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Abstract: (1) Background: Acute asthma and bronchitis are common infectious diseases in children
that affect lower respiratory tract infections (LRTIs), especially in preschool children (below six
years). These diseases can be caused by viral or bacterial infections and are considered one of the
main reasons for the increase in the number of deaths among children due to the rapid spread
of infection, especially in low- and middle-income countries (LMICs). People sometimes confuse
acute bronchitis and asthma because there are many overlapping symptoms, such as coughing,
runny nose, chills, wheezing, and shortness of breath; therefore, many junior doctors face difficulty
differentiating between cases of children in the emergency departments. This study aims to find a
solution to improve the differential diagnosis between acute asthma and bronchitis, reducing time,
effort, and money. The dataset was generated with 512 prospective cases in Iraq by a consultant
pediatrician at Fallujah Teaching Hospital for Women and Children; each case contains 12 clinical
features. The data collection period for this study lasted four months, from March 2022 to June 2022.
(2) Methods: A novel method is proposed for merging two one-dimensional convolutional neural
networks (2-1D-CNNs) and comparing the results with merging one-dimensional neural networks
with long short-term memory (1D-CNNs + LSTM). (3) Results: The merged results (2-1D-CNNs)
show an accuracy of 99.72% with AUC 1.0, then we merged 1D-CNNs with LSTM models to obtain
the accuracy of 99.44% with AUC 99.96%. (4) Conclusions: The merging of 2-1D-CNNs is better
because the hyperparameters of both models will be combined; therefore, high accuracy results will
be obtained. The 1D-CNNs is the best artificial neural network technique for textual data, especially
in healthcare; this study will help enhance junior and practitioner doctors’ capabilities by the rapid
detection and differentiation between acute bronchitis and asthma without referring to the consultant
pediatrician in the hospitals.

Keywords: acute asthma and bronchitis; differential diagnosis; one-dimensional convolutional
neural network

1. Introduction

Acute bronchitis and asthma are common diseases that affect lower respiratory tract
infections (LRTI) in children worldwide and cause coughing, inflammation, and airway
irritation; these diseases can occur at any age and occur mostly in childhood due to their
rapid spread [1]. Most people confuse acute asthma and bronchitis because they have
overlapping symptoms (runny nose, shortness of breath, wheezing, and cough). Therefore,
practitioners and junior doctors face difficulty differentiating between them, especially in
urgent cases within emergency departments [2]. Acute asthma occurs in childhood by viral
infection or some allergens as the result of air irritants, such as fumes and dust mites, or
smoke and strong odors or perfumes; sometimes the causes may be deterioration in the case
of children through influenza, sinusitis, or upper respiratory infection, as well some cases
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due to family history of the children [3]. Symptoms of acute asthma start with shortness of
breath, wheezing, cough, and eczema, and symptoms differ according to age and immunity
of the child; it occurs as a result of the contraction of muscles where breathing becomes
difficult because the mucus production surrounding the airways increases, causing an
obstruction. Children’s illnesses can differ in terms of their severity and length; in some
cases, acute asthma episodes last only a few minutes if they are moderate and extend for
several hours or days if they are severe; therefore, it is necessary to visit hospital due to the
life-threatening risk to children, where pediatricians can be identified of acute asthma based
on examination and medical history of the child [4]. Acute bronchitis is a viral infection
(self-limited) of the upper airways, where a cough appears in infection cases, which is
the first of the diagnostic symptoms of the disease and can be diagnosed after excluding
other respiratory diseases, pain bronchiolitis, and colitis: it is considered the most common
clinical disease in the United States, Africa, and Asia [5]. Acute bronchitis can be caused by
Viruses or uncommon bacterial infections, and sometimes bacteria and irritant allergens
such as polluted air, smoke, and dust are reasons for acute bronchitis; it is estimated
that (5%) of the general population is infected with acute bronchitis each year, commonly
occurring during the flu season in winter and autumn. Acute bronchitis can occur as a
result of upper respiratory tract infections; symptoms of the disease include productive
cough, shortness of breath, wheezing, low-grade fever, headache, runny nose, and others.
Usually, the cough continues after acute bronchitis for 10–20 days and it sometimes lasts
for four weeks, with the average cough lasting for 18 days after acute bronchitis. Acute
asthma is diagnosed as acute bronchitis for one-third of patients who have an acute cough
misdiagnosed [6]. Acute asthma and bronchitis have various causes, but their symptoms
overlap, so when such symptoms occur, it is necessary to visit the emergency department
to receive proper treatment for the case that the pediatrician diagnoses; if cases last without
appropriate treatment, they may lead to chronic disease infection. A manual diagnosis to
differentiate between acute bronchitis and acute asthma is cumbersome and takes a long
time due to overlapping symptoms between the two diseases, reaching 12 clinical features,
to obtain an accurate clinical examination [7,8]. Large amounts of medical data can be
dealt with through a deep learning approach to speed up processing, find the patterns
between different and multiple sources, and increase predictive power; they can also reveal
the complexity and differentiate between nonlinear sources of latent variance related to
illness and early disease detection, especially diseases with overlapping symptoms [9].
Moreover, deep learning models can be trained in novel ideas and mechanisms, through
which new patterns and features of data can be discovered, in addition to motivating
healthcare specialists to make appropriate decisions in early diagnosis and treatment of
infected children without referring to consultants and improving access to healthcare
services provided. The proposed study aims to develop deep learning algorithms and
discover novel features by merging two one-dimensional convolutional neural network
models to improve differential diagnosis between acute asthma and bronchitis, evaluate
the proposed model’s performance, and compare the results with other models.

