69 ± 2.77 |
VEGF (pg/mL) | 236 ± 17.2 |
PCSK9 (ng/mL) | 358 ± 10.7 |
sCD36 (µg/mL) | 15.78 ± 12.9 |
LVEF [%] | 53.6 ± 11.1 |
LVMI [g/m2] | 183 ± 62.3 |
Left ventricular end-diastolic diameter [mm] | 51.3 ± 7.17 |
Left ventricular end-diastolic volume [mL] | 121 ± 43.4 |
Left atrium diameter [mm] | 38.6 ± 5.71 |
LVDF normal | 38% |
LVDF impaired | 54% |
LVDF pseudonormal | 8% |
Right ventricular end-diastolic diameter [mm] | 32.9 ± 5.60 |
Right ventricular mean systolic pressure [mmHg] | 22.0 ± 6.27 |
DT [ms] | 221 ± 69.5 |
E/A ratio | 1.12 ± 0.37 |
Tissue Doppler E′ [cm/s] | 10.1 ± 11.0 |
Heart rate [1/min] | 70.7 ± 12.1 |
PQ interval [s] | 0.19 ± 0.10 |
QRS II width [s] | 0.081 ± 0.020 |
QRS V5 width [s] | 0.083 ± 0.038 |
RV5(6) amplitude [mm] | 12.0 ± 6.04 |
SV1(2) amplitude [mm] | 8.66 ± 4.56 |
RV1(2) amplitude [mm] | 2.65 ± 2.58 |
SV5(6) amplitude [mm] | 3.08 ± 3.25 |
RV1(2) + SV5(6) amplitude [mm] | 5.70 ± 4.29 |
RV5(6) + SV1(2) amplitude [mm] | 20.5 ± 8.30 |
QTc II interval [s] | 0.40 ± 0.04 |
QTc V4 interval [s] | 0.41 ± 0.04 |
Electrical axis deviation | 6% |
ECG criteria of past myocardial infarction | 58% |
ST depression | 31% |
Parameter | Correlations for CAD Patients (n = 100) | Correlations for Males (n = 75) | Correlations for Females (n = 25) | |||
---|---|---|---|---|---|---|
Rs | p-Value | Rs | p-Value | Rs | p-Value | |
BMI (kg/m2) | 0.27 | 0.011 | 0.24 | 0.048 | 0.23 | 0.29 |
Weight (kg) | 0.30 | 0.0045 | 0.29 | 0.018 | 0.07 | 0.75 |
Waist (cm) | 0.28 | 0.009 | 0.30 | 0.016 | 0.18 | 0.43 |
Hip (cm) | 0.32 | 0.0031 | 0.27 | 0.031 | 0.46 | 0.037 |
Platelets (G/L) | 0.16 | 0.13 | 0.09 | 0.48 | 0.47 | 0.019 |
hsCRP (mg/L) | 0.23 | 0.029 | 0.24 | 0.048 | 0.31 | 0.15 |
sCD36 (µg/mL) | −0.25 | 0.016 | −0.19 | 0.13 | 0.06 | 0.77 |
IL-6 (pg/mL) | 0.17 | 0.099 | 0.18 | 0.14 | 0.14 | 0.52 |
HDL-cholesterol (mg/dL) | −0.32 | 0.0016 | −0.29 | 0.015 | −0.14 | 0.53 |
LDL-cholesterol (mg/dL) | 0.23 | 0.024 | 0.23 | 0.054 | 0.21 | 0.33 |
Triacylglycerols (mg/dL) | 0.33 | 0.0014 | 0.37 | 0.002 | 0.07 | 0.76 |
Lp(a) (mg/dL) | −0.32 | 0.0016 | 0.02 | 0.87 | −0.21 | 0.32 |
ApoA1 (mg/dL) | −0.28 | 0.0061 | −0.28 | 0.022 | −0.04 | 0.85 |
ApoB (mg/dL) | 0.23 | 0.026 | 0.26 | 0.033 | 0.10 | 0.63 |
ApoB/ApoA1 | 0.44 | 0.00012 | 0.44 | 0.00015 | 0.25 | 0.23 |
Left ventricular end-diastolic diameter [mm] | 0.33 | 0.0019 | 0.39 | 0.0013 | −0.18 | 0.60 |
Left ventricular end-systolic diameter [mm] | 0.18 | 0.099 | 0.26 | 0.037 | −0.22 | 0.34 |
Left atrium diameter [mm] | 0.25 | 0.020 | 0.14 | 0.25 | 0.46 | 0.031 |
