Whole Process of Standardization of Diffusion-Weighted Imaging: Phantom Validation and Clinical Application According to the QIBA Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Study Scheme
2.2. Phantom Preparation
2.3. DWI Acquisition Using the QIBA Phantom
2.4. Quantitative Analysis of Phantom Data
2.4.1. Phantom Data Processing
2.4.2. Phantom Data Analysis
2.5. Application of Validated Clinical Brain Protocols to Patients
3. Results
3.1. Validation of MRI Equipment Performance
3.1.1. Protocol Compliance and Image Quality
3.1.2. Key Quantitative DWI Performance Metrics
3.2. Validation of Clinical Brain Protocols
3.2.1. Protocol Compliance and Image Quality
3.2.2. Key Quantitative DWI Performance Metrics
3.3. Quality Assurance for Acquired Patient DWI
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.P.; Padhani, A.R. Tumor response assessments with diffusion and perfusion MRI. J. Magn. Reson. Imaging JMRI 2012, 35, 745–763. [Google Scholar] [CrossRef] [PubMed]
- Padhani, A.R.; Liu, G.; Koh, D.M.; Chenevert, T.L.; Thoeny, H.C.; Takahara, T.; Dzik-Jurasz, A.; Ross, B.D.; Van Cauteren, M.; Collins, D.; et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia 2009, 11, 102–125. [Google Scholar] [CrossRef]
- Thomassin-Naggara, I.; Dechoux, S.; Bonneau, C.; Morel, A.; Rouzier, R.; Carette, M.F.; Daraï, E.; Bazot, M. How to differentiate benign from malignant myometrial tumours using MR imaging. Eur. Radiol. 2013, 23, 2306–2314. [Google Scholar] [CrossRef]
- van der Hoogt, K.J.J.; Schipper, R.J.; Winter-Warnars, G.A.; Ter Beek, L.C.; Loo, C.E.; Mann, R.M.; Beets-Tan, R.G.H. Factors affecting the value of diffusion-weighted imaging for identifying breast cancer patients with pathological complete response on neoadjuvant systemic therapy: A systematic review. Insights Into Imaging 2021, 12, 187. [Google Scholar] [CrossRef]
- Barnes, A.; Alonzi, R.; Blackledge, M.; Charles-Edwards, G.; Collins, D.J.; Cook, G.; Coutts, G.; Goh, V.; Graves, M.; Kelly, C.; et al. UK quantitative WB-DWI technical workgroup: Consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer. Br. J. Radiol. 2018, 91, 20170577. [Google Scholar] [CrossRef] [PubMed]
- Galbán, C.J.; Hoff, B.A.; Chenevert, T.L.; Ross, B.D. Diffusion MRI in early cancer therapeutic response assessment. NMR Biomed. 2017, 30, e3458. [Google Scholar] [CrossRef]
- García-Figueiras, R.; Padhani, A.R.; Baleato-González, S. Therapy Monitoring with Functional and Molecular MR Imaging. Magn. Reson. Imaging Clin. N. Am. 2016, 24, 261–288. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Loevner, L.; Quon, H.; Sherman, E.; Weinstein, G.; Kilger, A.; Poptani, H. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 986–994. [Google Scholar] [CrossRef]
- Sullivan, D.C.; Obuchowski, N.A.; Kessler, L.G.; Raunig, D.L.; Gatsonis, C.; Huang, E.P.; Kondratovich, M.; McShane, L.M.; Reeves, A.P.; Barboriak, D.P.; et al. Metrology Standards for Quantitative Imaging Biomarkers. Radiology 2015, 277, 813–825. [Google Scholar] [CrossRef]