2. Literature Review

Katy Stokes et al. (2021) proposed machine learning methods to diagnose pneumonia
and bronchitis for a group of middle-income patients in Sarajevo Hospital and through
which data were collected for the infected patients, which consisted of 4500 real cases
that specialist doctors clinically examined. The dataset, which consisted of 3000 cases of
pneumonia and 1500 cases of bronchitis, ran from October 2017 to December 2018; it was
divided into 60% for training and 40% for testing, and during the study, three algorithms for
ML were tested (logistic regression, decision tree, and support vector machine (SVM). After
being developed by researchers and comparing them, the decision tree achieved the highest
accuracy of 93% with AUC [2]. Yao Tong et al. (2022) performed a study to predict the future
continuing of care (COC) by developing machine learning models for asthmatic patients
and discovering associated factors; the dataset consisted of 31,724 cases of patients who
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received healthcare from Washington University of Medicine for nine years, from January
2011 to December 2018, where the construction of the machine learning model relied on
examining 128 features with 10-fold cross-validations of the model. Several models of
ML have been used: baseline KNN, naive Bayes, (SVM), random forest, and XGBoost
(extreme gradient boosting), where the highest accuracy was 88.20% for the XGBoost
model; however, they used the ROC, which was 0.96%, and the average F1-score of 0.86%,
and the model can facilitate future clinical decisions and improve hospital management
outcomes [10]. Yoshihiko Raita et al. (2020) proposed a study aimed at developing ML
models to predict the severity of bronchiolitis in infants under one year, where real data of
1016 prospective cases were collected over three years (2011 to 2014) and distributed across
three seasons (November to April). The cases were clinically examined by specialized
doctors following the guidelines of the American Academy of Pediatrics; the most common
symptom was shortness of breath (SOB), the average age patients was 3.2 months, with
females accounting for 42%, and the length of stay in the hospital for the disease cases was
0 to 60 days. Researchers developed four machine learning models: Lasso regularization
with logistic regression, elastic net regularization with logistic regression, random forest,
and gradient boosted decision tree. After comparing the models, gradient boosted decision
tree outperformed with an accuracy of 95% and an AUC of 88% [11]. In 2015, Kiranyaz et al.
presented the first 1D-CNN and applied it to the ECG signals of affected patients, as it was
small and could adapt to the data type. In addition, the real time application was low in
cost; unlike the 2D-CNN, which contains operational time complexity and large bifurcation,
1D-CNN can be easily trained to achieve high performance by providing the minimum
number of complex computational operations and solving classification problems such
as heart diseases and respiratory diseases in children. It can also merge the features of
extension and application and make it in one adaptive environment [12]. LSTM is an
advanced version of the recurrent neural network (RNN) standard, which suffers from the
vanishing gradient problem because it contains short-term memory, especially with long
sequential data; therefore, LSTM can insert large blocks of memory and move information
forward and keep it from previous sequential parts instead of connected hidden units, thus
solving the vanishing gradient problem [13]. In 2020, Chen et al. proposed a method that
merges two models of 1D-CNN with LSTM for arrhythmia classification by automatically
identifying six ECG signals; researchers used a dataset from the PhysioNet website. In
addition, three sets of ECG data were used for comparison and evaluation. The final
results showed an accuracy of 99.32% [14]. In 2021, Muhammad Al-Khatib and others
presented a method based on merging two convolutional neural networks, 1D-CNN and
2D-CNN, to detect nerves in ultrasound images, where detecting nerves is one of the most
difficult tasks faced by anesthesiologists. The final results of the merged model showed
high accuracy in the experiments and outperformed other traditional CNNs by 10% [15].
Mohamed G. El-Shafiey and his colleagues (2021) proposed to build a hybrid deep learning
model by using bidirectional LSTM with 1D-CNN to predict heart disease through binary
classification for the presence or absence of illness. The researchers used the dataset
from the UCI ML library, which contains two parts: the first section of Statlog contains
120 cardiac records, while Cleveland contains 150 records. The dataset is divided into 70%
training and 30% testing. The final results of the proposed approach achieved in binary
classification were an accuracy of 89.01% and 82.72%, respectively, for the Cleveland and
Statlog dataset [16].

