Ultrasound during Advanced Life Support—Help or Harm?
Abstract
:1. Introduction
2. Recommendations by Resuscitation Societies
3. Use of Ultrasound for Diagnosis in Resuscitation
4. Use of Ultrasound for Prognosis during ALS
5. Other Uses of Ultrasound in CPR
6. Potential Harm of Ultrasound during ALS
7. Outcome Trials of Ultrasound in ALS
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Werner, J.A.; Greene, H.L.; Janko, C.L.; Cobb, L.A. Visualization of cardiac valve motion in man during external chest compression using two-dimensional echocardiography. Implications regarding the mechanism of blood flow. Circulation 1981, 63, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Faculty of Intensive Care Medicine. ICM Curriculum; Faculty of Intensive Care Medicine: London, UK, 2021. [Google Scholar]
- College of Intensive Care Medicine of Australia and New Zealand. Statement on the Role of Echocardiography in Intensive Care Medicine; College of Intensive Care Medicine of Australia and New Zealand: Prahran, VIC, Australia, 2016. [Google Scholar]
- Australasian College for Emergency Medicine. The Use of Focused Ultrasound in Emergency Medicine; Australasian College for Emergency Medicine: West Melbourne, VIC, Australia, 2022. [Google Scholar]
- Levitov, A.; Frankel, H.L.; Blaivas, M.; Kirkpatrick, A.W.; Su, E.; Evans, D.; Summerfield, D.T.; Slonim, A.; Breitkreutz, R.; Price, S.; et al. Guidelines for the Appropriate Use of Bedside General and Cardiac Ultrasonography in the Evaluation of Critically Ill Patients—Part II: Cardiac Ultrasonography. Crit. Care Med. 2016, 44, 1206–1227. [Google Scholar] [CrossRef] [PubMed]
- Taiwan Society of Emergency Medicine. Statement of Ultrasound Training; Taiwan Society of Emergency Medicine: Taipei, Taiwan, 2023. [Google Scholar]
- Soar, J.; Bottiger, B.W.; Carli, P.; Couper, K.; Deakin, C.D.; Djarv, T.; Lott, C.; Olasveengen, T.; Paal, P.; Pellis, T.; et al. European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation 2021, 161, 115–151. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, M.H.; Greif, R.; Morley, P.T.; Ng, K.C.; Olasveengen, T.M.; Singletary, E.M.; Soar, J.; Cheng, A.; Drennan, I.R.; Liley, H.G.; et al. 2022 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations: Summary from the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2022, 146, e483–e557. [Google Scholar] [PubMed]
- Merchant, R.M.; Topjian, A.A.; Panchal, A.R.; Cheng, A.; Aziz, K.; Berg, K.M.; Lavonas, E.J.; Magid, D.J. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S337–S357. [Google Scholar] [CrossRef] [PubMed]
- Australian and New Zealand Council on Resuscitation. ANZCOR Guidelines. In Guideline 11.6—Equipment and Techniques in Adult Advanced Life Support; Australian and New Zealand Council on Resuscitation: Melbourne, VIC, Australia, 2023. [Google Scholar]
- Nolan, J.P.; Maconochie, I.; Soar, J.; Olasveengen, T.M.; Greif, R.; Wyckoff, M.H.; Singletary, E.M.; Aickin, R.; Berg, K.M.; Mancini, M.E.; et al. Executive Summary: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 2020, 142, S2–S27. [Google Scholar] [CrossRef]
- Perkins, G.D.; Graesner, J.T.; Semeraro, F.; Olasveengen, T.; Soar, J.; Lott, C.; Van de Voorde, P.; Madar, J.; Zideman, D.; Mentzelopoulos, S.; et al. European Resuscitation Council Guidelines 2021: Executive summary. Resuscitation 2021, 161, 1–60. [Google Scholar] [CrossRef]