E/A ratio | 0.32 | 0.0020 | 0.30 | 0.015 | 0.51 | 0.018 |
Right ventricular end-diastolic diameter [mm] | 0.22 | 0.039 | 0.17 | 0.18 | 0.31 | 0.17 |
LVMI [g/m2] | 0.23 | 0.037 | 0.24 | 0.059 | 0.04 | 0.86 |
Left ventricular end-diastolic volume [mL] | 0.30 | 0.0045 | 0.32 | 0.010 | 0.04 | 0.86 |
Left ventricular end-systolic volume [mL] | 0.23 | 0.033 | 0.26 | 0.040 | 0.07 | 0.77 |
QRS II width [s] | 0.22 | 0.037 | 0.18 | 0.14 | 0.30 | 0.18 |
QRS V5 width [s] | 0.33 | 0.0020 | 0.37 | 0.0026 | 0.09 | 0.70 |
RV5(6) amplitude [mm] | −0.29 | 0.0077 | −0.37 | 0.0032 | −0.24 | 0.29 |
RV5(6) + SV1(2) amplitude [mm] | −0.26 | 0.016 | −0.40 | 0.0012 | −0.06 | 0.95 |
SV1(2) amplitude [mm] | −0.08 | 0.47 | −0.26 | 0.045 | 0.56 | 0.0064 |
QTc II interval [s] | 0.20 | 0.062 | 0.34 | 0.0057 | −0.14 | 0.54 |
QTc V4 interval [s] | 0.17 | 0.13 | 0.33 | 0.010 | −0.23 | 0.30 |
Right ventricular mean systolic pressure [mmHg] | 0.18 | 0.095 | 0.25 | 0.047 | −0.053 | 0.81 |
Independent Variables | β Coefficient (95%CI) | p-Value |
---|---|---|
ApoB/ApoA1 ratio | +0.37 | 0.00026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białecka, M.; Dziedziejko, V.; Safranow, K.; Krzystolik, A.; Marcinowska, Z.; Chlubek, D.; Rać, M. Could Tumor Necrosis Factor Serve as a Marker for Cardiovascular Risk Factors and Left Ventricular Hypertrophy in Patients with Early-Onset Coronary Artery Disease? Diagnostics 2024, 14, 449. https://doi.org/10.3390/diagnostics14040449
Białecka M, Dziedziejko V, Safranow K, Krzystolik A, Marcinowska Z, Chlubek D, Rać M. Could Tumor Necrosis Factor Serve as a Marker for Cardiovascular Risk Factors and Left Ventricular Hypertrophy in Patients with Early-Onset Coronary Artery Disease? Diagnostics. 2024; 14(4):449. https://doi.org/10.3390/diagnostics14040449
Chicago/Turabian StyleBiałecka, Marta, Violetta Dziedziejko, Krzysztof Safranow, Andrzej Krzystolik, Zuzanna Marcinowska, Dariusz Chlubek, and Monika Rać. 2024. "Could Tumor Necrosis Factor Serve as a Marker for Cardiovascular Risk Factors and Left Ventricular Hypertrophy in Patients with Early-Onset Coronary Artery Disease?" Diagnostics 14, no. 4: 449. https://doi.org/10.3390/diagnostics14040449
APA StyleBiałecka, M., Dziedziejko, V., Safranow, K., Krzystolik, A., Marcinowska, Z., Chlubek, D., & Rać, M. (2024). Could Tumor Necrosis Factor Serve as a Marker for Cardiovascular Risk Factors and Left Ventricular Hypertrophy in Patients with Early-Onset Coronary Artery Disease? Diagnostics, 14(4), 449. https://doi.org/10.3390/diagnostics14040449