NUF2 Expression in Cancer Tissues and Lymph Nodes Suggests Post-Surgery Recurrence of Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Cell Line
2.3. Reverse Transcription Polymerase Chain Reaction
2.4. Statistical Analysis
3. Results
3.1. NUF2 Expression in NSCLC Tissues
3.2. NUF2 Expression in Resected Mediastinal Lymph Nodes of Patients with pN0 NSCLC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSCLC | non-small cell lung cancer |
OSNA | one-step nucleic acid amplification |
RE | relative expression |
RT-PCR | reverse transcription polymerase chain reaction |
References
- Okami, J.; Shintani, Y.; Okumura, M.; Ito, H.; Ohtsuka, T.; Toyooka, S.; Mori, T.; Watanabe, S.I.; Date, H.; Yokoi, K.; et al. Demographics, safety and quality, and prognostic information in both the seventh and eighth editions of the TNM classification in 18,973 surgical cases of the Japanese Joint Committee of Lung Cancer Registry Database in 2010. J. Thorac. Oncol. 2019, 14, 212–222. [Google Scholar] [CrossRef]
- Nakagawa, K.; Asamura, H.; Tsuta, K.; Nagai, K.; Yamada, E.; Ishii, G.; Mitsudomi, T.; Ito, A.; Higashiyama, M.; Tomita, Y.; et al. The novel one-step nucleic acid amplification (OSNA) assay for the diagnosis of lymph node metastasis in patients with non-small cell lung cancer (NSCLC): Results of a multicenter prospective study. Lung Cancer 2016, 97, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vodicka, J.; Mukensnabl, P.; Vejvodova, S.; Spidlen, V.; Kulda, V.; Topolcan, O.; Pesta, M. A more sensitive detection of micrometastases of NSCLC in lymph nodes using the one-step nucleic acid amplification (OSNA) method. J. Surg. Oncol. 2018, 117, 163–170. [Google Scholar] [CrossRef]
- Hayama, S.; Daigo, Y.; Kato, T.; Ishikawa, N.; Yamabuki, T.; Miyamoto, M.; Ito, T.; Tsuchiya, E.; Kondo, S.; Nakamura, Y. Activation of CDCA1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis. Cancer Res. 2006, 66, 10339–10348. [Google Scholar] [CrossRef]
- Wigge, P.A.; Kilmartin, J.V. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 2001, 152, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Nabetani, A.; Koujin, T.; Tsutsumi, C.; Haraguchi, T.; Hiraoka, Y. A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: A link between the kinetochore function and the spindle checkpoint. Chromosoma 2001, 110, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Tokuzumi, A.; Fukushima, S.; Miyashita, A.; Nakahara, S.; Kubo, Y.; Yamashita, J.; Harada, M.; Nakamura, K.; Kajihara, I.; Jinnin, M.; et al. Cell division cycle-associated protein 1 as a new melanoma-associated antigen. J. Dermatol. 2016, 43, 1399–1405. [Google Scholar] [CrossRef]
- Shiraishi, T.; Terada, N.; Zeng, Y.; Suyama, T.; Luo, J.; Trock, B.; Kulkarni, P.; Getzenberg, R.H. Cancer/Testis antigens as potential predictors of biochemical recurrence of prostate cancer following radical prostatectomy. J. Transl. Med. 2011, 9, 153. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yi, Z.; Zhou, J.; Song, W.; Zhao, P.; Wu, J.; Song, J.; Ni, Q. NUF2 is a potential immunological and prognostic marker for non-small-cell lung cancer. J. Immunol. Res. 2022, 2022, 1161931. [Google Scholar] [CrossRef]