- Fedeli, L.; Benelli, M.; Busoni, S.; Belli, G.; Ciccarone, A.; Coniglio, A.; Esposito, M.; Nocetti, L.; Sghedoni, R.; Tarducci, R.; et al. On the dependence of quantitative diffusion-weighted imaging on scanner system characteristics and acquisition parameters: A large multicenter and multiparametric phantom study with unsupervised clustering analysis. Phys. Medica PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. 2021, 85, 98–106. [Google Scholar] [CrossRef]
- Giannelli, M.; Sghedoni, R.; Iacconi, C.; Iori, M.; Traino, A.C.; Guerrisi, M.; Mascalchi, M.; Toschi, N.; Diciotti, S. MR scanner systems should be adequately characterized in diffusion-MRI of the breast. PLoS ONE 2014, 9, e86280. [Google Scholar] [CrossRef]
- Malyarenko, D.; Galbán, C.J.; Londy, F.J.; Meyer, C.R.; Johnson, T.D.; Rehemtulla, A.; Ross, B.D.; Chenevert, T.L. Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J. Magn. Reson. Imaging JMRI 2013, 37, 1238–1246. [Google Scholar] [CrossRef]
- Mattiello, J.; Basser, P.J.; LeBihan, D. Analytical expressions for the b matrix in NMR diffusion imaging and spectroscopy. J. Magn. Reson. Ser. A 1994, 108, 131–141. [Google Scholar] [CrossRef]
- Gallichan, D.; Scholz, J.; Bartsch, A.; Behrens, T.E.; Robson, M.D.; Miller, K.L. Addressing a systematic vibration artifact in diffusion-weighted MRI. Hum. Brain Mapp. 2010, 31, 193–202. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Gerig, G.; Gouttard, S.; Tao, R.; Fletcher, T.; Styner, M. Quality Control of Diffusion Weighted Images. Proc. SPIE Int. Soc. Opt. Eng. 2010, 7628, 76280J. [Google Scholar] [CrossRef]
- Shukla-Dave, A.; Obuchowski, N.A.; Chenevert, T.L.; Jambawalikar, S.; Schwartz, L.H.; Malyarenko, D.; Huang, W.; Noworolski, S.M.; Young, R.J.; Shiroishi, M.S.; et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J. Magn. Reson. Imaging JMRI 2019, 49, e101–e121. [Google Scholar] [CrossRef]
- Palacios, E.M.; Martin, A.J.; Boss, M.A.; Ezekiel, F.; Chang, Y.S.; Yuh, E.L.; Vassar, M.J.; Schnyer, D.M.; MacDonald, C.L.; Crawford, K.L.; et al. Toward Precision and Reproducibility of Diffusion Tensor Imaging: A Multicenter Diffusion Phantom and Traveling Volunteer Study. AJNR Am. J. Neuroradiol. 2017, 38, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Paquier, Z.; Chao, S.L.; Bregni, G.; Sanchez, A.V.; Guiot, T.; Dhont, J.; Gulyban, A.; Levillain, H.; Sclafani, F.; Reynaert, N.; et al. Pre-trial quality assurance of diffusion-weighted MRI for radiomic analysis and the role of harmonisation. Phys. Medica PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. (AIFB) 2022, 103, 138–146. [Google Scholar] [CrossRef]
- Yung, J.P.; Ding, Y.; Hwang, K.P.; Cardenas, C.E.; Ai, H.; Fuller, C.D.; Stafford, R.J. Quantitative Evaluation of apparent diffusion coefficient in a large multi-unit institution using the QIBA diffusion phantom. medRxiv 2020. [Google Scholar] [CrossRef]
- qCal-MR Quality Control (QC) Software. Available online: https://qcalsoftware.com/ (accessed on 25 February 2024).
- Jones, D.K.; Cercignani, M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010, 23, 803–820. [Google Scholar] [CrossRef]
- Asan Image Metrics AsanJ-Stroke Software. Available online: https://aim-aicro.com/software/strokevolumetry (accessed on 25 February 2024).
