Hybrid Quantum Image Classification and Federated Learning for Hepatic Steatosis Diagnosis
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Federated Learning and Medical Diagnosis
1.1.2. Artificial Intelligence and Liver Disease
1.1.3. Quantum Security and Privacy
1.1.4. Quantum Computation and Machine Learning
1.1.5. Quantum Machine Learning and Medicine
2. Materials and Methods
2.1. Non-Alcoholic Fatty Liver Disease (NAFLD)
2.2. Dataset
2.3. Quantum Machine Learning
2.4. Federated Learning
3. Results
3.1. Hybrid Quantum Image Classification
3.2. Federated Learning for Medical Privacy
4. Discussion
4.1. Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
QML | Quantum Machine Learning |
HQNN | Hybrid Quantum Neural Network |
FL | Federated Learning |
GDPR | General Data Protection Regulation |
NAFLD | Non-alcoholic Fatty Liver Disease |
NASH | Non-Alcoholic Steatohepatitis |
NAS NAFLD | Activity Score |
FHE Fully | Homomorphic Encryption |
SMPC | Secure Multi-Party computation |
QDI | Quantum Depth-Infused |
NISQ | Noisy Intermediate-Scale Quantum |
UCIE | Universal Chiplet Interconnect Express |
WDM | Wavelength Division Multiplexing |
References
- European Parliament; Council of the European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation). Available online: https://www.legislation.gov.uk/eur/2016/679/contents (accessed on 28 February 2024).
- European Parliament; Council of the European Union. Proposal for a Regulation of the European Parliament and of the Council Laying Down Armonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts sec(2021) 167 final-swd(2021) 84 final-swd(2021) 85 Final Com/2021/206 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (accessed on 28 February 2024).
- LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object Recognition with Gradient-Based Learning. In Shape, Contour and Grouping in Computer Vision; Springer: Berlin/Heidelberg, Germany, 1999; pp. 319–345. [Google Scholar]
- Rosenblatt, F. Principles of neurodynamics. Perceptrons and the theory of brian mechanisms. Am. J. Psychol. 1963, 76, 705. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Schuld, M.; Fingerhuth, M.; Petruccione, F. Implementing a distance-based classifier with a quantum interference circuit. arXiv 2017, arXiv:1703.10793. [Google Scholar] [CrossRef]
- Kordzanganeh, M.; Buchberger, M.; Kyriacou, B.; Povolotskii, M.; Fischer, W.; Kurkin, A.; Somogyi, W.; Sagingalieva, A.; Pflitsch, M.; Melnikov, A. Benchmarking Simulated and Physical Quantum Processing Units Using Quantum and Hybrid Algorithms. Adv. Quantum Technol. 2023, 6, 2300043. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Kordzanganeh, M.; Kosichkina, D.; Melnikov, A. Parallel hybrid networks: An interplay between quantum and classical neural networks. Intell. Comput. 2023, 2, 0028. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pham, Q.V.; Pathirana, P.N.; Ding, M.; Seneviratne, A.; Lin, Z.; Dobre, O.; Hwang, W.J. Federated Learning for Smart Healthcare: A Survey. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Nishida, N.; Kudo, M. Artificial intelligence models for the diagnosis and management of liver diseases. Ultrasonography 2023, 42, 10. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022, 4, 100443. [Google Scholar] [CrossRef]
- Allaume, P.; Rabilloud, N.; Turlin, B.; Bardou-Jacquet, E.; Loréal, O.; Calderaro, J.; Khene, Z.E.; Acosta, O.; De Crevoisier, R.; Rioux-Leclercq, N.; et al. Artificial Intelligence-Based Opportunities in Liver Pathology—A Systematic Review. Diagnostics 2023, 13, 1799. [Google Scholar] [CrossRef]
- Portmann, C.; Renner, R. Security in quantum cryptography. Rev. Mod. Phys. 2022, 94, 025008. [Google Scholar] [CrossRef]
