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Abstract: Occupational ergonomics aims to optimize the work environment and to enhance both
productivity and worker well-being. Work-related exposure assessment, such as lifting loads, is a
crucial aspect of this discipline, as it involves the evaluation of physical stressors and their impact
on workers’ health and safety, in order to prevent the development of musculoskeletal pathologies.
In this study, we explore the feasibility of machine learning (ML) algorithms, fed with time- and
frequency-domain features extracted from inertial signals (linear acceleration and angular velocity),
to automatically and accurately discriminate safe and unsafe postures during weight lifting tasks.
The signals were acquired by means of one inertial measurement unit (IMU) placed on the sternums
of 15 subjects, and subsequently segmented to extract several time- and frequency-domain features. A
supervised dataset, including the extracted features, was used to feed several ML models and to assess
their prediction power. Interesting results in terms of evaluation metrics for a binary safe/unsafe
posture classification were obtained with the logistic regression algorithm, which outperformed the
others, with accuracy and area under the receiver operating characteristic curve values of up to 96%
and 99%, respectively. This result indicates the feasibility of the proposed methodology—based on a
single inertial sensor and artificial intelligence—to discriminate safe/unsafe postures associated with
load lifting activities. Future investigation in a wider study population and using additional lifting
scenarios could confirm the potentiality of the proposed methodology, supporting its applicability in
the occupational ergonomics field.

Keywords: occupational ergonomics; load lifting; safe/unsafe posture; wearable sensors; inertial
signals; machine learning; work-related musculoskeletal disorders

1. Introduction

Work-related musculoskeletal disorders (WMSDs) represent a significant health con-
cern that affects millions of workers worldwide. These disorders encompass a broad range
of painful and debilitating conditions that impact musculoskeletal structures. The risk of
developing WMSDs is primarily associated with occupational tasks, and it is often the
result of biomechanical overload, as has been reported in several studies [1–4].

In the last years, the prevalence of jobs involving repetitive movements, heavy lifting,
and awkward postures has substantially risen; indeed, intensity, repetition, and duration
represent the three elements that have the most impact on biomechanical risk during man-
ual tasks [5]. Therefore, several quantitative and semi-quantitative methods have been
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proposed and implemented in occupational ergonomics to assess the biomechanical risk
exposure [6–10]. Currently, wearable sensors are spreading in the field of occupational
ergonomics as a valid tool to integrate methodologies which have already been experi-
mented with, revolutionizing the way we monitor work activities and assess biomechanical
risk [11–17]. Among these devices, inertial wearable sensors, which allow for the acqui-
sition of linear acceleration and angular velocity, as well as wearable sensors for surface
electromyography (sEMG) and pressure insoles, have proven to be useful for monitoring
workers’ activities and assessing biomechanical risk [18–21].

Additionally, the integration of wearable sensors and artificial intelligence (AI) algo-
rithms is increasingly strengthening in the field of occupational ergonomics, as has been
reported in several scientific works. For instance, Donisi et al. [22] proposed a methodology,
based on machine learning (ML) models fed with time- and frequency- domain features
extracted from inertial signals acquired from the sternum, to classify biomechanical risk
during lifting tasks according to the Revised NIOSH (National Institute for Occupational
Safety and Health) Lifting Equation. They employed a logistic regression (LR) model,
reaching an accuracy classification equal to 82.8%. Conforti et al. [23] used a support vector
machine (SVM) fed with time-domain features extracted from inertial signals to discrim-
inate safe and unsafe postures, reaching an accuracy level equal to 99.4%, while Prisco
et al. [24] studied the feasibility of several tree-based ML algorithms fed with time-domain
features extracted from inertial signals using a single sensor placed on the sternum. Aiello
et al. [25] analyzed the discrimination power of ML algorithms to classify low-duty and
high-duty activities using information related to the exposure to vibration, which was cap-
tured by means of two accelerometers placed on the wrists; the k nearest neighbors (kNN)
algorithm reached a classification accuracy equal to 94%. Zhao and Obonyo et al. [26]
proposed a model for recognizing construction workers’ postures based on the combination
of 5 IMUs and deep learning (DL) algorithms (i.e., convolutional long short-term memory).
Antwi-Afari et al. [27] proposed a methodology to recognize workers’ activities associated
with overexertion from data acquired by means of a wearable insole pressure system using
ML and DL algorithms; they found that the best algorithm was random forest (RaF), with
an accuracy of over 97%. Fridolfsson et al. [28] studied the feasibility of ML models, which
were fed with features extracted from acceleration signals using a shoe-based sensors,
to classify work-specific activities; RaF was the best algorithm, once again reaching an
accuracy of up to 71%. Mudiyanselage et al. [29] analyzed the level detection of risk of
harmful lifting activities characterized by the Revised NIOSH Lifting Equations using ML
and DL algorithms fed with features extracted from thoracic and multifidus sEMG signals,
while Donisi et al. [30] studied the feasibility of ML algorithms fed with frequency-domain
features extracted from sEMG signals of erector spinae and multifidus muscles to discrimi-
nate the biomechanical risk associated with manual material liftings, highlighting that the
best algorithm was SVM, with an accuracy equal to 96.1%.

