A Systematic Review of the Use of Intraoral Scanning for Human Identification Based on Palatal Morphology
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
2. Methods
2.1. Protocol and Registration
2.2. Search Process
2.3. Eligibility Criteria
2.4. Study Selection
2.5. Data Extraction
2.6. Quality Assessment
3. Results
3.1. Literature Search
3.2. Quality Assessment
3.3. Study Characteristics
3.4. Synthesis of the Results
3.4.1. Outcome of Comparison Groups in the Included Articles
3.4.2. Main Study Outcomes of the Included Articles
4. Discussion
4.1. Palatal Scans Using Different IOSs
4.2. Influence of Scanning Technique
4.3. Stability of the Palatal Area in Forensics
4.4. Reliability of IOSs Compared to Dental Cast Models
4.5. The Influence of Dental Treatments on the Morphology of the Palate
4.5.1. Orthodontics
4.5.2. Surgery
4.5.3. Prosthetics
4.6. Limitations of the Available Literature
4.7. Future Research Direction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hall, M.A.; Karawia, I.; Mahmoud, A.Z.; Mohamed, O.S. Knowledge, awareness, and perception of digital dentistry among Egyptian dentists: A cross-sectional study. BMC Oral Health 2023, 23, 963. [Google Scholar] [CrossRef]
- Ali, B.; Shaikh, A.; Fida, M. Stability of Palatal Rugae as a Forensic Marker in Orthodontically Treated Cases. J. Forensic Sci. 2016, 61, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Sloan, A.J. Development of the dentition. In Forensic Odontology: An Essential Guide; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 9–21. [Google Scholar]
- Adams, C.; Carabott, R.; Evans, S. Forensic Odontology: An Essential Guide; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Krishan, K.; Kanchan, T.; Garg, A.K. Dental evidence in forensic identification–An overview, methodology and present status. Open Dent. J. 2015, 9, 250. [Google Scholar] [CrossRef]
- Jayakrishnan, J.M.; Reddy, J.; Vinod Kumar, R.B. Role of forensic odontology and anthropology in the identification of human remains. J. Oral Maxillofac. Pathol. 2021, 25, 543–547. [Google Scholar] [CrossRef]
- Hauser, G.; Daponte, A.; Roberts, M.J. Palatal rugae. J Anat. 1989, 165, 237–249. [Google Scholar]
- Harchandani, N.; Marathe, S.; Rochani, R.; Nisa, S.U. Palatal Rugoscopy: A new era for forensic identification. J. Indian Acad. Oral Med. Radiol. 2015, 27, 393–398. [Google Scholar] [CrossRef]
- Hemanth, M.; Vidya, M.; Shetty, N.; Karkera, B.V. Identification of individuals using palatal rugae: Computerized method. J. Forensic Dent. Sci. 2010, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Lima de Castro-Espicalsky, T.; Freitas, P.; Ribeiro Tinoco, R.L.; Calmon, M.; Daruge Júnior, E.; Rossi, A.C. Human identification by the analysis of palatal rugae printed in complete dentures. J. Forensic Odontostomatol. 2020, 38, 57–62. [Google Scholar] [PubMed]
- Lanteri, V.; Cossellu, G.; Farronato, M.; Ugolini, A.; Leonardi, R.; Rusconi, F.; De Luca, S.; Biagi, R. Assessment of the Stability of the Palatal Rugae in a 3D-3D Superimposition Technique Following Slow Maxillary Expansion (SME). Sci. Rep. 2020, 10, 2676. [Google Scholar] [CrossRef]
- Pakshir, F.; Ajami, S.; Pakshir, H.R.; Malekzadeh, A.R. Characteristics of palatal rugae patterns as a potential tool for sex discrimination in a sample of Iranian children. J. Dent. 2019, 20, 1. [Google Scholar]
- Olszewska, E.; Woodson, B.T. Palatal anatomy for sleep apnea surgery. Laryngoscope Investig. Otolaryngol. 2019, 4, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Hourfar, J.; Kanavakis, G.; Bister, D.; Schätzle, M.; Awad, L.; Nienkemper, M.; Goldbecher, C.; Ludwig, B. Three dimensional anatomical exploration of the anterior hard palate at the level of the third ruga for the placement of mini-implants–a cone-beam CT study. Eur. J. Orthod. 2015, 37, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Flint, D.J.; Brent Dove, S.; Brumit, P.C.; White, M.; Senn, D.R. Computer-aided dental identification: An objective method for assessment of radiographic image similarity. J. Forensic Sci. 2009, 54, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, N.D.; Groth, C.; Jones, P.E.; Graham, J.W.; Redmond, W.R. Intraoral digital scanners. J. Clin. Orthod. 2014, 48, 337–347. [Google Scholar] [PubMed]