- Lott, C.; Truhlář, A.; Alfonzo, A.; Barelli, A.; González-Salvado, V.; Hinkelbein, J.; Nolan, J.P.; Paal, P.; Perkins, G.D.; Thies, K.-C.; et al. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation 2021, 161, 152–219. [Google Scholar] [CrossRef]
- Atkinson, P.; Bowra, J.; Milne, J.; Lewis, D.; Lambert, M.; Jarman, B.; Noble, V.E.; Lamprecht, H.; Harris, T.; Connolly, J.; et al. International Federation for Emergency Medicine Consensus Statement: Sonography in hypotension and cardiac arrest (SHoC): An international consensus on the use of point of care ultrasound for undifferentiated hypotension and during cardiac arrest. Can. J. Emerg. Med. 2017, 19, 459–470. [Google Scholar] [CrossRef]
- Oh, J.; Cha, K.C.; Lee, J.H.; Park, S.; Kim, D.H.; Lee, B.K.; Park, J.S.; Jung, W.J.; Lee, D.K.; Roh, Y.I.; et al. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 4. Adult advanced life support. Clin. Exp. Emerg. Med. 2021, 8, S26–S40. [Google Scholar] [CrossRef]
- American College of Emergency Physicians. Ultrasound Guidelines: Emergency, Point-of-Care, and Clinical Ultrasound Guidelines in Medicine; American College of Emergency Physicians: Irving, TX, USA, 2023. [Google Scholar]
- Royal College for Emergency Medicine. RCEM 2021 Curriculum Ultrasound Education & Training; Royal College for Emergency Medicine: London, UK, 2022. [Google Scholar]
- Fair, J.; Mallin, M.; Mallemat, H.; Zimmerman, J.; Arntfield, R.; Kessler, R.; Bailitz, J.; Blaivas, M. Transesophageal Echocardiography: Guidelines for Point-of-Care Applications in Cardiac Arrest Resuscitation. Ann. Emerg. Med. 2018, 71, 201–207. [Google Scholar] [CrossRef] [PubMed]
- American Heart Association. Adult Cardiac Arrest Algorithm; American Heart Association: Chicago, IL, USA, 2020. [Google Scholar]
- Oren-Grinberg, A.; Talmor, D.; Brown, S.M. Focused critical care echocardiography. Crit. Care Med. 2013, 41, 2618–2626. [Google Scholar] [CrossRef] [PubMed]
- Gluer, R.; Murdoch, D.; Haqqani, H.M.; Scalia, G.M.; Walters, D.L. Pericardiocentesis—How to do it. Heart Lung Circ. 2015, 24, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Wan Chuan, T.; Ab Rahman, J.; Via, G.; Tavazzi, G. Ultrasound-guided pericardiocentesis: A novel parasternal approach. Eur. J. Emerg. Med. 2018, 25, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.; Kang, S.M.; Kim, D.H.; Ko, Y.G.; Choi, D.; Ha, J.W.; Rim, S.J.; Jang, Y.; Chung, N.; Shim, W.H.; et al. Clinical and echocardiographic characteristics of pericardial effusion in patients who underwent echocardiographically guided pericardiocentesis: Yonsei Cardiovascular Center experience, 1993–2003. Yonsei Med. J. 2004, 45, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Baqi, A.; Ahmed, I. Pericardiocentesis Indications and Complications: A Retrospective Observational Study in a Tertiary Care Hospital in Karachi, Pakistan. Cureus 2020, 12, e10102. [Google Scholar] [CrossRef]
- Tsang, T.S.; Enriquez-Sarano, M.; Freeman, W.K.; Barnes, M.E.; Sinak, L.J.; Gersh, B.J.; Bailey, K.R.; Seward, J.B. Consecutive 1127 therapeutic echocardiographically guided pericardiocenteses: Clinical profile, practice patterns, and outcomes spanning 21 years. Mayo. Clin. Proc. 2002, 77, 429–436. [Google Scholar] [CrossRef]
- Maggiolini, S.; Gentile, G.; Farina, A.; De Carlini, C.C.; Lenatti, L.; Meles, E.; Achilli, F.; Tempesta, A.; Brucato, A.; Imazio, M. Safety, Efficacy, and Complications of Pericardiocentesis by Real-Time Echo-Monitored Procedure. Am. J. Cardiol. 2016, 117, 1369–1374. [Google Scholar] [CrossRef]