Considering the increasing integration of wearable sensors and AI in the field of
occupational ergonomics, the aim of this paper was to study the feasibility of several ML
algorithms—fed with time- and frequency-domain features extracted from inertial signals
(linear acceleration and angular velocity) acquired from a single inertial measurement unit
(IMU) placed on the sternum—to classify safe and unsafe postures during load lifting tasks.

Thus, the proposed methodology could offer an improvement or a valid integration of
the procedures already established in the occupational ergonomics field to recognize bad
postures, limiting the potential biomechanical risk associated with them in workers.

Moreover, the use of a single sensor (placed on the sternum) and the type of sensor
(inertial sensor) make this procedure applicable to the workplace, and not confined to the
laboratory like the other methodologies proposed in the scientific literature that are based
on optoelectronic systems.
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2. Materials and Methods
2.1. The Mobility Lab System (APDM)

The Mobility Lab System (APDM wearable technologies Inc., Portland, OR, USA) is a
technically advanced platform for the analysis of human movement, and is used in both
clinical and research settings. In clinical practice, it is useful for treatment planning and
monitoring patients. In research, it provides valuable data for scientific studies focused
on mobility disorders [31–33]. This system is composed of both hardware and software
components. The hardware is composed of an access point, a docking station, and inertial
sensors (OPAL sensors), while the software is based on a dedicated application, namely,
Mobility Lab software version 2 (Figure 1). The OPAL sensors are basically IMUs, which
include tri-axial accelerometers (14-bit resolution, bandwidth of 50 Hz, and range of ±16 g),
tri-axial gyroscopes (16-bit resolution, bandwidth of 50 Hz, and range of ±2000 deg/s), and
tri-axial magnetometers (12-bit resolution, bandwidth of 32.5 Hz, and range of ±8 Gauss).
These sensors allow for linear acceleration and angular velocity signals to be acquired with
a sampling frequency up to 200 Hz. Moreover, the sensors are charged and configurated
by means of the docking station. The access point provides the system with wireless
communication capability by means of the Bluetooth 3.0 protocol, allowing for real-time
data transmission from OPAL sensors to a host computer. Finally, the Mobility Lab software
produces detailed reports based on objective metrics related to gait, balance, and movement
patterns. In the present work, a single OPAL sensor placed on the sternum was used
(Figure 2). The Mobility Lab System has been proven to be repeatable and accurate [34,35].
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2.2. Study Population

In this study, 15 healthy subjects—9 men and 6 women—between the ages of 22 and
55 years old were enrolled. The subjects were selected excluding those who were affected
by musculoskeletal disorders or other occupational pathologies. The anthropometric
characteristics of the study population are shown in the Table 1.

Table 1. Anthropomorphic characteristics of the study population, reported as mean ± standard
deviation.