- Morimae, T.; Fujii, K. Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. A 2013, 87, 050301. [Google Scholar] [CrossRef]
- Gilboa, D.; McClean, J.R. Exponential Quantum Communication Advantage in Distributed Learning. arXiv 2023, arXiv:2310.07136. [Google Scholar]
- Ren, C.; Yu, H.; Yan, R.; Xu, M.; Shen, Y.; Zhu, H.; Niyato, D.; Dong, Z.Y.; Kwek, L.C. Towards Quantum Federated Learning. arXiv 2023, arXiv:2306.09912. [Google Scholar]
- Pettit, R.M.; Farshi, F.H.; Sullivan, S.E.; Véliz-Osorio, Á.; Singh, M.K. A perspective on the pathway to a scalable quantum internet using rare-earth ions. Appl. Phys. Rev. 2023, 10, 031307. [Google Scholar] [CrossRef]
- Azuma, K.; Economou, S.E.; Elkouss, D.; Hilaire, P.; Jiang, L.; Lo, H.K.; Tzitrin, I. Quantum repeaters: From quantum networks to the quantum internet. Rev. Mod. Phys. 2023, 95, 045006. [Google Scholar] [CrossRef]
- Cerezo, M.; Verdon, G.; Huang, H.Y.; Cincio, L.; Coles, P.J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2022, 2, 567–576. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef]
- Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018, 81, 074001. [Google Scholar] [CrossRef]
- Melnikov, A.; Kordzanganeh, M.; Alodjants, A.; Lee, R.K. Quantum machine learning: From physics to software engineering. Adv. Phys. X 2023, 8, 2165452. [Google Scholar] [CrossRef]
- Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. arXiv 2013, arXiv:1307.0411. [Google Scholar]
- Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Lloyd, S. Universal Quantum Simulators. Science 1996, 273, 1073–1078. [Google Scholar] [CrossRef]
- Schuld, M.; Bocharov, A.; Svore, K.M.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [Google Scholar] [CrossRef]
- Neven, H.; Denchev, V.S.; Rose, G.; Macready, W.G. QBoost: Large Scale Classifier Training with Adiabatic Quantum Optimization. In Proceedings of the Asian Conference on Machine Learning, Singapore, 4–6 November 2012; Volume 25, pp. 333–348. [Google Scholar]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum Support Vector Machine for Big Data Classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef]
- Saggio, V.; Asenbeck, B.E.; Hamann, A.; Strömberg, T.; Schiansky, P.; Dunjko, V.; Friis, N.; Harris, N.C.; Hochberg, M.; Englund, D.; et al. Experimental quantum speed-up in reinforcement learning agents. Nature 2021, 591, 229–233. [Google Scholar] [CrossRef]
- Rainjonneau, S.; Tokarev, I.; Iudin, S.; Rayaprolu, S.; Pinto, K.; Lemtiuzhnikova, D.; Koblan, M.; Barashov, E.; Kordzanganeh, M.; Pflitsch, M.; et al. Quantum algorithms applied to satellite mission planning for Earth observation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7062–7075. [Google Scholar] [CrossRef]
- Riaz, F.; Abdulla, S.; Suzuki, H.; Ganguly, S.; Deo, R.C.; Hopkins, S. Accurate Image Multi-Class Classification Neural Network Model with Quantum Entanglement Approach. Sensors 2023, 23, 2753. [Google Scholar] [CrossRef] [PubMed]
- Senokosov, A.; Sedykh, A.; Sagingalieva, A.; Melnikov, A. Quantum machine learning for image classification. arXiv 2023, arXiv:2304.09224. [Google Scholar] [CrossRef]
- Naumov, A.; Melnikov, A.; Abronin, V.; Oxanichenko, F.; Izmailov, K.; Pflitsch, M.; Melnikov, A.; Perelshtein, M. Tetra-AML: Automatic Machine Learning via Tensor Networks. arXiv 2023, arXiv:2303.16214. [Google Scholar]
- Sedykh, A.; Podapaka, M.; Sagingalieva, A.; Smertyak, N.; Pinto, K.; Pflitsch, M.; Melnikov, A. Quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes. arXiv 2023, arXiv:2304.11247. [Google Scholar]