- Akyuz, S.; Zengin, A.; Arugaslan, E.; Yazici, S.; Onuk, T.; Ceylan, U.S.; Gungor, B.; Gurkan, U.; Kemaloglu Oz, T.; Kasikcioglu, H.; et al. Echo-guided pericardiocentesis in patients with clinically significant pericardial effusion. Outcomes over a 10-year period. Herz 2015, 40 (Suppl. S2), 153–159. [Google Scholar] [CrossRef]
- Lien, W.-C.; Hsu, S.-H.; Chong, K.-M.; Sim, S.-S.; Wu, M.-C.; Chang, W.-T.; Fang, C.-C.; Ma, M.H.-M.; Chen, S.-C.; Chen, W.-J. US-CAB protocol for ultrasonographic evaluation during cardiopulmonary resuscitation: Validation and potential impact. Resuscitation 2018, 127, 125–131. [Google Scholar] [CrossRef]
- Lin, T.; Chen, Y.; Lu, C.; Wang, M. Use of transoesophageal echocardiography during cardiac arrest in patients undergoing elective non-cardiac surgery. Br. J. Anaesth. 2006, 96, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.C.; Kim, H.I.; Kim, O.H.; Cha, Y.S.; Kim, H.; Lee, K.H.; Hwang, S.O. Echocardiographic patterns of postresuscitation myocardial dysfunction. Resuscitation 2018, 124, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Elfwen, L.; Hildebrand, K.; Schierbeck, S.; Sundqvist, M.; Ringh, M.; Claesson, A.; Olsson, J.; Nordberg, P. Focused cardiac ultrasound after return of spontaneous circulation in cardiac-arrest patients. Resuscitation 2019, 142, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Volpicelli, G. Common pitfalls in point-of-care ultrasound: A practical guide for emergency and critical care physicians. Crit. Ultrasound J. 2016, 8, 15. [Google Scholar] [CrossRef]
- Berg, R.A.; Sorrell, V.L.; Kern, K.B.; Hilwig, R.W.; Altbach, M.I.; Hayes, M.M.; Bates, K.A.; Ewy, G.A. Magnetic resonance imaging during untreated ventricular fibrillation reveals prompt right ventricular overdistention without left ventricular volume loss. Circulation 2005, 111, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, R.; Granfeldt, A.; Botker, M.T.; Mygind-Klausen, T.; Kirkegaard, H.; Lofgren, B. The Right Ventricle Is Dilated During Resuscitation from Cardiac Arrest Caused by Hypovolemia: A Porcine Ultrasound Study. Crit. Care Med. 2017, 45, e963–e970. [Google Scholar] [CrossRef] [PubMed]
- Ramjee, V.; Grossestreuer, A.V.; Yao, Y.; Perman, S.M.; Leary, M.; Kirkpatrick, J.N.; Forfia, P.R.; Kolansky, D.M.; Abella, B.S.; Gaieski, D.F. Right ventricular dysfunction after resuscitation predicts poor outcomes in cardiac arrest patients independent of left ventricular function. Resuscitation 2015, 96, 186–191. [Google Scholar] [CrossRef]
- Linnemann, B. Leitlinie Diagnostik und Therapie der Venenthrombose und Lungenembolie; Deutsche Gesellschaft für Angiologie: Berlin, Germany, 2023. [Google Scholar]
- Alrajhi, K.; Woo, M.Y.; Vaillancourt, C. Test characteristics of ultrasonography for the detection of pneumothorax: A systematic review and meta-analysis. Chest 2012, 141, 703–708. [Google Scholar] [CrossRef]
- Goudie, A.; Hoffmann, B.; Prosch, H.; Wustner, M. Thorax. In WFUMB Course Book; Nurnberg, D., Chammas, M.C., Gilja, O.H., Sporea, I., Sirli, R., Eds.; World Federation for Ultrasound in Medicine and Biology: London, UK, 2021. [Google Scholar]
- Inocencio, M.; Childs, J.; Chilstrom, M.L.; Berona, K. Ultrasound Findings in Tension Pneumothorax: A Case Report. J. Emerg. Med. 2017, 52, e217–e220. [Google Scholar] [CrossRef]