Despite the size of the actual dataset being good, it was not close to avoiding oversam-
pling. In addition, the researchers did not use other models to find a higher accuracy [2].
The accuracy was acceptable, and the researchers should have trained other types of deep
learning algorithms and discovered other features [10]. The idea for researchers was good
because they developed models and obtained high accuracy after collecting real prospective
cases, but the percentage of AUC does not correspond to some degree of accuracy [11]. The
researchers used deep learning algorithms and merging techniques; the accuracy of the
results was high [12–15].
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In this study, some gaps will be highlighted and processed; close samples were taken
from both diseases to avoid sampling. The number of cases of acute asthma was 248, and of
bronchitis, 264. The affected cases were examined exclusively by a consultant pediatrician
to avoid misdiagnosis. We compare the accuracy of the proposed model’s performance
with other modern models.

3. Dataset
3.1. Dataset Description

A consultant pediatrician collected the real dataset in Iraq at Fallujah Hospital for
Women and Children from 1 March 2022 to June 2022, where 512 prospective cases
(248 acute asthma and 264 acute bronchitis) were examined. Each case contained 12 clinical
features identified by the pediatrician, as in Table 1.

Table 1. Clinical features.

Features Acute Asthma Acute Bronchitis

Sex Male/Female Ma/leFemale
Age Under six years Under six years

Temperature Normal Low-grade fever
Runny nose +ve/−ve +ve

Headage −ve +ve
Cough +ve/dry +ve/productive

Wheeze +ve +ve/−ve
Chills −ve +ve/−ve

Family history +ve −ve
Shortness of breath +ve +ve

General malaise −ve +ve
Eczema (allergic) +ve −ve

Notes: (+ve) represents presence and (−ve) is absence; there is overlap in the symptoms for both acute bronchitis
and acute asthma such as cough, wheeze, runny nose, and shortness of breath; some cases were not stable during
the clinical examination and were variable according to immunity and environment of the child.

3.2. Influencing Factors

The factors influencing the number of cases are weather fluctuations that the city
experienced during the period, such as high and low temperatures, air pollution, and dust.
Acute bronchitis increased in March and April when temperatures were low, while acute
asthma increased in May and June when the city weather was dusty [17,18]. Table 2 shows
the number of cases distributed by month.