- Helenius, J.; Soinne, L.; Perkiö, J.; Salonen, O.; Kangasmäki, A.; Kaste, M.; Carano, R.A.; Aronen, H.J.; Tatlisumak, T. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am. J. Neuroradiol. 2002, 23, 194–199. [Google Scholar] [PubMed]
- Holz, M.; Heil, S.R.; Sacco, A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2000, 2, 4740–4742. [Google Scholar] [CrossRef]
- Alliance, Q.I.B. QIBA profile: Diffusion-weighted magnetic resonance imaging (DWI). Quantitative Imaging Biomarkers Alliance. 2019.Profile Consens. 2020. [Google Scholar]
Parameters | QIBA Phantom Protocol |
---|---|
Field strength (T) | 1.5 or 3.0 T |
Receiver Coil | Head coil |
Sequence | DWI EPI |
Slice orientation | Axial |
FOV | 220 × 220 mm |
Acquired Voxel size | 1.72 × 1.72 × 4 mm |
Acquired Matrix (frequency × phase) | 128 × 128 |
Recon voxel size | 0.86 × 0.86 × 4 mm |
Recon Matrix | 128 × 128 to 256 × 256 |
Parallel imaging acceleration | factor = 2 |
Phase encode direction | Anterior-posterior |
Frequency encode direction | Right-Left |
Oversampling | Off |
Number of slices | 25 |
Packages | 1 |
Slice thickness | 4 mm |
Slice gap | 1 mm |
B0 Shim | Best quality volume shim |
B1 Shim | Off or default |
Scan mode | Multislice |
Technique | Spin echo |
Fast imaging mode | Echo planar imaging |
Shot mode | Single shot |
Echoes | 1 |
Partial echo | Off |
TE | shortest |
Flip angle | 90 deg |
TR | 8000 ms |
Half scan factor | ≥0.75 |
Water fat shift | Minimum |
Fat suppression | STIR |
Diffusion encoding directions | Three orthogonal |
b-value | 0, 500, 1000, 1500, 2000 |
Average high b-value | Off |
Gradient mode | Maximum |
NEX | 2 |
Preparation phases | Full prep |
Geometry phases | Default |
Bandwidth in frequency-direction | Maximum |
Parameters | QIBA Clinical Brain Protocol Requirement | Institution Clinical Brain Protocol for | |||
---|---|---|---|---|---|
GE SIGNA Architect | Philips Ingenia CX | Siemens MAGNETOM Vida | Siemens Avanto | ||
Field strength (T) | 1.5 or 3.0 T | 3.0 T | 3.0 T | 3.0 T | 1.5 T |
Acquisition sequence | SS-EPI | SS-EPI | SS-EPI | SS-EPI | SS-EPI |
Receiver Coil | Ideal ∫: 32 channel head array coil | 16- or 32-channel head coil | 16- or 32-channel head coil | 16- or 32-channel head coil | 16- or 32-channel head coil |
Target ∬: 8–32 channel head array coil | |||||
Acceptable ∮: 8 channel head array coil | |||||
Fat suppression | On | STIR | STIR | STIR | STIR |
Number of b-values | Ideal: >3 (including one b = 0–50; one 450–550 s/mm2; and one at highest b-value) | 2 | 2 | 2 | 2 |
Target/Acceptable: 2 (including b = 0–50 s/mm2 and at highest b-value) | |||||
Minimum highest b-value | Ideal/Target: b = 1000 s/mm2 Acceptable: b = 850–999 s/mm2 | 1000 s/mm2 | 1000 s/mm2 | 1000 s/mm2 | 1000 s/mm2 |
Diffusion encoding directions | Ideal/Target: >3-orthogonal, combined gradient channels | 3-orthogonal, combined gradient channels | 3-orthogonal, combined gradient channels | 3-orthogonal, combined gradient channels | 3-orthogonal, combined gradient channels |
Acceptable: >3-orthogonal, single gradient channels | |||||
Slice thickness | Ideal: <4 mm | 5 mm | 5 mm | 5 mm | 5 mm |
Target: 4–5 mm | |||||
Acceptable: 5 mm | |||||