- Zengin, S.; Gümüşboğa, H.; Sabak, M.; Eren, Ş.H.; Altunbas, G.; Al, B. Comparison of manual pulse palpation, cardiac ultrasonography and Doppler ultrasonography to check the pulse in cardiopulmonary arrest patients. Resuscitation 2018, 133, 59–64. [Google Scholar] [CrossRef]
- Kang, S.Y.; Jo, I.J.; Lee, G.; Park, J.E.; Kim, T.; Lee, S.U.; Hwang, S.Y.; Shin, T.G.; Kim, K.; Shim, J.S.; et al. Point-of-care ultrasound compression of the carotid artery for pulse determination in cardiopulmonary resuscitation. Resuscitation 2022, 179, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.E.; Gandhi, P.; Najafali, D.; Gregory, M.M.; Jacob, N.; Helberg, T.; Thomas, C.; Lowie, B.J.; Huis In’t Veld, M.A.; Cruz-Cano, R. Manual Palpation vs. Femoral Arterial Doppler Ultrasound for Comparison of Pulse Check Time During Cardiopulmonary Resuscitation in the Emergency Department: A Pilot Study. J. Emerg. Med. 2021, 61, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Rabjohns, J.; Quan, T.; Boniface, K.; Pourmand, A. Pseudo-pulseless electrical activity in the emergency department, an evidence based approach. Am. J. Emerg. Med. 2020, 38, 371–375. [Google Scholar] [CrossRef]
- Watts, S.; Smith, J.E.; Gwyther, R.; Kirkman, E. Closed chest compressions reduce survival in an animal model of haemorrhage-induced traumatic cardiac arrest. Resuscitation 2019, 140, 37–42. [Google Scholar] [CrossRef]
- Jeffcoach, D.R.; Gallegos, J.J.; Jesty, S.A.; Coan, P.N.; Chen, J.; Heidel, R.E.; Daley, B.J. Use of CPR in hemorrhagic shock, a dog model. J. Trauma. Acute Care Surg. 2016, 81, 27–33. [Google Scholar] [CrossRef]
- Prosen, G.; Križmarić, M.; Završnik, J.; Grmec, Š. Impact of Modified Treatment in Echocardiographically Confirmed Pseudo-Pulseless Electrical Activity in Out-of-Hospital Cardiac Arrest Patients with Constant End-Tidal Carbon Dioxide Pressure during Compression Pauses. J. Int. Med. Res. 2010, 38, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, R.; Weekes, A.; Adhikari, S.; Noble, V.; Nomura, J.T.; Theodoro, D.; Woo, M.; Atkinson, P.; Blehar, D.; Brown, S.; et al. A retrospective study of pulseless electrical activity, bedside ultrasound identifies interventions during resuscitation associated with improved survival to hospital admission. A REASON Study. Resuscitation 2017, 120, 103–107. [Google Scholar] [CrossRef]
- Pyo, S.Y.; Park, G.J.; Kim, S.C.; Kim, H.; Lee, S.W.; Lee, J.H. Impact of the modified SESAME ultrasound protocol implementation on patients with cardiac arrest in the emergency department. Am. J. Emerg. Med. 2021, 43, 62–68. [Google Scholar] [CrossRef]
- Reynolds, J.C.; Nicholson, T.; O’Neil, B.; Drennan, I.R.; Issa, M.; Welsford, M. Diagnostic test accuracy of point-of-care ultrasound during cardiopulmonary resuscitation to indicate the etiology of cardiac arrest: A systematic review. Resuscitation 2022, 172, 54–63. [Google Scholar] [CrossRef]
- Masoumi, B.; Azizkhani, R.; Heydari, F.; Zamani, M.; Nasr Isfahani, M. The Role of Cardiac Arrest Sonographic Exam (CASE) in Predicting the Outcome of Cardiopulmonary Resuscitation; a Cross-sectional Study. Arch. Acad. Emerg. Med. 2021, 9, e48. [Google Scholar]
- Ho, Y.J.; Sung, C.W.; Chen, Y.C.; Lien, W.C.; Chang, W.T.; Huang, C.H. Performance of intra-arrest echocardiography: A systematic review. West. J. Emerg. Med. 2024, in press. [Google Scholar]