Characteristics

Age (years) 33.2 ± 7.8
Height (cm) 171.1 ± 8.3
Weight (kg) 66.1 ± 9.9
Body mass index (kg/m2) 22.5 ± 2.9

2.3. Experimental Study Protocol

Each subject participated in a session divided into two trials. The first trial consisted of
20 consecutive liftings according to the squat technique—namely, with back extended, legs
flexed, rigid arms, and trunk flexed at the hip joints—associated with a safe posture. The
load had to be gripped while keeping the legs apart—with a distance between the feet of
20/30 cm—in order to ensure balance during lifting (Figure 3A). The second trial consisted
of 20 consecutive liftings associated with an unsafe posture; the liftings were performed
with a curved back and non-flexed legs (Figure 3B). Each lifting task was carried out using
a plastic container (56 × 35 × 31 cm3) with weights equally distributed inside. Squat and
stoop techniques were widely regarded as the “correct” and “incorrect” techniques for
lifting activities, as has been reported in several articles in the scientific literature [36,37].
The details regarding the execution of the study protocol are reported in the Table 2.
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Table 2. Combination of weight, frequency, duration, and vertical displacement variables for lifting
activities corresponding to safe and unsafe postures.

Parameters

Vertical Displacement
(Start–End) (cm)

Duration
(min)

Frequency
(lifting/min)

Weight Lifted
(kg)

M F

50–125 8 2.5 7 5

2.4. Digital Signal Processing and Feature Extraction

The linear acceleration and angular velocity signals were acquired for each subject
during the lifting tasks. The inertial signals were appropriately segmented in order to
extract the portion of the signals in the time windows corresponding to the lifting actions.
All signals were segmented starting from the segmentation carried on the acceleration
signal along the x-axis or longitudinal axis (see Figure 2). The choice of the signal to be
segmented fell on the acceleration signal along the x-axis, since the acceleration component
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along the longitudinal axis—i.e., the axis relating to the lifting of the load—had a more
enhanced waveform in terms of amplitude to encourage segmentation.

We performed 3 steps to segment the signals. Firstly, the original signal was filtered
using a 4◦ order Butterworth band-pass filter with a band pass ranging from 1 to 50 Hz
in order to remove mainly the continuous or DC component. Secondly, the signal was
rectified and then filtered by means of a Savitsky–Golay filter [38], with a polynomial order
and frame length equal to 4 and 1101, respectively. Finally, an empirical threshold for each
subject was set; therefore, from the intersection between the threshold and the final filtered
signal, the start and stop points—necessary to segment the signal in the individual region
of interest (ROI) corresponding to the lifting tasks—were detected (Figure 4A,B). From
our knowledge of the start and stop points, we extracted the ROIs on the original signal
(Figure 4C).

For each ROI, several time- and frequency-domain features were extracted. The
following time-domain features were extracted:

• Standard deviation (STD) (m/s2 for acceleration, deg/s for angular velocity):

STD =

(
1

N − 1

N

∑
1
(xi − x)2

) 1
2

(1)

• Mean absolute value (MAV) (m/s2 for acceleration, deg/s for angular velocity):

MAV =
1
N

N

∑
1
|xi| (2)

• Peak to peak amplitude (PP) (m/s2 for acceleration, deg/s for angular velocity):

PP = |max(xi)− min(xi)| (3)

• Zero crossing rate (ZCR) (adim):

{xi < 0 and xi+1 > 0} or {xi > 0 and xi+1 < 0} (4)

• Slope sign changes (SSC) (adim):

{xi < xi+1 and xi < xi−1} or {xi > xi+1 and xi > xi−1} (5)

Concerning frequency-domain features, the total power spectrum (TPS), computed
using the fast Fourier transform (fft) algorithm, was considered to extract the related
features. The following features were extracted:

• Total power (P) (m/s2 for acceleration, deg/s for angular velocity):

P =
1
N

N

∑
1

Sxi (6)

Sxi = |Xi|2 (7)

• Spectral entropy (SE) (adim):

SE = −
N

∑
1

pi· log2 pi (8)

pi =
Sxi

∑N
j=1 Sx j

(9)
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Figure 4. (A) Rectified original signal (in grey); rectified and filtered signal using Savitzky–Golay filter
(in blue) and threshold (in yellow) to detect the start and stop points (in green and red, respectively).
A single lifting is shown. (B) Rectified original signal (in grey); rectified and filtered signal using
Savitzky–Golay filter (in blue) and threshold (in yellow) to determinate the start and stop points (in
green and red, respectively). All the liftings of a single trial are shown. (C) Original acceleration
signal and start and stop points detected to identify the ROIs.
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• Kurtosis (Kurt) (adim):

