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Abstract: Background: Identifying active lesions in magnetic resonance imaging (MRI) is crucial
for the diagnosis and treatment planning of multiple sclerosis (MS). Active lesions on MRI are
identified following the administration of Gadolinium-based contrast agents (GBCAs). However,
recent studies have reported that repeated administration of GBCA results in the accumulation of
Gd in tissues. In addition, GBCA administration increases health care costs. Thus, reducing or
eliminating GBCA administration for active lesion detection is important for improved patient safety
and reduced healthcare costs. Current state-of-the-art methods for identifying active lesions in brain
MRI without GBCA administration utilize data-intensive deep learning methods. Objective: To
implement nonlinear dimensionality reduction (NLDR) methods, locally linear embedding (LLE)
and isometric feature mapping (Isomap), which are less data-intensive, for automatically identifying
active lesions on brain MRI in MS patients, without the administration of contrast agents. Materials
and Methods: Fluid-attenuated inversion recovery (FLAIR), T2-weighted, proton density-weighted,
and pre- and post-contrast T1-weighted images were included in the multiparametric MRI dataset
used in this study. Subtracted pre- and post-contrast T1-weighted images were labeled by experts
as active lesions (ground truth). Unsupervised methods, LLE and Isomap, were used to reconstruct
multiparametric brain MR images into a single embedded image. Active lesions were identified
on the embedded images and compared with ground truth lesions. The performance of NLDR
methods was evaluated by calculating the Dice similarity (DS) index between the observed and
identified active lesions in embedded images. Results: LLE and Isomap, were applied to 40 MS
patients, achieving median DS scores of 0.74 ± 0.1 and 0.78 ± 0.09, respectively, outperforming
current state-of-the-art methods. Conclusions: NLDR methods, Isomap and LLE, are viable options
for the identification of active MS lesions on non-contrast images, and potentially could be used as a
clinical decision tool.

Keywords: multiple sclerosis; dimensionality reduction; multiparametric MRI; lesion segmentation

1. Introduction

Multiple sclerosis (MS) is the most common demyelinating disease in humans and it
affects both white matter and gray matter of the central nervous system (CNS; brain and
spinal cord). The etiology of MS is not completely understood [1,2]. Magnetic resonance
imaging (MRI) is the most common radiologic modality for noninvasive visualization
of MS pathology in the CNS. MRI plays a crucial role in both diagnosis and patient
management. A hallmark of MS is the presence of hyperintense lesions on T2-weighted
(T2W), including T2-weighted Fluid Attenuation by Inversion Recovery (FLAIR), and
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proton-density-weighted (PDW) MRI. However, not all hyperintense lesions seen on T2W
MRI are active. Identification of active lesions is essential for patient management [3–7].
Regionally compromised blood–brain barrier (BBB) is believed to be a pathologic feature of
active lesions. The compromised BBB is the result of repeated venular inflammation [8]. The
compromised BBB allows the leakage of gadolinium (Gd)-based contrast agents (GBCAs)
from the vasculature into the brain parenchyma, which results in reduced T1 relaxation
time because of the paramagnetic nature of GBCA. Consequently, on MRI, active lesions
appear hyperintense on post-contrast T1-weighted (T1W) images (contrast enhancement).
An association between Gd enhancement and clinical activity in MS patients has been
reported [8,9]. Moreover, the number of volumes of enhancing lesions may be important in
the evaluation of treatment efficacy [9,10].

Recent studies have reported that GBCA administration results in long-term accu-
mulation of gadolinium (Gd) in various tissues [11]. While there is no definite evidence
demonstrating any physiologic effect of accumulated Gd, the Food and Drug Administra-
tion issued a cautionary note that “clinicians should limit GBCA use to circumstances in
which additional information provided by the contrast agent is necessary, and assess the
necessity of repetitive MRIs with GBCAs” [12]. In response to these concerns, a number
of techniques for identifying active lesions on unenhanced scans have been proposed [13].
Perhaps the most widely accepted method for detecting active lesions is through subtrac-
tion MRI. These methods are mainly based on the subtraction of MR images acquired at
two different time points to detect expanding lesions that are considered to represent lesion
activity [14]. However, all these techniques have been introduced to identify active lesions,
but not quantitatively compare with the ground truth, post-contrast T1-weighted images.
More recently deep learning (DL) has started making inroads in automatically identifying
active lesions on unenhanced scans [15].