Table 2. Number of cases.

Month Acute Asthma Acute Bronchitis

March 39 94
April 63 78
May 77 49
June 69 43
Sum 248 264

Percentage Values 48.4375% 51.5625%

3.3. Dataset Analysis

Data analysis is necessary to know the relationship between positive or negative
variables and the type of relationship: linear or nonlinear. This study used the correlation
matrix in Figure 1 to determine the most closely related pairs between variables through
heatmaps of correlation to find the strength of the relationship between the numerical
variables of the dataset as follows:
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• A strong positive correlation between the variables (cough, temperature; cough, gen-
eral malaise; temperature and general malaise) can be explained by the existence of
multiple linear relationships between the variables because the Pearson correlation
coefficient is more significant than 0.7.

• A strong negative correlation between variables (temperature, family history; cough,
family history).

• There is a strong positive correlation between some variables and the target variables
(clinical findings), such as temperature, cough, and general malaise. Their effect on
the target was more significant than 0.7.

• A strong negative correlation exists between family history and clinical finding.
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Analyzing the dataset using the correlation matrix is very important for physicians.
They can find the relationship between two features and make appropriate medical deci-
sions. It also helps to reduce the dimensions of extensive medical data by dropping one
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of the features with a strong positive relationship to prevent repetition that may affect
overfitting and thus affect the performance of the final model [19,20].

3.4. Preprocessing Dataset

Data preprocessing included cleaning the data and verification with the consultant
pediatrician, removing redundant values, selecting appropriate data that affect the classifi-
cation process, as 12 standard clinical features between acute bronchitis and asthma were
maintained; also, converting the text data into numeric data, then standardizing it within
the range (−1, 1) to be easy. Finally, the dataset was divided into 70% training data and
30% testing; the cross-validation technique implemented k-10-fold cross-validation.

4. Methods
4.1. Proposed Method

This study presents two identical models for a one-dimensional convolutional neural
network and then merges both models to obtain a merged model of 2-1D-CNNs, as shown
in Table 3. Also, we merge 1D-CNNs with long short-term memory to obtain a hybrid
model (1D-CNNs + LSTM), as in Table 4.

Table 3. Proposed model of 2-1D-CNNs.

Layers Number Neurons Kernel Size Activation Function

1D Conv 32 2 Relu
1D Conv 64 2 Relu
1D Conv 128 2 Relu
1D pool 1 - -
Flatten - - -
Dense 128 Relu
Dense 1 - Sigmoid

1D Conv 32 2 Relu
1D pool 1 - -
1D Conv 64 2 Relu
1D pool 1 - -
1D Conv 128 2 Relu
Flatten - - -
Dense 128 - Relu
Dense 1 - Sigmoid

Table 4. Proposed model of 1D-CNNs + LSTM.

Layers Number Neurons Kernel Size Activation Function

1D Conv 32 2 Relu
1D Conv 64 2 Relu
1D Conv 128 2 Relu
1D pool 1 - -
Flatten - - -
Dense 128 Relu
Dense 1 - Sigmoid

LSTM 100 -
LSTM 100 - Relu
Dense 128 - Relu
Dense 64 - Relu
Dense 32 - Relu
Dense 1 - Sigmoid

4.2. Flowchart Architectures

Figure 2 shows the flowchart architecture and techniques used for the proposed method.
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4.3. One-Dimensional Neural Networks (1D-CNNs)

Convolutional neural networks are designed to work exclusively with two-dimensional
data such as images, video, and X-rays, so they are referred to as 2D-CNNs. In 2015, the first
one-dimensional neural network was operated by Kiranyaz et al. It was applied directly to
patients’ ECG signals. It was compacted and adaptable in a short time. There is a significant
difference between 1D and 2D convolutions in computational complexities, i.e., the image
with N × N dimensions, which convolves with K × K kernel, will have computational
complexity of ~O(N2K2