- Simon, B.; Aschheim, K.; Vág, J. The discriminative potential of palatal geometric analysis for sex discrimination and human identification. J. Forensic Sci. 2022, 67, 2334–2342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Suh, K.J.; Lee, K.M. Validity of Intraoral Scans Compared with Plaster Models: An In-Vivo Comparison of Dental Measurements and 3D Surface Analysis. PLoS ONE 2016, 11, e0157713. [Google Scholar] [CrossRef] [PubMed]
- Iturrate, M.; Lizundia, E.; Amezua, X.; Solaberrieta, E. A new method to measure the accuracy of intraoral scanners along the complete dental arch: A pilot study. J. Adv. Prosthodont. 2019, 11, 331–340. [Google Scholar] [CrossRef]
- Salameh, J.P.; Bossuyt, P.M.; McGrath, T.A.; Thombs, B.D.; Hyde, C.J.; Macaskill, P.; Deeks, J.J.; Leeflang, M.; Korevaar, D.A.; Whiting, P.; et al. Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): Explanation, elaboration, and checklist. BMJ 2020, 370, m2632. [Google Scholar] [CrossRef]
- Taneva, E.D.; Johnson, A.; Viana, G.; Evans, C.A. 3D evaluation of palatal rugae for human identification using digital study models. J. Forensic Dent. Sci. 2015, 7, 244–252. [Google Scholar] [CrossRef]
- Simon, B.; Farid, A.A.; Freedman, G.; Vag, J. Digital scans and human identification. Oral Health Group 2021. [Google Scholar]
- Simon, B.; Lipták, L.; Lipták, K.; Tárnoki, Á.D.; Tárnoki, D.L.; Melicher, D.; Vág, J. Application of intraoral scanner to identify monozygotic twins. BMC Oral Health 2020, 20, 268. [Google Scholar] [CrossRef]
- Bjelopavlovic, M.; Degering, D.; Lehmann, K.M.; Thiem, D.G.E.; Hardt, J.; Petrowski, K. Forensic Identification: Dental Scan Data Sets of the Palatal Fold Pairs as an Individual Feature in a Longitudinal Cohort Study. Int. J. Environ. Res. Public Health 2023, 20, 2691. [Google Scholar] [CrossRef]
- Mikolicz, A.; Simon, B.; Gáspár, O.; Shahbazi, A.; Vag, J. Reproducibility of the digital palate in forensic investigations: A two-year retrospective cohort study on twins. J. Dent. 2023, 135, 104562. [Google Scholar] [CrossRef] [PubMed]
- Botond Simon, D. Digital Palate Analysis to Verify the Mirror Twin Phenomenon. Oral Health Group 2023. [Google Scholar]
- Kihara, H.; Hatakeyama, W.; Komine, F.; Takafuji, K.; Takahashi, T.; Yokota, J.; Oriso, K.; Kondo, H. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J. Prosthodont. Res. 2020, 64, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Zhongpeng, Y.; Tianmin, X.; Ruoping, J. Deviations in palatal region between indirect and direct digital models: An in vivo study. BMC Oral Health 2019, 19, 66. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.J.; Woo, E.J. Quantitative and qualitative evaluation on the accuracy of three intraoral scanners for human identification in forensic odontology. Anat. Cell Biol. 2022, 55, 72–78. [Google Scholar] [CrossRef]
- Simon, B.; Mangano, F.G.; Pál, A.; Simon, I.; Pellei, D.; Shahbazi, A.; Vág, J. Palatal asymmetry assessed by intraoral scans: Effects of sex, orthodontic treatment, and twinning. A retrospective cohort study. BMC Oral Health 2023, 23, 305. [Google Scholar] [CrossRef]
- Pazera, C.; Gkantidis, N. Palatal rugae positional changes during orthodontic treatment of growing patients. Orthod. Craniofacial Res. 2021, 24, 351–359. [Google Scholar] [CrossRef]
- Shailaja, A.M.; Romana, I.R.U.; Narayanappa, G.; Smitha, T.; Gowda, N.C.; Vedavathi, H.K. Assessment of palatal rugae pattern and its significance in orthodontics and forensic odontology. J. Oral Maxillofac. Pathol. 2018, 22, 430–435. [Google Scholar] [CrossRef]
- Castro, L.O.; Borges, G.J.; Castro, I.O.; Porto, O.C.L.; Estrela, C. Change of incisive papilla height due to orthodontic movement: An evaluation in study models and three-dimensional images. Stomatos 2012, 18, 34. [Google Scholar]
- Solomon, E.; Arunachalam, K. The incisive papilla: A significant landmark in prosthodontics. J. Indian Prosthodont. Soc. 2012, 12, 236–247. [Google Scholar] [CrossRef]
- Ziar, N.; Pakshir, H.R.; Alamdarloo, Y.; Ajami, S. Characteristic changes of the palatal rugae following orthodontic treatment. Egypt. J. Forensic Sci. 2023, 13, 14. [Google Scholar] [CrossRef]