A number of automatic and semi-automatic techniques for identifying and segmenting
enhancing lesions in MS have been reported [5,10,16–18]. As described by Coronado et al. [17],
these methods have limitations that include the need for specialized MRI pulse sequence,
extensive pre-processing, minimizing false lesion classification etc. Therefore, more recently,
deep learning was used to delineate enhancing lesions in MS [16,17,19]. These DL methods
are mainly based on convolutional neural networks (CNNs).

The majority of MS segmentation methods, including DL, are based on multiparamet-
ric MRI. While multiparametric-based segmentation is shown to provide excellent results,
it also suffers from a few weaknesses. These include the following: (1) high dimensional
feature space that increases the computational complexity, (2) ineffectiveness in explicitly
capturing the spatial relationship between voxels, (3) inability to effectively capture nonlin-
ear relationships between different voxels, since it linearly combines voxel intensities of
images with different contrasts, (4) noise within MRI can compromise segmentation quality,
and (5) requiring registration of multiparametric images. Many of these problems can be
potentially alleviated using nonlinear dimensionality reduction (NLDR) techniques.

Machine learning is broadly divided into supervised and unsupervised learning
methods [20]. Supervised learning requires labeled data created by experts to establish
the ground truth. The labeling by experts could be expensive in time and cost. While
CNNs are excellent at extracting global features and detecting large lesions, they may have
limitations in extracting multi-scale local features, thus making it hard to detect active
lesions, which may vary in size. Data-intensive tasks, like segmentation, often suffer from
the curse of dimensionality, which suggests that the required sparsity and sample size
needed to achieve optimal results increase with the dimensionality of the data [21]. To
overcome these limitations, in this preliminary study, we have applied an unsupervised
NLDR method for segmenting active lesions in MS.

Non-linear dimensionality reduction is an unsupervised machine learning
technique [22–24]. Unlike linear dimensionality reduction (LDR), NLDR captures complex
nonlinear data structures that are prominent in brain MR images. In a high-dimensional
feature space, NLDR uses local features from nearest-neighbor graphs to create a lower-
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dimensional subspace. NLDR requires far fewer images to train than DL-based methods.
This work investigates how NLDR techniques can be used to identify active MS lesions.

The objective of this study was to demonstrate that unsupervised NLDR methods
outperform supervised machine learning methods in identifying active lesions. To ac-
complish this, we introduce key differences between LDR and NLDR. Subsequently, we
establish the motivation behind applying NLDR to brain MRI data. Then, we provide
details for the MR imaging dataset and performance evaluation metrics used in this work.
Furthermore, we compare NLDR methods to current state-of-the-art methods for active
MS lesion identification. Lastly, we discuss the potential limitations of this work.

2. Materials and Methods
2.1. Dimensionality Reduction

For combining multiparametric MRI data while maintaining inherent data structure,
also called the manifold, we used dimensionality reduction (DR). A manifold is a subspace
that allows the visualization of curves and surfaces through multiple coordinate systems,
or charts [23]. Intuitively, a manifold is any object that can be “charted”. DR is achieved
by either keeping a small subset of the most relevant information and features or by
finding a smaller subset of data points [24]. DR maps high dimensional dataset X, with D
dimensions, to a lower dimensional dataset Y, with d dimensions, such that d < D and X
can be represented by d points.

Dimensionality reduction can be divided into two categories, LDR and NLDR, which
make assumptions about X lying in a linear and nonlinear subspace, respectively, [25,26].
While both methods can find the lowest number of data points that are able to represent
the structure of X, there are key differences between LDR and NLDR that are briefly
described below.