Kurt =
∑
(
Sxi − Sx

)3

N·s4 − 3 (10)

• Skewness (Skew) [adim]:

Skew =
∑
(
Sxi − Sx

)3

N·s3 (11)

where:

• xi: i-th sample of the signal;
• N: number of samples of the signal;
• Xi: i-th sample of the Fourier transformation of the signal;
• Sxi: i-th sample of the TPS of the signal;
• Sx: mean of the TPS of the signal;
• s: STD of the TPS of the signal.

The aforementioned features were implemented according to the following references:
absolute arithmetic mean [39], standard deviation [40], peak to peak amplitude [41], zero
crossing rate [39], slope sign changes [39], total power [40], entropy [42], kurtosis [40], and
skewness [40].

2.5. Statistical Analysis

A statistical analysis was carried out to verify which features presented a statistically
significant difference in order to discriminate safe/unsafe postures during weight lifting. A
Shapiro–Wilk normality test was performed to evaluate the normality of each feature in
order to choose the correct parametric (t-test) or non-parametric (Wilcoxon test) two-tailed
paired test. For all the statistical tests, a confidence level equal to 95% was chosen (definition
of statistical significance: p-value < 0.05).

Statistical analysis was performed using JASP 0.17.1 (University of Amsterdam, Ams-
terdam, The Netherlands).

2.6. Machine Learning Analysis

ML is a field in which predictive models are created to learn or improve their perfor-
mance based on input data observation [43]. In this study, the features extracted for each
ROI of the inertial signals were used to build a supervised dataset to feed ML algorithms
with the goal of performing a binary classification (safe and unsafe posture classification).

Supervised learning is an important branch of ML which creates models based on
labeled data training [44]. In the present study, the following 8 supervised ML algorithms
were implemented to assess their classification accuracy in order to discriminate safe and
unsafe postures: support vector machine (SVM) [45]; decision tree (DT) [46]; gradient
boosted tree (GB) [47]; random forest (RaF) [48]; logistic regression (LR) [49]; k nearest
neighbor (kNN) [50]; multilayer perceptron (MLP) [51]; and probabilistic neural network
(PNN) [52].

For all the ML algorithms, the hyperparameters’ optimization was performed to
maximize the classification accuracy. Regarding SVM, a polynomial kernel with bias,
power, and gamma equal to 1.141, 1.734, and 1.489 was set, respectively. For kNN, a k
equal to 7 was set. Concerning LR, a step size, maximum of epoch, and epsilon equal to
0.516, 111, and 0.004 were chosen, respectively. Regarding DT, minimum number records
per node were set equal to 5, number records to store per view were set equal to 6939, and
the maximum nominal value was set equal to 4. Moreover, pruning was not implemented.
Concerning GB, the maximum of levels was set equal to 2, the number of models was set
equal to 149, and the learning rate was set equal to 0.333. For RaF, the maximum of levels,
number of models, and minimum node size were set equal to 5, 52, and 4, respectively. For
MLP, the maximum of iterations, hidden layer, and number of hidden layers were chosen
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to be equal to 60, 1, and 5, respectively. Finally, for PNN, the theta minus was set equal to
0.109, and the theta plus was set equal to 0.928.

Moreover, for the LR, kNN, and SVM algorithms, the min-max (MM) normalization
was performed so that all feature values were squeezed (or stretched) within the range of
[0, 1]. The MM normalization was set because some models are sensitive to the scale of
input features, while other models, such as tree-based models, are less sensitive [53].

As validation strategy, the leave-one-subject-out cross-validation (CV) strategy was
adopted. It used each individual subject as a test set and the remaining ones as a training
set. In this study, 14 subjects were used to train and 1 subject was used to test the predictive
models; this procedure was executed in an iterative way 15 times so as to test the ML
models on each subject.