- Jiang, F.; Huang, X.; Yang, X.; Huixin, Z.; Yumin, W. NUF2 expression promotes lung adenocarcinoma progression and is associated with poor prognosis. Front. Oncol. 2022, 12, 795971. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Takano, A.; Miyagi, Y.; Tsuchiya, E.; Sonoda, H.; Shimizu, T.; Okabe, H.; Tani, T.; Fujiyama, Y.; Daigo, Y. Cell division cycle-associated protein 1 overexpression is essential for the malignant potential of colorectal cancers. Int. J. Oncol. 2014, 44, 69–77. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y.; Wang, Y.; Lv, S.; Xu, X.; Dong, X. Screening of differentially expressed genes and identification of NUF2 as a prognostic marker in breast cancer. Int. J. Mol. Med. 2019, 44, 390–404. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Li, C.; Liu, Q.; Tan, B.; Liu, Y.; Zhang, Y.; Li, Y. CDCA1/2/3/5/7/8 as novel prognostic biomarkers and CDCA4/6 as potential targets for gastric cancer. Transl. Cancer Res. 2021, 10, 3404–3417. [Google Scholar] [CrossRef]
- Liu, Q.; Dai, S.J.; Li, H.; Dong, L.; Peng, Y.P. Silencing of NUF2 inhibits tumor growth and induces apoptosis in human hepatocellular carcinomas. Asian Pac. J. Cancer Prev. 2014, 15, 8623–8629. [Google Scholar] [CrossRef]
- Lian, X.; Xiang, D.; Peng, C.; Chen, J.; Liao, M.; Sun, G.; Zhang, Z. DDX49 is a novel biomarker and therapeutic target for lung cancer metastases. J. Cell. Mol. Med. 2020, 24, 1141–1145. [Google Scholar] [CrossRef]
- Hata, T.; Mizuma, M.; Masuda, K.; Chiba, K.; Ishida, M.; Ohtsuka, H.; Nakagawa, K.; Morikawa, T.; Kamei, T.; Unno, M. MicroRNA-593-3p expression in peritoneal lavage fluid as a prognostic marker for pancreatic cancer patients undergoing staging laparoscopy. Ann. Surg. Oncol. 2021, 28, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Thakur, S.; Patel, A.; Mendonca-Torres, M.C.; Costello, J.; Gomes-Lima, C.J.; Walter, M.; Wartofsky, L.; Burman, K.D.; Bikas, A.; et al. Detection of BRAFV600E in liquid biopsy from patients with papillary thyroid cancer is associated with tumor aggressiveness and response to therapy. J. Clin. Med. 2020, 9, 2481. [Google Scholar] [CrossRef] [PubMed]
- Tighe, R.M.; Redente, E.F.; Yu, Y.R.; Herold, S.; Sperling, A.I.; Curtis, J.L.; Duggan, R.; Swaminathan, S.; Nakano, H.; Zacharias, W.J.; et al. Improving the quality and reproducibility of flow cytometry in the lung. An official American thoracic society workshop report. Am. J. Respir. Cell Mol. Biol. 2019, 61, 150–161. [Google Scholar] [CrossRef]