)
, while in the 1D convolution (with the same N and K dimensions),

it will have a computational complexity of ~O(NK); thus, the computational complexity of
1D-CNNs is much lower than the 2D-CNN with the same configuration, hyperparameters,
and network. The 1D-CNNs can be trained relatively quickly with any CPU application on
a standard computer, unlike deep 2D-CNNs which require particular hardware setups such
as cloud computing or GPU farms. Due to 1D-CNNs’ low computational requirements,
it well-suited for low-cost and real-time applications, especially on hand-held devices or
mobile, therefore 1D-CNNs have made significant progress in healthcare, especially in
early diagnosis of diseases, additionally to other applications of energy [12]. Each 1D-CNN
can be expressed as the 1D forward propagation (1-FP) in Equations (1) and (2) [21].

xl
k = bl

k +
Nl−1

∑
i=1

ConvID
(

Wl−1
ik , Sl−1

i

)
(1)

where xl
k refers to the input, bl

k represents a bias of the Kth neuron at layer l, Sl−1
i is the

output of the ith neuron at layer l − 1, Wl−1
ik is a kernel from the ith neuron at layer l − 1 to

the Kth neuron at layer l, the dimension of the input array xl
k is less than the dimension

of the output arrays. Conv1D is used to perform invalid(1D) convolution without zero-
padding, and can be expressed as the intermediate output, yl

k, by passing the input xl
k

through the activation function f (.) as given in Equation (2)

yl
k = f

(
xl

k

)
and Sl

k = yl
k ↓ SS (2)
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In Equation (2), SS refers to a down sampling operation with a scalar factor, SS, and Sl
k

stands for the output of the Kth neuron to the layer l.

4.4. Long Short-Term Memory (LSTM)

It is an artificial neural network and an advanced version of RNN that suffers from
short-term memory because of the vanishing gradient problem; LSTM refers to the RNN
and has both long-term memory and short-term memory, the connection weights and
biases change in the network once per episode of training; similar to how physiological
changes in synaptic strengths store long-term memory, the activation patterns change in
the network once per time step, analogous to the moment-to-moment change in electric
firing patterns in the brain store short-term memories, the architecture of LSTM aims to
supply a short-term memory for RNN which can last thousands of time steps, hence the
name long short-term memory [13]. LSTM consists of three doors: input gate, output gate,
and forget gate. It is a sigmoid activation function as in Figure 3, in Equations (3)–(8) where
(W) represents weight matrices, (b) represents the input bias vector, (Ct) is a cell state, (i) is
the input gate, (f) means the forget gate, (ot) is the output gate, and extracellular (tanh) is
the activation function. The output layer is the final layer that is used to estimate sensitivity.
Equation (6) represents the input essential of LSTM architecture, Equation (7) the forget
gates, Equation (8) the output, and memory cells is Equation (3) [22].

ft = σ(Wf·[ht − 1’xt] + bt) (3)

it = σ(Wi·[ht − 1’xt] + bi) (4)
∼
c t = tanh(Wc·[ht − 1’xt] + bc

)
(5)

Ct = ft × ct−1 + it ×
∼
c t (6)

ot = σ(Wo·[ht − 1’xt] + bo) (7)

ht = ot × tanh(Ct) (8)
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4.5. Merge 2-1D-CNNs

To ensure the merging technique of two models of (1D-CNNs), the input data for both
models were represented as a one-dimensional array (12, 1); both models were built by
three one-dimensional convolutional layers (32, 64, 128) respectively with a kernel size of
2 in each convolution layer to improve output in the appropriate way through extracting
features from the 1-D array which was multiplied by the input, due to the filter moving
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only in one direction. Thus, the output is 1D, then drops out after layers at different rates
(0.1, 0.2, 0.5) according to the size of the convolutional layer to avoid overfitting [23]. The
Rectified linear Function (Relu) was used with each convolutional layer because it is easy
to calculate and only compares the input with the zero value, as in Equation (9).