- Hu, K.; Gupta, N.; Teran, F.; Saul, T.; Nelson, B.P.; Andrus, P. Variability in Interpretation of Cardiac Standstill Among Physician Sonographers. Ann. Emerg. Med. 2018, 71, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.C.; Issa, M.S.; Nicholson, T.C.; Drennan, I.R.; Berg, K.M.; O’Neil, B.J.; Welsford, M. Prognostication with point-of-care echocardiography during cardiac arrest: A systematic review. Resuscitation 2020, 152, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Dudek, M.; Szarpak, L.; Peacock, F.W.; Gasecka, A.; Michalski, T.; Wroblewski, P.; Kaminska, H.; Borkowska, G.; Skrzypek, E.; Smereka, A.; et al. Diagnostic performance of point-of-use ultrasound of resuscitation outcomes: A systematic review and meta-analysis of 3265 patients. Cardiol. J. 2023, 30, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Beckett, N.; Atkinson, P.; Fraser, J.; Banerjee, A.; French, J.; Talbot, J.A.; Stoica, G.; Lewis, D. Do combined ultrasound and electrocardiogram-rhythm findings predict survival in emergency department cardiac arrest patients? The Second Sonography in Hypotension and Cardiac Arrest in the Emergency Department (SHoC-ED2) study. CJEM 2019, 21, 739–743. [Google Scholar] [CrossRef]
- Thandar, S.; Sahu, A.K.; Sinha, T.P.; Bhoi, S. Role of initial cardiac activity assessed by point-of-care ultrasonography in predicting cardiac arrest outcomes: A prospective cohort study. Turk. J. Emerg. Med. 2023, 23, 24–29. [Google Scholar]
- Teran, F.; Paradis, N.A.; Dean, A.J.; Delgado, M.K.; Linn, K.A.; Kramer, J.A.; Morgan, R.W.; Sutton, R.M.; Gaspari, R.; Weekes, A.; et al. Quantitative characterization of left ventricular function during pulseless electrical activity using echocardiography during out-of-hospital cardiac arrest. Resuscitation 2021, 167, 233–241. [Google Scholar] [CrossRef]
- Lau, V.; Blaszak, M.; Lam, J.; German, M.; Myslik, F. Point-of-Care Resuscitative Echocardiography Diagnosis of Intracardiac Thrombus during cardiac arrest (PREDICT Study): A retrospective, observational cohort study. Resusc. Plus 2022, 10, 100218. [Google Scholar] [CrossRef]
- Lalande, E.; Burwash-Brennan, T.; Burns, K.; Harris, T.; Thomas, S.; Woo, M.Y.; Atkinson, P. Is point-of-care ultrasound a reliable predictor of outcome during traumatic cardiac arrest? A systematic review and meta-analysis from the SHoC investigators. Resuscitation 2021, 167, 128–136. [Google Scholar] [CrossRef]
- Olasveengen, T.M.; Semeraro, F.; Ristagno, G.; Castren, M.; Handley, A.; Kuzovlev, A.; Monsieurs, K.G.; Raffay, V.; Smyth, M.; Soar, J.; et al. European Resuscitation Council Guidelines 2021: Basic Life Support. Resuscitation 2021, 161, 98–114. [Google Scholar] [CrossRef]
- Teran, F.; Owyang, C.G.; Martin-Flores, M.; Lao, D.; King, A.; Palasz, J.; Araos, J.D. Hemodynamic impact of chest compression location during cardiopulmonary resuscitation guided by transesophageal echocardiography. Crit. Care 2023, 27, 319. [Google Scholar] [CrossRef] [PubMed]
- Zollner, K.; Sellmann, T.; Wetzchewald, D.; Schwager, H.; Cleff, C.; Thal, S.C.; Marsch, S. U SO CARE-The Impact of Cardiac Ultrasound during Cardiopulmonary Resuscitation: A Prospective Randomized Simulator-Based Trial. J. Clin. Med. 2021, 10, 5218. [Google Scholar] [CrossRef]