Gap thickness | Ideal/Target: 0–1 mm | 2 mm | 2 mm | 2 mm | 2 mm |
Acceptable: 1–2 mm | |||||
Field-of-view | 220–240 mm | 250 × 250 mm | 250 × 250 mm | 250 × 250 mm | 250 × 250 mm |
Acquired Matrix (frequency × phase) | Ideal/Target: (160–256) × (160–256), or 1.5–1 mm in-plane resolution | 128 × 128 | 128 × 128 | 128 × 128 | 128 × 128 |
Acceptable: 128 × 128, or 1.7 mm in-plane resolution | |||||
Plane orientation | Transversal-axial | Transversal-axial | Transversal-axial | Transversal-axial | Transversal-axial |
Phase-encode/frequency-encode direction | Anterior-Posterior/Right-Left | Anterior-Posterior /Right-Left | Anterior-Posterior /Right-Left | Anterior-Posterior /Right-Left | Anterior-Posterior/Right-Left |
Number of averages | Ideal/Target: ≥2 | 1 | 1 | 1 | 2 |
Acceptable:1 | |||||
Half-scan factor | Acceptable/Target: >0.65 | 0.811 | 0.811 | 0.811 | 0.811 |
In-plane parallel imaging acceleration factor | Ideal: 2–3 | factor = 2.5 | factor = 2.5 | factor = 2.5 | factor = 2.5 |
Acceptable/Target: 2 | |||||
TR | Ideal: >5000 ms | 3000 ms | 3000 ms | 3000 ms | 3000 ms |
Acceptable/Target: 3000–5000 ms | |||||
TE | Ideal: <60 ms | <60 ms | <60 ms | <60 ms | <60 ms |
Target: minimum TE | |||||
Acceptable: <120 ms | |||||
Receiver Bandwidth | Ideal/Target: maximum possible in frequency encoding direction (minimum echo spacing) | Maximum | Maximum | Maximum | Maximum |
Acceptable: >1000 Hz/voxel |
Performance Metrics | Definition | QIBA Claim | |
---|---|---|---|
Bias in ADC measurement | ADC bias = μ − DCtrue; or % bias = 100% | μ: mean ADC (mm2/s) within the ROI DCtrue: ADC value for 0% PVP = 1.1 × 10−3 mm2/s | Central measurement tube (0% PVP) ≤ 4% |
Repeatability | RC = 2.77 ∙ σω wCV = 100% | σω: standard deviation | short-term RC < 1.5 × 10−5 mm2/s = 0.015 < μm2/s (wCV < 0.5%) long-term RC < 6.5 × 10−5 mm2/s = 0.065 < μm2/s (wCV < 2.2%) |
Linearity | μ = β0 + β1 DCtrue | R-squared (R2) of the linear model fit > 0.90 95% CI for the slope within the interval 0.95 to 1.05. | |
b-value dependence | ADC b-value dependence = 100% | bmin = b0 | Maximum difference between any of ADC derived from variable b-values to their average ≤ 2% for central tube |
Random measurement error | Random measurement error = 100% | ≤2% for central tube | |
SNR | SNR = | b = 0 SNR ≥ 45 |
Performance Metrics | QIBA Claims | GE SIGNA Architect | Philips Ingenia CX | Siemens MAGNETOM Vida | Siemens Avanto | |
---|---|---|---|---|---|---|
Category | Metric | |||||
Accuracy | ADC bias (%) | Abs () ≤ 3.6 | −0.4% | −2.3% | −2.1% | −1.5% |
Repeatability | RC | <15 μm2/s | 3.5 μm2/s | 8.5 μm2/s | 0.3 μm2/s | 2.9 μm2/s |
wCV | ≤0.5% | 0.1% | 0.3% | 0.1% | 0.1% | |
Linearity | Slope | 0.95–1.05 | 0.98 | 0.98 | 0.98 | 1.00 |
R2 | >0.90 | 0.999 | 0.999 | 0.999 | 1.0 | |
B-value dependence | Max b-value Dependence | ≤2% | 0.3% | 0.6% | 0.1% | 1.5% |
Precision | Random measurement error | ≤2% | 0.5% | 0.7% | 0.6% | 1.7% |
SNR | SNR for 0% water on b-value 0 | ≥45 | 105.2 | 56.0 | 230.1 | 117.4 |
Performance Metrics | QIBA Claims | GE SIGNA Architect | Philips Ingenia CX | Siemens MAGNETOM Vida | Siemens Avanto | |
---|---|---|---|---|---|---|