- Akula, R.; Srinath, H.; Maroli, S.; Yarlagadda, S.K.B.; Tej, D.U.K.; Srinath, T. Effect of Dentures on Palatal Rugae: An Investigation. J. Forensic Dent. Sci. 2020, 12, 35–49. [Google Scholar] [CrossRef]
- Mankapure, P.K.; Barpande, S.R.; Bhavthankar, J.D. Evaluation of sexual dimorphism in arch depth and palatal depth in 500 young adults of Marathwada region, India. J. Forensic Dent. Sci. 2017, 9, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Saraf, A.; Bedia, S.; Indurkar, A.; Degwekar, S.; Bhowate, R. Rugae patterns as an adjunct to sex differentiation in forensic identification. J. Forensic Odontostomatol. 2011, 29, 14–19. [Google Scholar]
- Negishi, S.; Richards, L.C.; Hughes, T.; Kondo, S.; Kasai, K. Genetic contribution to palatal morphology variation using three-dimensional analysis in Australian twins. Arch. Oral Biol. 2020, 115, 104740. [Google Scholar] [CrossRef] [PubMed]
- Giuliodori, G.; Rappelli, G.; Aquilanti, L. Intraoral Scans of Full Dental Arches: An In Vitro Measurement Study of the Accuracy of Different Intraoral Scanners. Int. J. Environ. Res. Public Health 2023, 20, 4776. [Google Scholar] [CrossRef]
- Aswani, K.; Wankhade, S.; Khalikar, A.; Deogade, S. Accuracy of an intraoral digital impression: A review. J. Indian. Prosthodont. Soc. 2020, 20, 27–37. [Google Scholar] [CrossRef]
- Patzelt, S.B.; Emmanouilidi, A.; Stampf, S.; Strub, J.R.; Att, W. Accuracy of full-arch scans using intraoral scanners. Clin. Oral Investig. 2014, 18, 1687–1694. [Google Scholar] [CrossRef]
- Winkler, J.; Gkantidis, N. Intraoral scanners for capturing the palate and its relation to the dentition. Sci. Rep. 2021, 11, 15489. [Google Scholar] [CrossRef]
- Keul, C.; Güth, J.F. Influence of intraoral conditions on the accuracy of full-arch scans by Cerec Primescan AC: An in vitro and in vivo comparison. Int. J. Comput. Dent. 2022, 25, 17–25. [Google Scholar]
- Osman, R.B.; Alharbi, N.M. Influence of scan technology on the accuracy and speed of intraoral scanning systems for the edentulous maxilla: An in vitro study. J. Prosthodont. 2023, 32, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Gutmacher, Z.; Kelly, A.; Renne, W.; Hoover, M.; Mennito, A.; Teich, S.; Cayouette, M.; Ludlow, M. Evaluation of the accuracy of multiple digital impression systems on a fully edentulous maxilla. Quintessence Int. 2021, 52, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Revell, G.; Simon, B.; Mennito, A.; Evans, Z.P.; Renne, W.; Ludlow, M.; Vág, J. Evaluation of complete-arch implant scanning with 5 different intraoral scanners in terms of trueness and operator experience. J. Prosthet. Dent. 2022, 128, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, M.; Akino, N.; Srinivasan, M.; Wittneben, J.G.; Yilmaz, B.; Abou-Ayash, S. Accuracy of intraoral scanning in completely and partially edentulous maxillary and mandibular jaws: An in vitro analysis. Clin. Oral Investig. 2021, 25, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Deferm, J.T.; Schreurs, R.; Baan, F.; Bruggink, R.; Merkx, M.A.W.; Xi, T.; Bergé, S.J.; Maal, T.J.J. Validation of 3D documentation of palatal soft tissue shape, color, and irregularity with intraoral scanning. Clin. Oral Investig. 2018, 22, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, G.; Padhiary, S.K.; Mohanty, N.; Molinero-Mourelle, P.; Chebib, N. Accuracy of Intraoral Scanner for Recording Completely Edentulous Arches-A Systematic Review. Dent. J. 2023, 11, 241. [Google Scholar] [CrossRef] [PubMed]
- Paratelli, A.; Vania, S.; Gómez-Polo, C.; Ortega, R.; Revilla-León, M.; Gómez-Polo, M. Techniques to improve the accuracy of complete arch implant intraoral digital scans: A systematic review. J. Prosthet. Dent. 2023, 129, 844–854. [Google Scholar] [CrossRef]
- Zarone, F.; Ruggiero, G.; Ferrari, M.; Mangano, F.; Joda, T.; Sorrentino, R. Comparison of different intraoral scanning techniques on the completely edentulous maxilla: An in vitro 3-dimensional comparative analysis. J. Prosthet. Dent. 2020, 124, e1–e762. [Google Scholar] [CrossRef]
- Fang, J.H.; An, X.; Jeong, S.M.; Choi, B.H. Digital intraoral scanning technique for edentulous jaws. J Prosthet Dent. 2018, 119, 733–735. [Google Scholar] [CrossRef]