Accuracy, F-measure, specificity, sensitivity, precision, recall, and area under the
receiver operating characteristic curve (AUCROC) were used as evaluation metrics to
assess the classification power of the proposed ML algorithms fed with the extracted
features.

Moreover, a feature importance according to information gain (IG) method was com-
puted. The IG approach—based on entropy—is an indicator of the importance of each
feature to the target class [54].

The ML analysis was performed using the Knime Analytics Platform (version 4.1.3), a
platform widely used in the biomedical engineering field [55–57].

3. Results

Firstly, a statistical analysis based on two-tailed paired tests—the parametric test
(t-test) for features with a normal distribution and the non-parametric test (Wilcoxon test)
for features with non-normal distribution—was performed to evaluate which features were
statistically significant in order to discriminate the two target classes, namely, safe and
unsafe postures. This analysis was carried out separately for acceleration and angular
velocity, considering all axes (x, y, z). In Tables 3 and 4, the results of the statistical analysis
for linear acceleration and angular velocity, respectively, are shown.

Secondly, the feasibility of the eight ML algorithms—fed with time- and frequency-
domain features extracted from inertial signals acquired by means of a single IMU placed
on the sternum—to classify safe and unsafe postures was assessed. The supervised dataset
consisted of 600 instances (15 subjects × 40 lifting instances), 54 features (9 features
extracted × 2 signal (acceleration and angular velocity) × 3 axis (x, y, z) × 1 body po-
sition (sternum)), and 2 classes (safe posture, unsafe posture). The evaluation metric scores
reached by the ML classifiers using the leave-one-subject-out CV strategy and hypermeters
optimization are reported in Table 5.

Table 3. Paired test between safe and unsafe postures for each feature extracted from acceleration
signal (acc).

Features * Safe Posture
Mean ± STD

Unsafe Posture
Mean ± STD p-Value

SE_acc 0.569 ± 0.038 0.604 ± 0.029 <0.001
Kurt_acc 111.448 ± 39.195 82.120 ± 39.200 <0.001
Skew_acc 8.829 ± 1.580 7.346 ± 1.762 <0.001

P_acc 150.342 ± 96.122 96.717 ± 48.214 <0.001
PP_acc 3.809 ± 1.716 3.620 ± 1.073 0.105

STD_acc 0.480 ± 0.109 0.450 ± 0.114 <0.001
MAV_acc 0.330 ± 0.060 0.322 ± 0.078 0.127
ZCR_acc 102.112 ± 17.360 86.028 ± 21.610 <0.001
SSC_acc 350.304 ± 45.250 271.169 ± 55.144 <0.001

Definition of statistical significance: p-value < 0.05. * Spectral entropy (SE); kurtosis (Kurt); skewness (Skew);
power (P); peak to peak amplitude (PP); standard deviation (STD); mean absolute value (MAV); zero crossing rate
(ZCR); slope sign changes (SSC).
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Table 4. Paired test between safe and unsafe postures for each feature extracted from angular velocity
signal (vel).

Features * Safe Posture
Mean ± STD

Unsafe Posture
Mean ± STD p-Value

SE_vel 0.547 ± 0.039 0.559 ± 0.034 <0.001
Kurt_vel 119.318 ± 38.884 98.303 ± 34.176 <0.001
Skew_vel 9.458 ± 1.597 8.472 ± 1.554 <0.001

P_vel 8.566 ± 17.438 10.898 ± 6.859 <0.001
PP_vel 0.866 ± 0.832 1.064 ± 0.368 <0.001

STD_vel 0.105 ± 0.046 0.137 ± 0.042 <0.001
MAV_vel 0.073 ± 0.025 0.100 ± 0.031 <0.001
ZCR_vel 79.261 ± 16.200 63.158 ± 17.668 <0.001
SSC_vel 295.074 ± 39.092 223.753 ± 46.063 <0.001

Definition of statistical significance: p-value < 0.05. * Spectral entropy (SE); kurtosis (Kurt); skewness (Skew);
power (P); peak to peak amplitude (PP); standard deviation (STD); mean absolute value (MAV); zero crossing rate
(ZCR); slope sign changes (SSC).