- Stankovic, B.; Bjørhovde, H.A.K.; Skarshaug, R.; Aamodt, H.; Frafjord, A.; Müller, E.; Hammarström, C.; Beraki, K.; Bækkevold, E.S.; Woldbæk, P.R.; et al. Immune cell composition in human non-small cell lung cancer. Front. Immunol. 2018, 9, 3101. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, D.; Zhang, D.; Guo, H.; Zhang, L.; Zhou, W. Clinical test on circulating tumor cells in peripheral blood of lung cancer patients, based on novel immunomagnetic beads. Artif. Cells Nanomed. Biotechnol. 2016, 44, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Wang, Y.; Qian, K. Nanozymes: Applications in clinical biomarker detection. Interdiscip. Med. 2023, 1, e20230020. [Google Scholar] [CrossRef]
- Adams, E.; Sepich-Poore, G.D.; Miller-Montgomery, S.; Knight, R. Using all our genomes: Blood-based liquid biopsies for the early detection of cancer. View 2022, 3, 20200118. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Liu, Y.; Huang, Q.; Cheng, C.; Song, L.; Zhang, C.; Cui, X.; Wang, Y.; Han, Y.; Zhang, H. m6A- and immune-related lncRNA signature confers robust predictive power for immune efficacy in lung squamous cell carcinoma. View 2023, 4, 20220083. [Google Scholar] [CrossRef]
- Nosotti, M.; Falleni, M.; Palleschi, A.; Pellegrini, C.; Alessi, F.; Bosari, S.; Santambrogio, L. Quantitative real-time polymerase chain reaction detection of lymph node lung cancer micrometastasis using carcinoembryonic antigen marker. Chest 2005, 128, 1539–1544. [Google Scholar] [CrossRef] [PubMed]
- Maeda, J.; Inoue, M.; Okumura, M.; Ohta, M.; Minami, M.; Shiono, H.; Shintani, Y.; Matsuda, H.; Matsuura, N. Detection of occult tumor cells in lymph nodes from non-small cell lung cancer patients using reverse transcription-polymerase chain reaction for carcinoembryonic antigen mRNA with the evaluation of its sensitivity. Lung Cancer 2006, 52, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Saruta, Y.; Puig-Junoy, J. Cost and budget impact analysis of an accurate intraoperative sentinel lymph node diagnosis for breast cancer metastasis. Appl. Health Econ. Health Policy 2016, 14, 323–335. [Google Scholar] [CrossRef]
- Moulla, Y.; Gradistanac, T.; Wittekind, C.; Eichfeld, U.; Gockel, I.; Dietrich, A. Predictive risk factors for lymph node metastasis in patients with resected non-small cell lung cancer: A case control study. J. Cardiothorac. Surg. 2019, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, J.; Oda, T.; Inoue, M.; Uekita, T.; Sakai, R.; Okumura, M.; Azasa, K.; Mori, E. Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung. Cancer Sci. 2009, 100, 429–433. [Google Scholar] [CrossRef]
- Shersher, D.D.; Vercillo, M.S.; Fhied, C.; Basu, S.; Rouhi, O.; Mahon, B.; Coon, J.S.; Warren, W.H.; Faber, L.P.; Hong, E.; et al. Biomarkers of the insulin-like growth factor pathway predict progression and outcome in lung cancer. Ann. Thorac. Surg. 2011, 92, 1805–1811. [Google Scholar] [CrossRef]
Characteristic | Patients (n = 88) |
---|---|
Age, y | 70 (39–86) |
Gender | |
Male | 45 (51.1) |
Female | 43 (48.9) |
Smoking status (BI ≥ 200) | |
Negative | 39 (44.3) |