- Jung, S.; Park, C.; Yang, H.S.; Lim, H.P.; Yun, K.D.; Ying, Z.; Park, S.W. Comparison of different impression techniques for edentulous jaws using three-dimensional analysis. J. Adv. Prosthodont. 2019, 11, 179–186. [Google Scholar] [CrossRef]
- Elrewieny, N.M.; Ismail, M.M.E.; Zaghloul, H.S.; Abielhassan, M.H.; Ali, M.M. Palatoscopy and odontometrics’ potential role in sex determination among an adult Egyptian population sample: A pilot study. Homo 2020, 71, 19–28. [Google Scholar] [CrossRef]
- Caldas, I.M.; Magalhães, T.; Afonso, A. Establishing identity using cheiloscopy and palatoscopy. Forensic Sci. Int. 2007, 165, 1–9. [Google Scholar] [CrossRef]
- Jain, A.; Chowdhary, R. Palatal rugae and their role in forensic odontology. J. Investig. Clin. Dent. 2014, 5, 171–178. [Google Scholar] [CrossRef]
- Almeida, M.A.; Phillips, C.; Kula, K.; Tulloch, C. Stability of the palatal rugae as landmarks for analysis of dental casts. Angle Orthod. 1995, 65, 43–48. [Google Scholar] [CrossRef]
- Ohtani, M.; Nishida, N.; Chiba, T.; Fukuda, M.; Miyamoto, Y.; Yoshioka, N. Indication and limitations of using palatal rugae for personal identification in edentulous cases. Forensic Sci. Int. 2008, 176, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Deepak, V.; Malgaonkar, N.I.; Shah, N.K.; Nasser, A.S.; Dagrus, K.; Bassle, T. Palatal rugae patterns in orthodontically treated cases, are they a reliable forensic marker? J. Int. Oral Health 2014, 6, 89–95. [Google Scholar] [PubMed]
- Rezende Pucciarelli, M.G.; de Lima Toyoshima, G.H.; Marchini Oliveira, T.; Marques Honório, H.; Sforza, C.; Soares, S. Assessment of dental arch stability after orthodontic treatment and oral rehabilitation in complete unilateral cleft lip and palate and non-clefts patients using 3D stereophotogrammetry. BMC Oral Health 2020, 20, 154. [Google Scholar] [CrossRef] [PubMed]
- Treesh, J.C.; Liacouras, P.C.; Taft, R.M.; Brooks, D.I.; Raiciulescu, S.; Ellert, D.O.; Grant, G.T.; Ye, L. Complete-arch accuracy of intraoral scanners. J. Prosthet. Dent. 2018, 120, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Ender, A.; Mehl, A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef]
- Ender, A.; Attin, T.; Mehl, A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J. Prosthet. Dent. 2016, 115, 313–320. [Google Scholar] [CrossRef]
- Gan, N.; Xiong, Y.; Jiao, T. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues. PLoS ONE 2016, 11, e0158800. [Google Scholar] [CrossRef]
- Chochlidakis, K.M.; Papaspyridakos, P.; Geminiani, A.; Chen, C.J.; Feng, I.J.; Ercoli, C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 116, 184–190.e12. [Google Scholar] [CrossRef]
- Okazaki, T.; Kawanabe, H.; Fukui, K. Comparison of conventional impression making and intraoral scanning for the study of unilateral cleft lip and palate. Congenit. Anom. 2023, 63, 16–22. [Google Scholar] [CrossRef]
- Vag, J.; Stevens, C.D.; Badahman, M.H.; Ludlow, M.; Sharp, M.; Brenes, C.; Mennito, A.; Renne, W. Trueness and precision of complete arch dentate digital models produced by intraoral and desktop scanners: An ex-vivo study. J. Dent. 2023, 139, 104764. [Google Scholar] [CrossRef]
- Aragón, M.L.; Pontes, L.F.; Bichara, L.M.; Flores-Mir, C.; Normando, D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: A systematic review. Eur. J. Orthod. 2016, 38, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Mou, Q.N.; Ji, L.L.; Liu, Y.; Zhou, P.R.; Han, M.Q.; Zhao, J.M.; Cui, W.T.; Chen, T.; Du, S.Y.; Hou, Y.X.; et al. Three-dimensional superimposition of digital models for individual identification. Forensic Sci. Int. 2021, 318, 110597. [Google Scholar] [CrossRef] [PubMed]
- Jánosi, K.M.; Cerghizan, D.; Mártha, K.I.; Elekes, É.; Szakács, B.; Elekes, Z.; Kovács, A.; Szász, A.; Mureșan, I.; Hănțoiu, L.G. Evaluation of Intraoral Full-Arch Scan versus Conventional Preliminary Impression. J. Clin. Med. 2023, 12, 5508. [Google Scholar] [CrossRef] [PubMed]
- Sason, G.K.; Mistry, G.; Tabassum, R.; Shetty, O. A comparative evaluation of intraoral and extraoral digital impressions: An in vivo study. J. Indian Prosthodont. Soc. 2018, 18, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.J.M.; Narayan, D.K.M.V.; Kaliyan, D.V. Impact of Extraction in Preservation of Palatal Rugae Pattern as a Personal Identification Marker- A Prospective Study. Saudi J. Oral Dent. Res. 2021, 6, 216–220. [Google Scholar]