Table 5. Evaluation metric scores reported as mean ± standard deviation using features extracted
from inertial signals, leave-one-subject-out CV strategy, and hyperparameter optimization for each
classification algorithm.

SVM DT GB RaF LR kNN MLP PNN

Accuracy 0.94 ± 0.12 0.88 ± 0.17 0.94 ± 0.10 0.95 ± 0.09 0.96 ± 0.11 0.91 ± 0.12 0.92 ± 0.15 0.79 ± 0.16

F-measure 0.95 ± 0.09 0.89 ± 0.14 0.94 ± 0.11 0.94 ± 0.13 0.97 ± 0.08 0.92 ± 0.09 0.94 ± 0.11 0.84 ± 0.10

Specificity 0.89 ± 0.24 0.82 ± 0.29 0.94 ± 0.11 0.95 ± 0.11 0.92 ± 0.21 0.84 ± 0.23 0.83 ± 0.30 0.61 ± 0.30

Sensitivity 0.99 ± 0.01 0.94 ± 0.14 0.95 ± 0.11 0.95 ± 0.17 0.99 ± 0.01 0.98 ± 0.04 1.00 ± 0.00 0.98 ± 0.04

Precision 0.92 ± 0.14 0.88 ± 0.17 0.95 ± 0.10 0.96 ± 0.08 0.95 ± 0.12 0.88 ± 0.15 0.90 ± 0.17 0.74 ± 0.15

Recall 0.99 ± 0.01 0.94 ± 0.14 0.95 ± 0.11 0.95 ± 0.17 0.99 ± 0.01 0.98 ± 0.04 1.00 ± 0.00 0.98 ± 0.04

AUCROC 0.99 ± 0.02 0.86 ± 0.21 0.99 ± 0.03 0.99 ± 0.01 0.99 ± 0.01 0.96 ± 0.07 0.99 ± 0.04 0.87 ± 0.19

Support vector machine (SVM), decision tree (DT), gradient boosted tree (GB), random forest (RaF), logistic
regression (LR), k nearest neighbor (kNN), multilayer perceptron (MLP), probabilistic neural network (PNN),
area under the receiver operating characteristic curve (AUCROC).

Finally, the feature importance—according to the IG method—is shown in Figure 5.
The only features with non-zero ranking values are reported.
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Figure 5. Ranking of the features extracted from acceleration and angular velocity signals along x, y,
and z-axes (ax, ay, az, vx, vy, vz) according to the IG method. Spectral entropy (SE); kurtosis (Kurt);
skewness (Skew); power (P); peak to peak amplitude (PP); standard deviation (STD); mean absolute
value (MAV); zero crossing rate (ZCR); slope sign changes (SSC).
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4. Discussion

The purpose of this work was to study the feasibility of ML models fed with time- and
frequency-domain features extracted from inertial signals acquired by a single IMU placed
on the sternum in order to automatically discriminate safe and unsafe posture during
weight liftings.

Tables 3 and 4 report the statistical analysis results based on two-tailed paired tests,
and it is highlighted that almost all the features, for both acceleration and angular velocity,
showed statistically significant differences discriminating safe and unsafe postures. The
results showed that all features extracted from the angular velocity signal exhibited sta-
tistically significant differences between the two classes (p value lower than 0.001), while
for the acceleration signal, PP_acc and MAV_acc did not exhibit statistically significant
differences, with p-values equal to 0.105 and 0.127, respectively. This result suggests that
the angular velocity has a discriminant power slightly higher than the acceleration signal
in this context.