Positive | 49 (55.7) |
Histology | |
Adenocarcinoma | 65 (73.9) |
Squamous cell carcinoma | 17 (19.3) |
Adenosquamous carcinoma | 4 (4.5) |
Mucoepidermoid carcinoma | 2 (2.3) |
Lymph node metastasis | |
pN0 | 71 (80.7) |
pN1 | 7 (8.0) |
pN2 | 10 (11.4) |
Solid size | |
≤3 cm | 58 (65.9) |
>3 cm | 30 (34.1) |
Pleural invasion | |
Negative | 67 (76.1) |
Positive | 21 (23.9) |
pStage (8) | |
IA1, 1A2 | 44 (50.0) |
IA3, IB | 20 (22.7) |
IIA, IIB | 11 (12.5) |
IIIA, IIIB | 13 (14.8) |
Vascular invasion (ly or v) | |
Negative | 68 (77.3) |
Positive | 20 (22.7) |
Pathological grade | |
G1 | 20 (22.7) |
G2 | 48 (54.5) |
G3 | 20 (22.7) |
Surgical procedure | |
Pneumonectomy | 3 (3.4) |
Lobectomy | 76 (86.4) |
Bilobectomy | 1 (1.1) |
Segmentectomy | 6 (6.8) |
Wedge resection | 2 (2.2) |
Characteristic | Patients (n = 255) |
---|---|
Age, y | 71 (42–90) |
Gender | |
Male | 139 (54.5) |
Female | 116 (45.5) |
Smoking status (BI ≥ 200) | |
Negative | 108 (42.4) |
Positive | 147 (57.6) |
Histology | |
Adenocarcinoma | 201 (78.8) |
Squamous cell carcinoma | 48 (18.8) |
Adenosquamous carcinoma | 5 (2.0) |
Large cell carcinoma | 1 (0.4) |
Solid size | |
≤3 cm | 220 (86.3) |
>3 cm | 35 (13.7) |
Pleural invasion | |
Negative | 221 (86.7) |
Positive | 34(13.3) |
pStage (8) | |
IA1 | 47 (18.4) |
IA2 | 108 (42.4) |
IA3 | 32 (12.5) |
IB | 56 (22.0) |
IIA | 4 (1.6) |
IIB | 8 (3.1) |
Vascular invasion (ly or v) | |
Negative | 214 (83.9) |
Positive | 41 (16.1) |
Pathological grade | |
G1 | 37 (14.5) |
G2 | 193 (75.7) |
G3 | 24 (9.4) |
G4 | 1 (0.4) |
Surgical procedure | |
Lobectomy | 235 (92.2) |
Bilobectomy | 2 (0.8) |
Segmentectomy | 18 (7.1) |
Characteristic | Number | NUF2 RE | p-Value | |
---|---|---|---|---|
Age | ≤75 | 64 | 0.20 ± 0.21 | |
>75 | 24 | 0.23 ± 0.29 | 0.534 | |
Gender | Male | 45 | 0.24 ± 0.24 | |
Female | 43 | 0.18 ± 0.22 | 0.215 | |
Smoke | Positive | 49 | 0.24 ± 0.23 | |
Negative | 39 | 0.17 ± 0.23 | 0.132 | |
Histology | Adenocarcinoma | 65 | 0.20 ± 0.26 | |
Non-Adenocarcinoma | 23 | 0.25 ± 0.14 | 0.314 | |
Lymph node metastasis | Metastasis (−) | 71 | 0.19 ± 0.20 | |
Metastasis (+) | 17 | 0.32 ± 0.32 | 0.034 | |
Tumor size (solid) | ≤3 cm | 58 | 0.22 ± 0.27 | |
>3 cm | 30 | 0.20 ± 0.13 | 0.677 | |
Pleural invasion | Negative | 67 | 0.20 ± 0.20 | |
Positive | 21 | 0.26 ± 0.32 | 0.276 | |
Vascular invasion | Negative | 68 | 0.21 ± 0.26 | |
Positive | 20 | 0.23 ± 0.11 | 0.624 | |
Grade | ≤2 | 68 | 0.20 ± 0.25 | |
3 | 20 | 0.27 ± 0.13 | 0.241 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Age (≥75) | 1.05 | 0.42–2.65 | 0.92 | |||
Sex (male) | 4.65 | 1.73–12.48 | 0.003 | 3.71 | 1.20–11.46 | 0.02 |
Smoking (positive) | 2.17 | 0.90–5.24 | 0.08 | |||
Histology (non-AD) | 2.65 | 1.17–5.98 | 0.02 | 0.16 | 0.42–0.65 | 0.01 |
Lymph node metastasis | 7.17 | 3.18–16.15 | <0.001 | 13.12 | 3.43–50.16 | <0.001 |
Solid size (>3 cm) | 1.69 | 0.75–3.81 | 0.21 | |||