- Jindal, V.; Mahajan, A.; Mahajan, N.; Goel, A.; Kaur, R.; Puri, C. Rugae pattern determination in periodontitis patients: A descriptive study. J. Int. Clin. Dent. Res. Organ. 2016, 8. [Google Scholar] [CrossRef]
- Nagy, Z.; Simon, B.; Mennito, A.; Evans, Z.; Renne, W.; Vág, J. Comparing the trueness of seven intraoral scanners and a physical impression on dentate human maxilla by a novel method. BMC Oral Health 2020, 20, 97. [Google Scholar] [CrossRef] [PubMed]
- Hourfar, J.; Ludwig, B.; Bister, D.; Braun, A.; Kanavakis, G. The most distal palatal ruga for placement of orthodontic mini-implants. Eur. J. Orthod. 2015, 37, 373–378. [Google Scholar] [CrossRef]
- Yang, S.T.; Kim, H.K.; Lim, Y.S.; Chang, M.S.; Lee, S.P.; Park, Y.S. A three dimensional observation of palatal vault growth in children using mixed effect analysis: A 9 year longitudinal study. Eur. J. Orthod. 2013, 35, 832–840. [Google Scholar] [CrossRef]
- Herrera, L.M.; Strapasson, R.A.; Mazzilli, L.E.; Melani, R.F. Differentiation between palatal rugae patterns of twins by means of the Briñón method and an improved technique. Braz. Oral Res. 2017, 31, e9. [Google Scholar] [CrossRef]
- Farronato, M.; Begnoni, G.; Boodt, L.; Thevissen, P.; Willems, G.; Cadenas de Llano-Pérula, M. Are palatal rugae reliable markers for 3D superimposition and forensic human identification after palatal expansion? A systematic review. Forensic Sci. Int. 2023, 351, 111814. [Google Scholar] [CrossRef]
- Bavaresco, D.; Von Meusel, L.D.Z.; Franco, A.; Makeeva, I.; Paranhos, L.R.; Cericato, G.O. Morphology of the palatal rugae before and after orthodontic treatment with and without rapid maxillary expansion and dental extractions. Indian J. Dent. Res. 2020, 31, 241–246. [Google Scholar] [CrossRef]
- Saadeh, M.; Macari, A.; Haddad, R.; Ghafari, J. Instability of palatal rugae following rapid maxillary expansion. Eur. J. Orthod. 2017, 39, 474–481. [Google Scholar] [CrossRef]
- Bailey, L.T.; Esmailnejad, A.; Almeida, M.A. Stability of the palatal rugae as landmarks for analysis of dental casts in extraction and nonextraction cases. Angle Orthod. 1996, 66, 73–78. [Google Scholar] [CrossRef]
- Kinzinger, G.S.M.; Lisson, J.A.; Buschhoff, C.; Hourfar, J. Age-dependent effects on palate volume and morphology during orthodontic RME treatment. Clin. Oral Investig. 2023, 27, 2641–2652. [Google Scholar] [CrossRef]
- Kinzinger, G.S.M.; Lisson, J.A.; Buschhoff, C.; Hourfar, J.; Korbmacher-Steiner, H. Impact of rapid maxillary expansion on palatal morphology at different dentition stages. Clin. Oral Investig. 2022, 26, 4715–4725. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Conforte, C.; Marzo, G.; Lucchese, A.; Leonardi, R.; Isola, G. Palatal changes after treatment of functional posterior cross-bite using elastodontic appliances: A 3D imaging study using deviation analysis and surface-to-surface matching technique. BMC Oral Health 2023, 23, 68. [Google Scholar] [CrossRef]
- Papagiannis, A.; Sallmann, R.; Papageorgiou, S.N.; Eliades, T.; Konstantonis, D. Palatal shape covariation in extraction versus nonextraction borderline patients: A geometric morphometric study. Am. J. Orthod. Dentofacial Orthop. 2023, 163, e127–e136. [Google Scholar] [CrossRef] [PubMed]
- Heiser, W.; Niederwanger, A.; Bancher, B.; Bittermann, G.; Neunteufel, N.; Kulmer, S. Three-dimensional dental arch and palatal form changes after extraction and nonextraction treatment. Part 1. Arch length and area. Am. J. Orthod. Dentofacial Orthop. 2004, 126, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Du, S.; Liu, Y.; Saif, B.S.; Hou, Y.; Guo, Y.C. Evaluation of the stability of the palatal rugae using the three-dimensional superimposition technique following orthodontic treatment. J. Dent. 2022, 119, 104055. [Google Scholar] [CrossRef] [PubMed]
- Gujar, A.; Rani, M. Three-dimensional assessment of the palatal contour changes in orthodontically treated cases: A scanned maxillary cast analysis. J. Indian Orthod. Soc. 2016, 50, 145–149. [Google Scholar] [CrossRef]