Category | Metric | |||||
Accuracy | ADC bias (%) | Abs () ≤ 3.6 | −3.1% | −0.9% | −1.5% | −0.7% |
Repeatability | RC | <15 μm2/s | 2.6 μm2/s | 1.2 μm2/s | 2.9 μm2/s | 3.1 μm2/s |
wCV | ≤0.5% | 0.1% | 0% | 0.1% | 0.1% | |
Linearity | Slope | 0.95–1.05 | 0.95 | 1.00 | 0.97 | 0.99 |
R2 | >0.90 | 0.995 | 0.997 | 0.997 | 0.998 | |
B-value dependence † | Max b-value Dependence | ≤2% | NA | NA | NA | NA |
Precision | Random measurement error | ≤2% | 0.5% | 0.4% | 0.4% | 0.8% |
SNR | SNR for 0% water on b-value 0 | ≥45 | 145.6 | 323.4 | 380.3 | 199.7 |
GE SIGNA Architect | Philips Ingenia CX | Siemens Avanto | ||
---|---|---|---|---|
Image quality evaluation† | ||||
Number of patients (scans) | N = 3 (3 scans) | N = 14 (17 scans) | N = 17 (35 scans) | |
Low SNR | 3 ± 0 | 3 ± 0 | 3 ± 0 | |
Ghost/parallel imaging artifacts | 3 ± 0 | 3 ± 0 | 3 ± 0 | |
Severe spatial distortion | 3 ± 0 | 3 ± 0 | 3.0 ± 0.2 | |
Eddy currents | 3 ± 0 | 3 ± 0 | 3 ± 0 | |
Fat suppression | 3 ± 0 | 3 ± 0 | 3 ± 0 | |
Motion artefacts | 3 ± 0 | 3 ± 0 | 3 ± 0 | |
Nyquist ghost | 3 ± 0 | 2.9 ± 0.3 | 3.0 ± 0.2 | |
Repeatability evaluation | ||||
Number of patients | N = 0 | N = 3 (6 scans) | N = 14 (28 scans) | |
White matter | ADC value (μm2/s) † | N.A. | 807.7 ± 16.7 | 801.4 ± 16.2 |
RC (μm2/s) ‡ | N.A. | 46.3 | 44.9 | |
wCV (%) ‡ | N.A. | 2.1 | 2.0 | |
CSF | ADC value (μm2/s) † | N.A. | 3079.4 ± 63.6 | 3013.0 ± 59.9 |
RC (μm2/s) ‡ | N.A. | 176.3 | 166.1 | |
wCV (%) ‡ | N.A. | 2.1 | 2.00 | |
Reproducibility evaluation | ||||
Number of patients | N = 3 (3 scans) | N = 14 (17 scans) | N = 17 (35 scans) | |
White matter | ADC value (μm2/s) † | 843.7 ± 15.3 | 813.7 ± 15.4 | 803.7 ± 15.2 |
RC (μm2/s) ‡ | 42.5 | 42.7 | 42.1 | |
wCV (%) ‡ | 1.8 | 1.9 | 1.9 | |
CSF | ADC value (μm2/s) † | 3156.5 ± 65.9 | 3114.7 ± 63.5 | 3011.0 ± 60.4 |
RC (μm2/s) ‡ | 182.6 | 175.9 | 167.2 | |
wCV (%) ‡ | 2.1 | 2.0 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.J.; Kim, K.W.; Ko, Y.; Cho, Y.C.; Jang, J.S.; Ahn, H.; Kim, D.W.; Kim, M.Y. Whole Process of Standardization of Diffusion-Weighted Imaging: Phantom Validation and Clinical Application According to the QIBA Profile. Diagnostics 2024, 14, 583. https://doi.org/10.3390/diagnostics14060583
Choi SJ, Kim KW, Ko Y, Cho YC, Jang JS, Ahn H, Kim DW, Kim MY. Whole Process of Standardization of Diffusion-Weighted Imaging: Phantom Validation and Clinical Application According to the QIBA Profile. Diagnostics. 2024; 14(6):583. https://doi.org/10.3390/diagnostics14060583
Chicago/Turabian StyleChoi, Se Jin, Kyung Won Kim, Yousun Ko, Young Chul Cho, Ji Sung Jang, Hyemin Ahn, Dong Wook Kim, and Mi Young Kim. 2024. "Whole Process of Standardization of Diffusion-Weighted Imaging: Phantom Validation and Clinical Application According to the QIBA Profile" Diagnostics 14, no. 6: 583. https://doi.org/10.3390/diagnostics14060583
APA StyleChoi, S. J., Kim, K. W., Ko, Y., Cho, Y. C., Jang, J. S., Ahn, H., Kim, D. W., & Kim, M. Y. (2024). Whole Process of Standardization of Diffusion-Weighted Imaging: Phantom Validation and Clinical Application According to the QIBA Profile. Diagnostics, 14(6), 583. https://doi.org/10.3390/diagnostics14060583