- Rooney, K.P.; Lahham, S.; Lahham, S.; Anderson, C.L.; Bledsoe, B.; Sloane, B.; Joseph, L.; Osborn, M.B.; Fox, J.C. Pre-hospital assessment with ultrasound in emergencies: Implementation in the field. World J. Emerg. Med. 2016, 7, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Clattenburg, E.J.; Wroe, P.; Brown, S.; Gardner, K.; Losonczy, L.; Singh, A.; Nagdev, A. Point-of-care ultrasound use in patients with cardiac arrest is associated prolonged cardiopulmonary resuscitation pauses: A prospective cohort study. Resuscitation 2018, 122, 65–68. [Google Scholar] [CrossRef]
- Huis In’t Veld, M.A.; Allison, M.G.; Bostick, D.S.; Fisher, K.R.; Goloubeva, O.G.; Witting, M.D.; Winters, M.E. Ultrasound use during cardiopulmonary resuscitation is associated with delays in chest compressions. Resuscitation 2017, 119, 95–98. [Google Scholar] [CrossRef]
- Gaspari, R.; Harvey, J.; DiCroce, C.; Nalbandian, A.; Hill, M.; Lindsay, R.; Nordberg, A.; Graham, P.; Kamilaris, A.; Gleeson, T. Echocardiographic pre-pause imaging and identifying the acoustic window during CPR reduces CPR pause time during ACLS—A prospective Cohort Study. Resusc. Plus 2021, 6, 100094. [Google Scholar] [CrossRef] [PubMed]
- Clattenburg, E.J.; Wroe, P.C.; Gardner, K.; Schultz, C.; Gelber, J.; Singh, A.; Nagdev, A. Implementation of the Cardiac Arrest Sonographic Assessment (CASA) protocol for patients with cardiac arrest is associated with shorter CPR pulse checks. Resuscitation 2018, 131, 69–73. [Google Scholar] [CrossRef]
- Lien, W.C.; Chong, K.M.; Chang, C.H.; Cheng, S.F.; Chang, W.T.; Ma, M.H.; Chen, W.J. Impact of Ultrasonography on Chest Compression Fraction and Survival in Patients with Out-of-hospital Cardiac Arrest. West. J. Emerg. Med. 2023, 24, 322–330. [Google Scholar] [CrossRef]
- Taylor, B.; Joshi, B.; Hutchison, L.; Manivel, V. Echocardiography does not prolong peri-shock pause in cardiopulmonary resuscitation using the COACH-RED protocol with non-expert sonographers in simulated cardiac arrest. Resusc. Plus 2020, 4, 100047. [Google Scholar] [CrossRef]
- Fair, J., 3rd; Mallin, M.P.; Adler, A.; Ockerse, P.; Steenblik, J.; Tonna, J.; Youngquist, S.T. Transesophageal Echocardiography During Cardiopulmonary Resuscitation Is Associated with Shorter Compression Pauses Compared with Transthoracic Echocardiography. Ann. Emerg. Med. 2019, 73, 610–616. [Google Scholar] [CrossRef]
Reversible Causes of Cardiac Arrest (5-H/5-T), According to the AHA-Algorithm | |
---|---|
Hypovolemia * | Tension pneumothorax * |
Hypoxia | Tamponade (cardiac) * |
Hypothermia | Thrombosis (myocardial infarction) * |
H+ ions (acidosis) | Thrombosis (pulmonary) * |
Hypo-/hyperkalemia | Toxins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudie, A.; Blaivas, M.; Horn, R.; Lien, W.-C.; Michels, G.; Wastl, D.; Dietrich, C.F. Ultrasound during Advanced Life Support—Help or Harm? Diagnostics 2024, 14, 593. https://doi.org/10.3390/diagnostics14060593
Goudie A, Blaivas M, Horn R, Lien W-C, Michels G, Wastl D, Dietrich CF. Ultrasound during Advanced Life Support—Help or Harm? Diagnostics. 2024; 14(6):593. https://doi.org/10.3390/diagnostics14060593
Chicago/Turabian StyleGoudie, Adrian, Michael Blaivas, Rudolf Horn, Wan-Ching Lien, Guido Michels, Daniel Wastl, and Christoph Frank Dietrich. 2024. "Ultrasound during Advanced Life Support—Help or Harm?" Diagnostics 14, no. 6: 593. https://doi.org/10.3390/diagnostics14060593
APA StyleGoudie, A., Blaivas, M., Horn, R., Lien, W. -C., Michels, G., Wastl, D., & Dietrich, C. F. (2024). Ultrasound during Advanced Life Support—Help or Harm? Diagnostics, 14(6), 593. https://doi.org/10.3390/diagnostics14060593