- Kratzsch, H.; Opitz, C. Investigations on the palatal rugae pattern in cleft patients. Part I: A morphological analysis. J. Orofac. Orthop. 2000, 61, 305–317. [Google Scholar] [CrossRef]
- Kramer, G.J.; Hoeksma, J.B.; Prahl-Andersen, B. Palatal changes after lip surgery in different types of cleft lip and palate. Cleft Palate Craniofacial J. 1994, 31, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Kratzsch, H.; Opitz, C. Investigations on the palatal rugae pattern in cleft patients. Part II: Changes in the distances from the palatal rugae to maxillary points. J. Orofac. Orthop. 2000, 61, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Camargo, P.M.; Melnick, P.R.; Kenney, E.B. The use of free gingival grafts for aesthetic purposes. Periodontol. 2000 2001, 27, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Nuzzolese, E. Partial and full dentures in the human identification process. Minerva Forensic Med. 2023, 143, 44–49. [Google Scholar] [CrossRef]
- Ahn, K.; Sato, H.; Kurihara, Y.; Ogura, H.; Shirota, T. Changes in maxillary dental arch morphology after implant treatment in the alveolar cleft region. Clin. Exp. Dent. Res. 2021, 7, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, K.; Sakurai, K.; Tazaki, M.; Inoue, T. Response of Merkel cells in the palatal rugae to the continuous mechanical stimulation by palatal plate. Somatosens. Mot. Res. 2006, 23, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Mirza, F.D. Palatal mucosa under dentures: A qualitative histologic and histochemical analysis. J. Prosthet. Dent. 1986, 56, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Hardiya, S.; Kumar, G.J.; Vimala Sai, M.; Rana, K.; Desai, D.; Kaur, G. Evaluation of the Denture Impact on the Palatal Rugae: An Original Research. J. Pharm. Bioallied Sci. 2023, 15 (Suppl S1), S224–S229. [Google Scholar] [CrossRef]
- Byers, S.N.; Churchill, S.E.; Curran, B. Identification of Euro-Americans, Afro-Americans, and Amerindians from palatal dimensions. J. Forensic Sci. 1997, 42, 3–9. [Google Scholar] [CrossRef]
- Burris, B.G.; Harris, E.F. Identification of race and sex from palate dimensions. J. Forensic Sci. 1998, 43, 959–963. [Google Scholar] [CrossRef]
Literature | Type of Study | Sample Size | Age (Years)/Gender M:F | Sample Type | Type of IOS | Time Points of Scan | Scanning Technique | Type of File/Software Used to Export | Statistical Analysis |
---|---|---|---|---|---|---|---|---|---|
Taneva et al. (2015) [21] | Pilot study | 20 | 12–18 years/NA | Adolescents | OrthoCAD (Align Technology, Inc., San Jose, CA, USA), Ortho Insight 3D™ laser scanner (Motion View Software, LLC, Chattanooga, TN, USA), and iTero® Intra Oral Digital Scanner (Align Technology, Inc., San Jose, CA, USA) | Initial scan—before ortho treatment; second scan—during ortho treatment; roughly 20–24 months apart. | NR | Stereolithography binary file format (*.stl)/Geomagic® Software (Geomagic®, Research Triangle Park, NC, USA. | Descriptive and comparative statistics were performed using SPSS 20.0 (Chicago, IL, USA) |
Simon et al. (2021) [22] | Pilot study | 3 | 17, 22, 26 years/NA | Monozygotic twins | Emerald intraoral scanner (Planmeca, Helsinki, Finland, software version: Romexis 5.2.1) | NR | NR | NA/GOM Inspect software (GOM GmbH, Germany) | Generalized linear mixed method using SPSS (IBM SPSS Statistics for Windows, Version 27.0., USA) |
Simon et al. (2022) [17] | Cohort study | 176 | NA | 61 monozygotic twin pairs and 27 dizygotic twin pairs | Emerald® intraoral scanner with ROMEXIS® PlanCAD Easy software (version 5.2.1, Planmeca Oy, Helsinki, Finland). | NR | Standard scanning pattern | NA/GOM Inspect® 3D mesh processing software (Suite 2020, GOM GmbH, Braunschweig, Germany, Meshmixer—(version 3.5, Autodesk Inc., San Rafael, CA, U.S.A.) | Mean absolute deviation (MAD), linear discriminant analysis (LDA), and Bayesian theorem |
Simon et al. (2020) [23] | Cohort study | 201 | 17–74 years/54M:147F | 64 monozygotic twins, 33 same-sex dizygotic twins, and 7 opposite-sex dizygotic twins | Emerald® intraoral scanner (Planmeca Oy, Helsinki, Finland, software version Romexis 5.2.1 | Scanned thrice at the same time: R1, R2, and R3 | Zig-zag scanning pattern (starting from the incisive papilla and finishing at the border of the hard and soft palate) | Stereolithography binary file format (*.stl)/GOM Inspect® inspection software (GOM GmbH, Braunschweig, Germany | Generalized linear mixed model with gamma-distribution and log-link function |