- Haboury, N.; Kordzanganeh, M.; Schmitt, S.; Joshi, A.; Tokarev, I.; Abdallah, L.; Kurkin, A.; Kyriacou, B.; Melnikov, A. A supervised hybrid quantum machine learning solution to the emergency escape routing problem. arXiv 2023, arXiv:2307.15682. [Google Scholar]
- Sagingalieva, A.; Kordzanganeh, M.; Kenbayev, N.; Kosichkina, D.; Tomashuk, T.; Melnikov, A. Hybrid quantum neural network for drug response prediction. Cancers 2023, 15, 2705. [Google Scholar] [CrossRef] [PubMed]
- Perelshtein, M.; Sagingalieva, A.; Pinto, K.; Shete, V.; Pakhomchik, A.; Melnikov, A.; Neukart, F.; Gesek, G.; Melnikov, A.; Vinokur, V. Practical application-specific advantage through hybrid quantum computing. arXiv 2022, arXiv:2205.04858. [Google Scholar]
- Aaronson, S.; Chen, L. Complexity-Theoretic Foundations of Quantum Supremacy Experiments. arXiv 2016, arXiv:1612.05903. [Google Scholar]
- McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 2018, 9, 4812. [Google Scholar] [CrossRef]
- Ajlouni, N.; Özyavaş, A.; Takaoğlu, M.; Takaoğlu, F.; Ajlouni, F. Medical Image Diagnosis Based on Adaptive Hybrid Quantum CNN. BMC Med. Imaging 2023, 23, 126. [Google Scholar] [CrossRef]
- McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S.C.; Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 2020, 92, 015003. [Google Scholar] [CrossRef]
- Nannicini, G. Performance of hybrid quantum-classical variational heuristics for combinatorial optimization. Phys. Rev. E 2019, 99, 013304. [Google Scholar] [CrossRef]
- Gircha, A.I.; Boev, A.S.; Avchaciov, K.; Fedichev, P.O.; Fedorov, A.K. Training a discrete variational autoencoder for generative chemistry and drug design on a quantum annealer. arXiv 2021, arXiv:2108.11644. [Google Scholar]
- Moussa, C.; Wang, H.; Araya-Polo, M.; Bäck, T.; Dunjko, V. Application of quantum-inspired generative models to small molecular datasets. arXiv 2023, arXiv:2304.10867. [Google Scholar]
- Castera, L.; Friedrich-Rust, M.; Loomba, R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1264–1281. [Google Scholar] [CrossRef]
- Dhamija, E.; Paul, S.B.; Kedia, S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian J. Med. Res. 2019, 149, 9. [Google Scholar] [CrossRef]
- Diehl, A.M.; Day, C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med. 2017, 377, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
- Loria, P.; Adinolfi, L.E.; Bellentani, S.; Bugianesi, E.; Grieco, A.; Fargion, S.; Gasbarrini, A.; Loguercio, C.; Lonardo, A.; Marchesini, G.; et al. Practice guidelines for the diagnosis and management of nonalcoholic fatty liver disease: A decalogue from the Italian Association for the Study of the Liver (AISF) Expert Committee. Dig. Liver Dis. 2010, 42, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Taneja, S.; Roy, A. Nonalcoholic steatohepatitis recurrence after liver transplant. Transl. Gastroenterol. Hepatol. 2020, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.R.; Rosso, N.; Bedogni, G.; Tiribelli, C.; Bellentani, S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. 2018, 38, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Ratziu, V.; Bellentani, S.; Cortez-Pinto, H.; Day, C.; Marchesini, G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J. Hepatol. 2010, 53, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Cai, J.J.; She, Z.G.; Li, H.L. Noninvasive evaluation of nonalcoholic fatty liver disease: Current evidence and practice. World J. Gastroenterol. 2019, 25, 1307. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol. 2017, 9, 715. [Google Scholar] [CrossRef]
- Ma, X.; Liu, S.; Zhang, J.; Dong, M.; Wang, Y.; Wang, M.; Xin, Y. Proportion of NAFLD patients with normal ALT value in overall NAFLD patients: A systematic review and meta-analysis. BMC Gastroenterol. 2020, 20, 10. [Google Scholar] [CrossRef]