R(xi) =

{
0 (xi ≤ 0)
xi (xi > 0)

(9)

The max pooling layer was used with both models of two sizes; in the first model, it
was after three convolution layers, while in the second model, it was after each convolution
layer to extract the features, thus reducing contrast, size of data, and the number of
parameters through taking the largest value and keeping it in a pooling rectangle, we added
a fully connected layer (flatten) to both models where the input layer turns the outputs of
the previous layers to a single vector, in addition, we added a first fully connected layer
with dense (128) and dropout (0.3) in the first model and (0.5) in the second model to apply
the weights to predict it, and we added a fully connected output layer (Dense 1) at the end
of the first model with the sigmoid activation function to give us results of zero or one due
to the problem in this paper being a binary classification, the sigmoid function is expressed
in Equation (10) [24].

s(x) = 1/
(
1 + e−x) (10)

Finally, we merged the first and second models in 1D-CNNs by adding an output layer
(Dense 1) with a sigmoid activation function, as in Figure 4.
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4.6. Merge 1D-CNNs + LSTM

This method merges the first model of a one-dimensional convolutional neural net-
work with long-term memory. The LSTM model created 100 memory units, added them
to return sequences, and returned the hidden state as the output for each input time step;
the second layer also contained 100 memory units with Relu. After each layer, a dropout
of 0.2 was added to reduce overfitting. We distributed three fully connected layers with
LSTM layers (128, 64, 32) with a dropout of (0.25, 0.2, 0.1), respectively, to avoid over-
fitting; also, the sigmoid activation function was used to obtain a classification of either
zero or one. After constructing the two models, we merged them into one hybrid model
(1D-CNN + LSTM) by adding an output layer (Dense 1) with a sigmoid activation function,
as in Figure 5.
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5. Results and Discussion

The models were trained on the Windows 10 operating system. Python (3.8.8) was
the programming language used with Jupyter Notebook, with Visual Studio Code (VSC)
TensorFlow used as a deep learning framework. In this study, the parameters were trained
for both methods. Cross-entropy loss was selected because the problem is a binary classifi-
cation, where the optimizer is Adam. AUC (area under the curve) represents the measure
or degree of separability. It was applied to the dataset to tell us about the model’s ability to
distinguish between categories. The higher the AUC is for predicting 0 and 1, the better the
model’s performance at differentiating between acute asthmas. Stratified cross-validation
ensured equal and identical distribution of subgroups during training, thus reducing over-
sampling and improving sample accuracy representation. The models were tested on the
test data through 50 epochs, and the model’s test accuracy on the training and testing
dataset and the loss function was noted. Early stopping was used to prevent overfitting.

5.1. Results of Merging 2-1D-CNNs

In order to test the accuracy to differentiate between acute asthma and bronchitis by
using different methods, we merged 2-1D-CNN models to obtain a rate accuracy of 99.72
with AUC of 1.0, and test loss for the model of 0.0039. Figure 6a shows that the training
accuracy increases continuously to reach strong convergence with the test accuracy, which
also began to increase by a high rate, thus avoiding overfitting in the model. Figure 6b
shows that the training loss began to decrease at a rate higher than the test loss to reach its
final value.

5.2. Results of Merging 1D-CNNs + LSTM

This method used the same parameters in merging two one-dimensional neural
networks. The accuracy rate was 99.35, with an AUC of 99.96, and test loss for the model
was 0.048. Figure 7a shows that the training and test accuracy increased, decreased a little,
and converged with the test accuracy to reach the final value. Figure 7b shows that the
training loss and test loss began to decrease with the same trends to reach their final value.

5.3. Results Comparison

This section compares the methods used to differentiate between acute asthma and
bronchitis regarding area under the curve, number of parameters, test loss, and accuracy
for models, as shown in Table 5.
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Table 5. Results comparison.