Bjelopavlovic et al. (2023) [24] | Longitudinal cohort study | 105 | 19–38 years/37 M:68F | NR | Omnicam SIRONA ® | Initial scan; second scan: 3 months later | NR | Stereolithography binary file format (*.stl)/Cloud Compare (v. 2 12.0) | STATA 17 (STATACORP 2022, Revision 10)using a t-test |
Mikolicz et al. (2023) [25] | Retrospective cohort study | 40 | 18–32 years/NA | NR | Emerald intraoral scanner (software version 5.2.1, Planmeca, Helsinki, Finland) IOSs Emerald S (software version 5.1.3.7, Dentsply Sirona, Charlotte, North Carolina, USA) | Initial scan: 2019; second scan: 2021 | NR | NA/GOM Inspect® engineering analysis software (Suite 2020, GOM GmbH, Braunschweig, Germany | Mean absolute deviation (MAD) was evaluated using a generalized linear mixed model using gamma distribution with a log link function and the Kruskal–Wallis non-parametric test [SPSS version 28 (IBM)] |
Simon et al. (2023) [26] | Cohort study | 174 | NR | 61 monozygotic twin pairs and 26 dizygotic twin pairs | Planmeca Emerald (Planmeca Oy, Helsinki, Finland, version number Romexis 5.2.1 | NR | NR | GOM Inspect Suite software (GOM GmbH, Braunschweig, Germany | Wilcoxon test |
Literature | Area of the Palate Scanned | Covariate | Comparison Groups | Outcome of Comparison |
---|---|---|---|---|
Taneva et al. (2015) [21] | Posterior point of the IP, and the most medial and lateral endpoints (12 nos) of the palatal rugae | Orthodontic management (no significant difference) | Comparison between ortho insight 3D™ plaster model scans (Motion View Software, LLC, Chattanooga, TN, USA) and iTero® intraoral scans (Align Technology, Inc., San Jose, CA, USA) | All 2D variables had statistically significant differences, indicating that 2D images and linear measurements are not useful for human verification |
Simon et al. (2021) [22] | Palatal surface | Not present | Comparison of palatal deviation with teeth deviation between siblings | The palatal deviation between siblings was 3–4 times higher (0.393 ± 0.079 mm, p < 0.001) than the teeth deviation |
Simon et al. (2022) [17] | Palatal width, height, and depth (occlusal first and S-shaped) | Not present | Comparison between original and smoothened scans | The intra-twin original scans were not statistically significant from smoothened scans in both M.Z.T. and D.Z.T., p = 0.06, and p = 0.28 |
Simon et al. (2020) [23] | Palatal surface superimposition | Not present | Comparison of intra-twin deviation between M.Z.T and D.Z.T. | Intra-twin deviation of monozygotic twins (406 ± 15 μm) was significantly lower than that of dizygotic twins (594 μm ± 53 μm) p < 0.01 |
Bjelopavlovic et al. (2023) [24] | Palatal rugae pairs | Not present | Comparison between inter- and intraindividual differences of palatal rugae pairs | The intraindividual differences were highly significantly lower than the interindividual differences (p < 0.0001) |
Mikolicz et al. (2023) [25] | Anterior part of the palate | Orthodontic management (no significant difference) | Comparison between (a) different IOSs and (b) IOSs with physical impressions and stone casts | (a) The higher deviation of forensic reproducibility compared with technical reproducibility and repeatability was caused by differences in the scanners; (b) the forensic and technical reproducibility of IOSs was 38–40 µm and 3–4 times higher than the physical impression |
Simon et al. (2023) [26] | Palatal surface mirroring | Orthodontic management (recorded but not measured) | Comparison between monozygotic and dizygotic original and mirrored scans | Significant difference between palatal surfaces of monozygotic and dizygotic original and mirrored scans, p < 0.001 |
Literature | Interscan Changes | Intrascan Changes | Overall Outcome |
---|---|---|---|
Taneva et al. (2015) [21] | No significant mean difference between 13 3D landmarks; p > 0.05 | No significant mean difference between 12 3D landmarks; p > 0.05, except for the posterior point of the IP p < 0.05 | Three-dimensional landmarks help with the matching process; hence, 3D digital models are a highly effective tool in evaluating different palatal rugae patterns with accurate landmark identification |