Considering the correlation existing among the instances (liftings) of the same subject,
and to avoid training the algorithms on instances related to all the subjects, a ML analysis
using the leave-one-subject-out CV strategy was performed in order to obtain more robust
results. Table 5 shows the evaluation metric scores for each ML model fed with specific
time- and frequency-domain features to classify safe and unsafe postures. Almost all of
the ML algorithms reached a classification accuracy of more than 0.9, except for PNN and
DT (accuracy equal to 0.88 ± 0.17 and 0.79 ± 0.16, respectively). The low accuracy value
of the PNN algorithm could be due to the correlation existing between the features, since
probabilistic classifiers make a basic assumption of independence among features, which is
not always verified. The best ML algorithm was LR, with accuracy, F-measure, specificity,
sensitivity, precision, recall, and AUCROC equal to 0.96 ± 0.11, 0.97 ± 0.08, 0.92 ± 0.21,
0.99 ± 0.01, 0.95 ± 0.12, 0.99 ± 0.01, and 0.99 ± 0.01, respectively. AUCROC values provide
information about the ability of ML algorithms to discriminate between classes. Conven-
tionally, AUCROC values are divided into three ranges: moderate discrimination power
(values between of 0.70–0.80), good discrimination power (values between of 0.80–0.90),
and excellent discrimination power (values greater than 0.90). Regarding LR, the AUCROC
value was equal to 0.99 ± 0.01, demonstrating its excellent ability to discriminate safe and
unsafe classes.

Figure 5 shows the feature importance results based on the IG method, and it emerged
that 44 features out of 54 (81.5%) had non-zero values.

Considering all inertial signals, it emerged that the x, y, and z axes showed ranking
values equal to 47.87%, 19.40%, and 32.72%, respectively. Therefore, the x-axis (i.e., vertical
axis) was more representative than the y and z axes (i.e., medio-lateral and antero-posterior
axes, respectively) in classifying the target classes. We expected this result, since the weight
lifting was carried out along the x axis, namely, the vertical direction.

Considering all axes (x, y, z) and inertial signals, we highlight that SSC, MAV, STD,
ZCR, P, PP, Skew, SE, and Kurt presented the following ranking values, respectively: 21.55%,
15.44%, 12.55%, 11.56%, 11.33%, 7.66%, 6.90%, 6.77%, and 6.22%. This result suggests that
the features extracted from the time-domain were more predictive than frequency-domain
features in classifying safe and unsafe postures during load liftings, with a ranking value
equal to 61.11%. The use of time-domain features alone is relevant, since it could reduce
the computational effort by allowing for a real-time analysis. However, it needs to be
understood how much it affects the predictive ability of the ML models.

Different studies presented in the scientific literature have attempted to classify safe
and unsafe postures during lifting actions using ML algorithms. Hung et al. [58] used a
DL model fed with kinematic features extracted from a three-dimensional motion tracking
system to classify three posture classes (stoop, stand, squat), reaching a classification
accuracy of up to 94%. The limitation of the methodology described above, as highlighted
by the authors themselves, was that the effect of holding the load while performing a lifting
task was not considered, which determined a change in the classification accuracy. Another
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limitation is the very small study population, since they considered only two subjects, and
therefore, the results cannot be considered robust.

In the study of Greene et al. [59], the authors evaluated the feasibility of DT model
using a depth camera located in front of the sagittal plane of the subject to extract kine-
matic features in order to classify three posture classes (stoop, stand, squat), reaching a
classification accuracy of up to 100%. The same authors [59] developed a methodology to
automatically classify lifting postures—stoop, squat, and stand—using features obtained
by drawing a rectangular bounding box tightly around the body on the sagittal plane in
video recordings. A classification CART algorithm was used in this work, reaching an
accuracy of up to 100%.

Chae et al. [60] proposed a methodology based on ML algorithms (SVM and RaF) and
DL algorithms (artificial neural network (ANN)) fed with kinetic and kinematic features
obtained from six cameras and two ground reaction forces for the binary classification of
stoop and squat postures, reaching an accuracy equal to 94%.

Conforti et al. [23] studied the feasibility of an SVM algorithm with linear, polynomial
(quadratic and cubic), and Gaussian kernels fed with time-domain features—extracted
from inertial signals using eight IMUs applied on the upper and lower body segments
of the subject—to classify correct and incorrect postures during load lifting, obtaining a
classification accuracy greater than 90%. The limitation, as reported by the same authors,
was that the high number of wearable sensors used—eight IMUs—allowed it to confine
the load lifting assessment to the laboratory. On the other hand, contrary to our study, the
extraction of only time-domain features lessened the computational burden, potentially
allowing for the analysis of posture in real time.