Pathological grade (≥2) | 3.34 | 1.50–7.48 | 0.03 | 1.99 | 0.64–6.18 | 0.23 |
Pl (+) | 5.30 | 2.36–11.90 | <0.001 | 6.84 | 2.31–20.29 | 0.001 |
Vascular invasion (+) | 3.28 | 1.45–7.40 | 0.04 | 0.33 | 0.81–1.36 | 0.12 |
NUF2 (high) | 3.65 | 1.51–8.84 | 0.004 | 3.80 | 1.46–9.90 | 0.006 |
Characteristic | Number | NUF2 RE | p-Value | |
---|---|---|---|---|
Age | ≤75 | 172 | 0.10 ± 0.11 | |
>75 | 83 | 0.08 ± 0.08 | 0.03 | |
Gender | Male | 139 | 0.89 ± 0.10 | |
Female | 116 | 0.10 ± 0.09 | 0.38 | |
Smoke | Positive | 147 | 0.09 ± 0.10 | |
Negative | 108 | 0.09 ± 0.09 | 0.90 | |
Histology | Adenocarcinoma | 201 | 0.09 ± 0.09 | |
Non-Adenocarcinoma | 54 | 0.11 ± 0.12 | 0.22 | |
Tumor size (solid) | ≤3 cm | 220 | 0.09 ± 0.10 | |
>3 cm | 36 | 0.11 ± 0.09 | 0.28 | |
Pleural invasion | Negative | 221 | 0.09 ± 0.10 | |
Positive | 34 | 0.09 ± 0.09 | 0.77 | |
Vascular invasion | Negative | 214 | 0.09 ± 0.10 | |
Positive | 41 | 0.09 ± 0.09 | 0.83 | |
Grade | ≤2 | 230 | 0.09 ± 0.09 | |
>2 | 25 | 0.10 ± 0.12 | 0.83 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Age (≥75) | 1.35 | 0.64–2.83 | 0.43 | |||
Sex (male) | 3.86 | 1.57–9.45 | 0.003 | 3.21 | 1.04–9.90 | 0.04 |
Smoking (positive) | 3.25 | 1.33–7.96 | 0.01 | 0.93 | 0.29–2.94 | 0.90 |
Histology (non-AD) | 3.84 | 1.87–7.87 | <0.001 | 2.36 | 1.06–5.24 | 0.04 |
Solid size (>3 cm) | 2.58 | 1.15–5.79 | 0.02 | 1.50 | 0.63–3.53 | 0.36 |
Pathological grade (≥2) | 0.65 | 0.16–2.73 | 0.56 | |||
Pl (+) | 4.47 | 2.09–9.58 | <0.001 | 3.19 | 1.42–7.18 | 0.005 |
Vascular invasion (+) | 4.46 | 2.11–9.42 | <0.001 | 2.77 | 1.23–6.23 | 0.01 |
NUF2 (high) | 2.17 | 1.06–4.47 | 0.03 | 2.30 | 1.06–4.97 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirakami, C.; Ikeda, K.; Hinokuma, H.; Nishi, W.; Shinchi, Y.; Matsubara, E.; Osumi, H.; Fujino, K.; Suzuki, M. NUF2 Expression in Cancer Tissues and Lymph Nodes Suggests Post-Surgery Recurrence of Non-Small Cell Lung Cancer. Diagnostics 2024, 14, 471. https://doi.org/10.3390/diagnostics14050471
Shirakami C, Ikeda K, Hinokuma H, Nishi W, Shinchi Y, Matsubara E, Osumi H, Fujino K, Suzuki M. NUF2 Expression in Cancer Tissues and Lymph Nodes Suggests Post-Surgery Recurrence of Non-Small Cell Lung Cancer. Diagnostics. 2024; 14(5):471. https://doi.org/10.3390/diagnostics14050471
Chicago/Turabian StyleShirakami, Chika, Koei Ikeda, Hironori Hinokuma, Wataru Nishi, Yusuke Shinchi, Eri Matsubara, Hironobu Osumi, Kosuke Fujino, and Makoto Suzuki. 2024. "NUF2 Expression in Cancer Tissues and Lymph Nodes Suggests Post-Surgery Recurrence of Non-Small Cell Lung Cancer" Diagnostics 14, no. 5: 471. https://doi.org/10.3390/diagnostics14050471
APA StyleShirakami, C., Ikeda, K., Hinokuma, H., Nishi, W., Shinchi, Y., Matsubara, E., Osumi, H., Fujino, K., & Suzuki, M. (2024). NUF2 Expression in Cancer Tissues and Lymph Nodes Suggests Post-Surgery Recurrence of Non-Small Cell Lung Cancer. Diagnostics, 14(5), 471. https://doi.org/10.3390/diagnostics14050471