Classifier AUC Parameters Test Loss Accuracy

1D-CNN 99.32 80.449 0.043 99.35
LSTM 99.86 144.497 0.056 98.701

1D-CNN + LSTM 99.96 312.979 0.048 99.44
1D-CNN + 1D-CNN 1.0 336.963 0.0039 99.72

After testing and verifying the accuracy of these models, the confusion matrix was
calculated to merge 2-1D-CNNs, as in Figure 8, and merge 1D-CNN + LSTM, as in Figure 9,
and the specificity and sensitivity were applied for the dataset, which mathematically
represented the accuracy of a test which refers to the presence or absence case, as in
Equations (11)–(13).

Accuracy =
TN + TP

TN + FP + FN + TP
(11)
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Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

TN + FP
(13)
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Here, sensitivity indicates the possibility of a positive test (actual positive rate) if it
is genuinely positive, while specificity indicates the possibility of a negative test (actual
negative rate) if it is genuinely negative. We applied the precision (also called the value
of positive predictive) as part of the relevant cases among the retrieved cases. At the
same time, recall (also referred to as sensitivity) is the part of retrieved relevant cases.
Therefore, recall and precision are based on relevance, as in Equations (14) and (15).
Thus, there is a need to use F1-score for evaluating performance through metrics re-
quired to predict performance, as in Equation (16) [25,26]. Table 6 shows the results of the
model performance.

Precision =
TP

TP + FP
(14)
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Recall =
TP

TP + FN
(15)

F1-score = 2 × Precision × Recall
Precision + Recall

(16)

Table 6. Model performance.

Classifier Sensitivity Specificity Precision F1-Score

1D-CNNs + LSTM 1.0 98.73 99 99
2-1D-CNNs 98.66 1.0 99 99

5.4. Comparison of Existing Results with Previous Studies’ Results

This section compares current and previous studies, as in Table 7.

Table 7. Comparison with previous results.

References Classifier Accuracy %

[2] Decision Tree 93
[10] XGBoost 88.20
[11] GBDT 95
[15] 1D-CNN + LSTM 99.32

Proposed Method 2-1D-CNNs 99.72

6. Conclusions

In this study, a novel method was presented to improve differential diagnosis between
acute asthma and bronchitis in preschool children by merging 2-1D-CNNs for a dataset
consisting of 512 prospective cases collected by the consultant pediatrician at Fallujah
Teaching Hospital for women and children during the period from March 2022 to June
2022. The preprocessing of the dataset included cleaning, removing redundant values,
analysis, and verification with a pediatrician to maintain 12 clinical features for each case.
The dataset was split into training data of 70% and test data of 30%. The cross-validation
technique implemented 10 k-fold to estimate model performance during training, evaluated
it iteratively, and reduced bias compared with split data training and testing. The first
model merged 2-1D-CNNs. Due to 1D-CNNs’ low computational requirements, it is well
suited for low-cost and real-time applications, especially on handheld devices or mobile;
in addition to that, it can be easily trained, unlike 2D-CNNs, which require a particular
hardware setup. The second model merged 1D-CNNs + LSTM. The same parameters were
used in both models: rectified linear function (Relu), because it is easy to calculate and
involves comparing only the input with the value zero; and sigmoid function, because the
problem is a binary classification. AUC (area under the curve) represents the measure or
degree of separability. It was applied to the dataset to tell us about the model’s ability to
distinguish between categories; the percentage in the first model was 1.0 and the second
was 99.96%. Cross-entropy loss was selected, and the optimizer was Adam. Both models
were tested through 50 epochs. Note that the models tested accuracy on the training and
testing with the loss function and used early stopping to prevent overfitting. The final
results show that the merge of 2-1D-CNNs had an accuracy of 99.72 with a test loss of
0.0039, compared to the merge of 1D-CNNs + LSTM, which had an accuracy of 99.44
with a test loss of 0.048. Thus, the first model can be adopted as a binary classifier to
improve differential diagnosis in this study. Finally, this study can be converted into an
intelligent application that helps junior and practitioner doctors quickly detect diseases
and differentiate between them, especially in hospital emergency halls.
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