2.2. Linear Dimensionality Reduction

LDR might reduce the complexity of high-dimensional data through a linear mapping
of all data points. With LDR, we assume that the subspace that best fits X is linear. LDR has
been used in several healthcare applications because it is highly adaptable and effective in
extracting features from large high dimensional datasets [27–29]. An example of LDR is
multidimensional scaling (MDS).

Multidimensional Scaling

MDS finds a linear subspace, Y, that best represents the high dimensional dataset, X,
by minimizing the cost function below

∑
ij
(||xi − xij|| − ||yi − yij||)2 (1)

such that, given the i, j-th components of X and Y, ||xi − xij|| and ||yi − yij|| are the
respective Euclidean distances. To minimize this cost function, MDS uses eigenvalue
decomposition defined as

B = XT ∗ X, (2)

M = [V1, V2, ...Vd], (3)

Y = M ∗ X, (4)

where V are the eigenvectors, M is a feature matrix containing the first d largest eigenvalues,
and B is the pairwise distances matrix of X.

Recently, Knezek et al. [27] used DR to assess various learning approaches to improve
motivation amongst young learners. These authors applied MDS to add meaning and
understanding to educational game play, and its effect on children’s learning performance.
This work goes beyond DR for conducting statistical analysis. Malone et al. [28] proposed a
Clinical Sustainability Assessment Tool (CSAT) for grouping health concepts, collected from
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64 healthcare and research professionals, into several domains (e.g., engaged staff, planning,
and monitoring) to create a meaningful tool for improving sustainable healthcare service
delivery. Both studies used MDS to remove redundant information from high-dimensional
data and create helpful insights. Although MDS effectively reduces high dimensional
data, it struggles to uncover the true manifold of non-linear data, thus motivating the use
of NLDR.

2.3. Non-Linear Dimensionality Reduction

We used NLDR, to uncover the true manifold of multiparametric brain MR images by
reconstructing a single embedded image. While LDR assumes that the data lie in a linear
subspace, NLDR can perform more intricate embeddings of nonlinear data [22]. Brain MRI
is one of the primary methods for diagnosing MS, often requiring multiple image sequences
to identify and characterize pathology. Brain MRI sequences, such as T2-weighted (T2W)
and T1W images, provide different contrast information that aids patient management
in MS. Since brain MR images share a nonlinear subspace, we employed NLDR for seg-
mentation of active lesions. This is accomplished by reducing the dimensionality of MRI
sequences into lower dimensions while preserving contrast information. Specifically, we
used two NLDR algorithms, isometric feature mapping (Isomap) [22,30] and locally linear
embedding (LLE) [31] to segment MS lesions using multiparametric MRI. The following
sections will briefly describe how Isomap and LLE create a low-dimensional representation
of high-dimensional data.

2.3.1. Isometric Feature Mapping

Isomap maps a high-dimensional dataset, X, to a lower-dimension dataset, Y, while
retaining maximum geometric information. To reconstruct Y, Isomap first uses a K nearest
neighbor graph G [32] to calculate geodesic distances (GDs) [33,34] of all data points of
X. This creates a distance matrix, such that every data point, xi, is connected to its K
nearest neighbors, xij. Isomap then utilizes MDS to map all data points in X to a lower
dimension [22,35]. To preserve the distance of X, MDS employs eigenvalue decomposition
of the pairwise distance matrix. Specifically, we used the K neighbors classifier for the
implementation of G and MDS. We used both G and MDS to reconstruct multiparametric
brain MRI into a single embedded image. To maintain the manifold of X, MDS minimizes
the error between pair-wise distances defined below

∑ (||xi − xij|| − ||yi − yij||)2 (5)

where ||xi − xij|| and ||yi − yij|| are the geodesic distances between data points in higher
and lower dimensions, respectively. Isomap finally uses MDS mappings to create Y, a
single image embedding X. The steps to create Isomap embeddings are shown in Figure 1.