Furthermore, Ryu et al. [61] assessed the action recognition of masonry workers by
means of three ML classification algorithms—SVM, kNN, and MLP—fed with time- and
frequency-domain features extracted from acceleration signals acquired from the wrists,
reaching a classification accuracy between 80% and 100%.

O’Reilly et al. [62] explored the feasibility of a back-propagation neural network
classifier fed with time-domain features, which were extracted from inertial signals using
one IMU applied on lumbar, to classify correct and incorrect postures during squat lifting.
The classifier was trained and tested using leave-one-subject-out CV, obtaining an accuracy
equal to 80.45%.

Finally, Youssef et al. [63] assessed the feasibility of the ANN algorithm fed with
kinematic features obtained from nine IMUs and one camera for binary classification
between good and bad squat postures. The classifier was trained and tested using 10-fold
CV, reaching an accuracy equal to 96%.

On the basis of the highlighted results and considering the number and the type of
wearable sensors used in the previously proposed methodologies, it is possible to state that
the proposed approach could solve the problem of poor applicability in the workplace by
using a methodology based on a single inertial sensor placed on the sternum. Moreover,
the results demonstrated the good discrimination power of the proposed methodology, as
reported in the Table 5, although we used a simple technology (IMU) and a simple configu-
ration (a single inertial sensor placed on the sternum) that make the procedure applicable
in real-world settings (e.g., the workplace). Finally, the proposed methodology, from a
cost-effectiveness point of view, is more economical compared to the other technologies
proposed in the scientific literature, since it is based on accelerometers and gyroscopes that
are cheaper if compared to cameras or optoelectronic systems.

Therefore, the proposed methodology—which combines ML algorithms and time-
and frequency-domain features extracted from inertial signals acquired from a single IMU
placed on the sternum—proved to be able to discriminate safe and unsafe postures during
weight lifting.
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5. Conclusions

The combination of specific features extracted from inertial signals acquired by means
of a single IMU placed on the sternum and an ML algorithms allowed us to distinguish safe
and unsafe postures. Interesting results were obtained, in particular, LR classifier reached
high scores in evaluation metrics. The proposed methodology was able to discriminate safe
and unsafe postures, making the procedure of posture assessment automatic, economic,
non-time consuming, non-invasive, and not operator-dependent. Therefore, the proposed
methodology could be of direct practical relevance for occupational ergonomics. Moreover,
the use of a single IMU sensor allows this procedure to be applicable in the workplace,
and not confined to the laboratory like the other methodologies proposed in the scientific
literature that are based on optoelectronic systems. Although the use of several type of
sensors can provide further information—i.e., the contribution of lower limb or trunk
kinematics—the use of a single type of sensor, as in the case in this study, can make
the procedure simpler and more applicable in the workplace. To reduce biomechanical
overload and to prevent the occurrence of WMSD, the design of a real-time posture-
monitoring platform based on our methodology could be a powerful solution in the
workplace, although the analysis in the frequency domain could be limiting.

However, there are some limitations in this study that make the work preliminary.
Firstly, only 15 subjects were enrolled in this experiment, and, secondly, we did not consider
older people with comorbidities and/or bone fragility, conditions that can trigger or worsen
WMSDs, affecting the accuracy of ML classification and participants’ health status if not
conducted under medical supervision and with previously determined bone mineral,
cardiorespiratory, postural, and fitness statuses. Future investigation in a large study
population—in terms of samples and age—could confirm the potential of this methodology
to classify safe and unsafe postures during weight lifting in order to offer a valid integration
of the procedures already established in the occupational ergonomic field. As a future
development, DL algorithms could be also investigated in order to explore their feasibility
in discriminating safe and unsafe postures using the same dataset, as well as to understand
if there would be improvements in terms of evaluation metrics. Moreover, it could be
interesting to validate the proposed methodology by comparing it with methodologies
already established in occupational ergonomics (e.g., PoseNet [64]).

Finally, it would be interesting to explore the long-term effectiveness and reliability
of using machine learning algorithms and IMUs for ergonomic assessment, even if it is
premature, considering the recent interest in the application of wearable technologies
coupled with artificial intelligence in the occupational ergonomics field.
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