- Idilman, I.S.; Aniktar, H.; Idilman, R.; Kabacam, G.; Savas, B.; Elhan, A.; Celik, A.; Bahar, K.; Karcaaltincaba, M. Hepatic steatosis: Quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013, 267, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.J.; Aguilar, M.; Cheung, R.; Perumpail, R.B.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015, 148, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Nocito, A.; El-Badry, A.M.; Clavien, P.A. When is steatosis too much for transplantation? J. Hepatol. 2006, 45, 494–499. [Google Scholar] [CrossRef]
- Chu, M.J.; Dare, A.J.; Phillips, A.R.; Bartlett, A.S. Donor hepatic steatosis and outcome after liver transplantation: A systematic review. J. Gastrointest. Surg. 2015, 19, 1713–1724. [Google Scholar] [CrossRef]
- Cesaretti, M.; Addeo, P.; Schiavo, L.; Anty, R.; Iannelli, A. Assessment of liver graft steatosis: Where do we stand? Liver Transplant. 2019, 25, 500–509. [Google Scholar] [CrossRef]
- Reeder, S.B.; Sirlin, C.B. Quantification of liver fat with magnetic resonance imaging. Magn. Reson. Imaging Clin. 2010, 18, 337–357. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef]
- Cordier, B.A.; Sawaya, N.P.D.; Guerreschi, G.G.; McWeeney, S.K. Biology and medicine in the landscape of quantum advantages. J. R. Soc. Interface 2022, 19, 20220541. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.y. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 20–22 April 2017; Volume 54, pp. 1273–1282. [Google Scholar]
- Kaaniche, N.; Laurent, M.; Belguith, S. Privacy enhancing technologies for solving the privacy-personalization paradox: Taxonomy and survey. J. Netw. Comput. Appl. 2020, 171, 102807. [Google Scholar] [CrossRef]
- Rivest, R.L.; Dertouzos, M.L. On data banks and privacy homomorphisms. In Foundations of Secure Computation 692; Academic Press: New York, NY, USA, 1978; Volume 4, pp. 169–180. [Google Scholar]
- Zhao, C.; Zhao, S.; Zhao, M.; Chen, Z.; Gao, C.Z.; Li, H.; an Tan, Y. Secure Multi-Party Computation: Theory, practice and applications. Inf. Sci. 2019, 476, 357–372. [Google Scholar] [CrossRef]
- Liang, M. Symmetric quantum fully homomorphic encryption with perfect security. Quantum Inf. Process. 2013, 12, 3675–3687. [Google Scholar] [CrossRef]
- Neyshabur, B.; Sedghi, H.; Zhang, C. What is being transferred in transfer learning? arXiv 2020, arXiv:2008.11687. [Google Scholar]
- ImageNet Dataset. 2022. Available online: https://image-net.org/ (accessed on 28 February 2024).
- PyTorch. 2022. Available online: https://pytorch.org/ (accessed on 28 February 2024).
- Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A.; et al. PennyLane: Automatic Differentiation of Hybrid Quantum-Classical Computations. arXiv 2022, arXiv:1811.04968. [Google Scholar]
- Optuna|A Hyperparameter Optimization Framework. 2023. Available online: https://optuna.org/ (accessed on 28 February 2024).
- Adam Optimizer. 2022. Available online: https://pytorch.org/docs/stable/generated/torch.optim.Adam.html (accessed on 28 February 2024).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Fernandez-Marques, J.; Gao, Y.; Sani, L.; Kwing, H.L.; Parcollet, T.; de Gusmão, P.P.; et al. Flower: A Friendly Federated Learning Research Framework. arXiv 2020, arXiv:2007.14390. [Google Scholar]
- Reinshagen, M.; Kabisch, S.; Pfeiffer, A.F.; Spranger, J. Liver fat scores for noninvasive diagnosis and monitoring of nonalcoholic fatty liver disease in epidemiological and clinical studies. J. Clin. Transl. Hepatol. 2023, 11, 1212. [Google Scholar] [CrossRef]
- Ko, E.; Yoon, E.L.; Jun, D.W. Risk factors in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S79. [Google Scholar] [CrossRef]