We used two shortest path algorithms to construct pairwise distance matrices, crucial
for Isomap geodesic distance calculations. In Tenenbaum et al. [22], Isomap was introduced
using shortest path algorithm, a recursive method which attempts to create M while
holding the following recurrence relation [36,37], to create a geodesic distance matrix. Floyd
Warshall is a recursive method which attempts to create M while holding the following
recurrence relation

dk
ij =

{
wij if, k = 0
min (dk−1

ij , dk−1
ik , dk−1

kj ), if, k > 0
(6)

where wij and dk
ij represent the initialized and shortest distance lengths between points i

and j, respectively, for all of data points X. Dijkstra’s is another popular shortest distance
algorithm [37], which first selects a starting data point, labeled as the source, and finds the
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shortest path from the source to all other data points of X. According to Wang [37], Dijkstra
is defined by the following relation

Dij = min (Dij, Dij + dist(xj, xk) (7)

where Dij is the current distance from data point i to j, dist(xj, xk) is the distance between
two abutting data points, and matrix M is created by recursively finding the pairwise
distances of all data points of X. Due to the simplicity of the Floyd Warshall algorithm, it is
often preferred over Dijkstra’s algorithm. Set to default in the scikit learning library, the
best algorithm was automatically selected at run time, to assume optimal performance.

Figure 1. The Isomap algorithm can be summarized in four steps: (1) select a nearest neighbor
algorithm, (2) calculate geodesic distances for all data points (3) apply multidimensional scaling to
geodesic distance matrix, (4) output single embedded image.

2.3.2. Locally Linear Embedding (LLE)

Similar to Isomap, LLE creates a mapping from X to a lower dimension while pre-
serving its local properties. LLE assumes that embeddings can be created through small
regions of X, such that any data points, xi, and its neighbors, xij, lie on or near a linear
patch of X. By assuming that the manifold is approximately linear, LLE reconstructs the
properties of the data by calculating the sum of K nearest neighbors for each data point. We
used G in order to calculate the Euclidean distances for all data points in X. LLE identifies
coordinates of Y or yi that best align with the embedding of X [31].

To create an embedding of X, LLE characterizes the local geometry of all patches
of X, as linear coefficients, and reconstructs each data point from its neighbors. The
reconstruction error is defined as

ϵ(W) =
n

∑
n=1

||xi −
k

∑
j=1

wijxij||2, (8)

which is constrained by wij = 0 when xi has no neighbors (i.e., xij = 0) and ∑k
j=1 wij = 1.

To perform embedding of X in Y, LLE chooses the best coordinates of Y to minimize the
embedding error defined as

ϕ(Y) =
n

∑
n=1

||yi −
k

∑
j=1

wijyj||2. (9)
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The mapping from X to Y in LLE is carried out by minimizing the reconstruction and
embedding error in Equations (2) and (5).

2.3.3. Applications of Non-Linear Dimensionality Reduction

Recently in healthcare, NLDR techniques have been incorporated to extract important
features from medical data. Sharma et al. [38] introduced a framework for thyroid ab-
normality detection, applying various dimensionality reduction techniques to ultrasound
and histopathological datasets. Results based on NLDR methods outperformed current
state-of-the-art computer-assisted diagnostic systems. In this work, LLE and Isomap ex-
ceeded other DR techniques, such as principal component analysis and singular value
decomposition, in extracting features from ultrasound data, demonstrating that NLDR is
able to reconstruct nonlinear ultrasound imaging data. We chose to use NLDR methods,
LLE and Isomap, to segment active MS lesions. NLDR has been shown to outperform LDR
methods in extracting features from imaging datasets [21,25,38].

In Figure 2, we show how NLDR compares to the LDR method, MDS. Dimensions of
the Swiss roll were successfully reduced to a lower dimension by using LLE and Isomap,
meaning both pairwise distances of all data points and the geometric shape of the Swiss roll
were preserved in the embedded images. While successfully creating a lower dimensional
representation, MDS failed to unfold the manifold while maintaining its underlying struc-
ture. This suggests that LLE and Isomap effectively understand complex manifolds and
can be applied to real-world data. We further validated this hypothesis on multiparametric
brain MRI data and showed how LLE and Isomap are able to segment active MS lesions.