Simon et al. (2021) [22] | The mean absolute deviation of the palates of non-relatives was significantly higher (1.061 ± 0.314 mm, p < 0.001) | Palatal deviation was significantly lower than non-relatives (p < 0.001) | Palatal uniqueness in 3D digital palatal model could serve as a highly reliable tool for human identification |
Simon et al. (2022) [17] | NR | Geometrical comparison of intrascans resulted in 91.2% sensitivity and 97.8% specificity | Three-dimensional data containing only palatal height, width, and depth without surface morphology could assist with human identification |
Simon et al. (2020) [23] | Superimposition of scans of two siblings had a higher deviation value | Superimposition of two scans of the same subject had smaller deviation values | Monozygotic twin siblings are highly distinguishable from one another and may represent individuality for the entire human community |
Bjelopavlovic et al. (2023) [24] | Scans of randomly matched pairs had larger variance and precision difference greater than 300 μm from the mean | All repeated scans of one participant had precision values less than 300 μm around the mean | Palatal fold pairs do not differ at different lifetime points and are highly individual specific and differ significantly from individual to individual |
Mikolicz et al. (2023) [25] | The precision value of scans between siblings (239 μm) was much greater than the highest forensic reproducibility value (141 μm) | The anterior palatal area showed significantly better repeatability and forensic reproducibility than the whole palate (p < 0.001) | The anterior area of the palate is a good candidate for identification purpose, owing to its inclusion in antemortem scans and its good reproducibility |
Simon et al. (2023) [26] | In 22–27% of the twins, the difference between scans decreased after mirroring, suggesting that these twins have a contralateral similarity | The mirroring of the replicated scans increased the surface difference between the original and mirrored one by 7–9 folds, suggesting a significant asymmetry of the palate | (a) The between-sibling values were much higher than the between-replicate ones, indicating that an intraoral scanner is reliable for distinguishing persons. (b) The discrepancy between mirrored and non-mirrored scans indicates that if the contralateral side is available, the accuracy of the palatal scan-based identification process could be challenging |
Factors | Dental Cast | Intraoral Scan |
---|---|---|
Accuracy | Not adequate [68] | Highly accurate [68] |
Validity and Reliability | Not adequate [21,69] | Highly valid and reliable [21,69] |
Deviation of palatal trueness | Affected by the flexibility of palatal soft tissue [28] | Not affected by the flexibility of palatal soft tissue [28] but increases with an increase in arch width [65] |
Reproducibility | Not adequate [25,70] | Good reproducibility [25,70] |
Arch dimension (anteroposterior and transverse) | Same as an intraoral scanner [18] | Same as a dental cast [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santhosh Kumar, S.; Chacko, R.; Kaur, A.; Ibrahim, G.; Ye, D. A Systematic Review of the Use of Intraoral Scanning for Human Identification Based on Palatal Morphology. Diagnostics 2024, 14, 531. https://doi.org/10.3390/diagnostics14050531
Santhosh Kumar S, Chacko R, Kaur A, Ibrahim G, Ye D. A Systematic Review of the Use of Intraoral Scanning for Human Identification Based on Palatal Morphology. Diagnostics. 2024; 14(5):531. https://doi.org/10.3390/diagnostics14050531
Chicago/Turabian StyleSanthosh Kumar, Sanjana, Rachel Chacko, Amritpreet Kaur, Gasser Ibrahim, and Dongxia Ye. 2024. "A Systematic Review of the Use of Intraoral Scanning for Human Identification Based on Palatal Morphology" Diagnostics 14, no. 5: 531. https://doi.org/10.3390/diagnostics14050531
APA StyleSanthosh Kumar, S., Chacko, R., Kaur, A., Ibrahim, G., & Ye, D. (2024). A Systematic Review of the Use of Intraoral Scanning for Human Identification Based on Palatal Morphology. Diagnostics, 14(5), 531. https://doi.org/10.3390/diagnostics14050531