- Heinemann, F.; Birk, G.; Stierstorfer, B. Deep learning enables pathologist-like scoring of NASH models. Sci. Rep. 2019, 9, 18454. [Google Scholar] [CrossRef]
- Yang, F.; Jia, X.; Lei, P.; He, Y.; Xiang, Y.; Jiao, J.; Zhou, S.; Qian, W.; Duan, Q. Quantification of hepatic steatosis in histologic images by deep learning method. J. X-ray Sci. Technol. 2019, 27, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Wang, F.; Vo, H.; Teng, D.; Teodoro, G.; Farris, A.B.; Castillo-Leon, E.; Vos, M.B.; Kong, J. Deep-learning-based accurate hepatic steatosis quantification for histological assessment of liver biopsies. Lab. Investig. 2020, 100, 1367–1383. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, F.; Gross, P.; Zeveleva, S.; Qian, H.S.; Hill, J.; Höfer, A.; Jonigk, D.; Diehl, A.M.; Abdelmalek, M.; Lenter, M.C.; et al. Deep learning-based quantification of NAFLD/NASH progression in human liver biopsies. Sci. Rep. 2022, 12, 19236. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, V.; Terra, C.; Ginès, P. Advances in the pathogenesis and treatment of type-1 and type-2 hepatorenal syndrome. J. Hepatol. 2007, 46, 935–946. [Google Scholar] [CrossRef]
- Angeli, P.; Guarda, S.; Fasolato, S.; Miola, E.; Craighero, R.; Del Piccolo, F.; Antona, C.; Brollo, L.; Franchin, M.; Cillo, U.; et al. Switch therapy with ciprofloxacin vs. intravenous ceftazidime in the treatment of spontaneous bacterial peritonitis in patients with cirrhosis: Similar efficacy at lower cost. Aliment. Pharmacol. Ther. 2006, 23, 75–84. [Google Scholar] [CrossRef]
- Associazione Italiana per Studio del Fegato. Il Trapianto di Fegato. Raccomandazioni dell’Associazione Italiana per Studio del Fegato (A.I.S.F). 2008. Available online: https://www.webaisf.org/wp-content/uploads/2019/01/commissione_trapianto_fegato.pdf (accessed on 28 February 2024).
Steatosis Percentage | Steatosis Grade |
---|---|
<5% | 0 |
5–33 % | 1 |
33–66% | 2 |
>66 % | 3 |
Samples per Client | 4 Clients | 8 Clients | 16 Clients | 32 Clients |
---|---|---|---|---|
50 | 57.67 ± 3.84 | 57.61 ± 10.37 | 0.5 ± 0.0 | |
100 | 82.61 ± 4.30 | 86.91 ± 3.33 | 85.35 ± 3.91 | 88.88 ± 3.87 |
150 | 90.39 ± 0.63 | |||
250 | 91.28 ± 2.57 | 92.21 ± 1.35 | 93.24 ± 1.65 | |
500 | 94.05 ± 1.17 | 93.63 ± 0.44 | ||
750 | 92.98 ± 1.79 | |||
1000 | 92.04 ± 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lusnig, L.; Sagingalieva, A.; Surmach, M.; Protasevich, T.; Michiu, O.; McLoughlin, J.; Mansell, C.; de’ Petris, G.; Bonazza, D.; Zanconati, F.; et al. Hybrid Quantum Image Classification and Federated Learning for Hepatic Steatosis Diagnosis. Diagnostics 2024, 14, 558. https://doi.org/10.3390/diagnostics14050558
Lusnig L, Sagingalieva A, Surmach M, Protasevich T, Michiu O, McLoughlin J, Mansell C, de’ Petris G, Bonazza D, Zanconati F, et al. Hybrid Quantum Image Classification and Federated Learning for Hepatic Steatosis Diagnosis. Diagnostics. 2024; 14(5):558. https://doi.org/10.3390/diagnostics14050558
Chicago/Turabian StyleLusnig, Luca, Asel Sagingalieva, Mikhail Surmach, Tatjana Protasevich, Ovidiu Michiu, Joseph McLoughlin, Christopher Mansell, Graziano de’ Petris, Deborah Bonazza, Fabrizio Zanconati, and et al. 2024. "Hybrid Quantum Image Classification and Federated Learning for Hepatic Steatosis Diagnosis" Diagnostics 14, no. 5: 558. https://doi.org/10.3390/diagnostics14050558
APA StyleLusnig, L., Sagingalieva, A., Surmach, M., Protasevich, T., Michiu, O., McLoughlin, J., Mansell, C., de’ Petris, G., Bonazza, D., Zanconati, F., Melnikov, A., & Cavalli, F. (2024). Hybrid Quantum Image Classification and Federated Learning for Hepatic Steatosis Diagnosis. Diagnostics, 14(5), 558. https://doi.org/10.3390/diagnostics14050558