Figure 2. Embedding of the 3-dimensional Swiss roll to 2 dimensions using MDS, LLE, and Isomap.
Neighborhood size, k, was set to 12 for all methods. Both NLDR methods, LLE and Isomap, unfolded
the Swiss roll in lower dimensions while the linear DR method, MDS, failed to unfold and preserve
the manifold. Results that best retained the shape of the Swiss roll were derived by Isomap.

2.4. Patients

The MRI data were acquired as a part of CombiRx, a multi-center, phase 3, double-
blinded, randomized clinical trial (Clinical Trial Identifier: NCT00211887) [39] that was
supported by the National Institute of Health (NIH). Table 1 summarizes the demographics
and clinical data of the clinical trial cohort at baseline. The main objective of the CombiRx
clinical trial is to evaluate if treating MS patients with a combination interferon-β1a (IFNB)
and glatiramer acetate (GA) results in a better patient outcome compared to treating
them with these two drugs separately. Only patients with the relapsing–remitting (RRMS)
phenotype are included in this trial. Our dataset included MRIs from 46 randomly selected
patients. All patients provided signed written consent and this study was approved by the
local IRB. All patients had MRI-detectable MS brain lesions and were administered GBCA
during the MRI scan. In total, 6 subjects were excluded due to image misregistration issues,
bringing the total number of subjects to 40.
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Table 1. Demographic and clinical data acquired as part of CombiRx randomized clinical trial.

Demographics and Clinical
Data on the CombiRx Cohort

Age (yrs) 37.7 ± 9.7

Female/Male (ratio) 72/28

Caucasian 87.6
Race (%) African American 7.2

Other 5.2

Hispanic 6.3
Ethnicity (%) Non-Hispanic 89.5

Other 4.3

Symptom Duration (yrs) 4.8 ± 5.6

2.5. Image Dataset

Anonymized brain MR images from 46 subjects with relapsing–remitting MS were used
in this work. MRIs were acquired on Philips (Best, The Netherlands) or General Electric
(Milwaukee, USA), or Siemens (Erlangen, Germany) scanners operating at either 1.5T or 3T
field strengths. The images included proton density (PDW), T2W, 2D FLAIR, and pre- and
post-contrast T1W with voxel dimensions of (0.94 mm × 0.94 mm × 1.5 mm). All images
were reviewed by two neuro MRI experts (more than 30+ years of experience) [40,41]. The
MRI protocol and the acquisition details were provided elsewhere. Image preprocess-
ing methods including co-registration, bias field correction and intensity normalization
were applied [39].

The target lesions of this study are active white matter lesions. Grey matter lesions are
not included because they rarely show enhancement. Also, grey matter lesion detection
requires specialized MRI sequences such as double inversion recovery (DIR) sequence [42]
and the CombiRx MRI did not include DIR imaging.

2.6. Multiparametric Brain MRI

We used LLE and Isomap to differentiate different tissue types and identify active
lesions from multiparametric brain MRI. Specifically, we used PDW, FLAIR, T2W, and pre-
contrast T1W as our high-dimensional dataset, and applied NLDR methods in identifying
active MS lesions in brain MRI. Post-contrast T1W images were excluded from the input
but were used for validation of the embedded image-based active lesion identification. The
ground truth used was subtracted pre- and post-contrast T1-weighted image, referred to
as the subimage. Lesions identified in subimages are labeled as active. To obtain lesion
regions, we performed binary thresholding on all the ground truth and embedded images.
Lower dimensional images, created by LLE and Isomap embeddings, were verified to
include MS lesions by one of the authors (P.A.N).

As summarized in Figure 3, active lesion segmentation was accomplished by (1) em-
bedding of brain MRI images through LLE and Isomap applications, (2) calculating of the
subimage, and (3) generating binary images followed by thresholding to isolate lesions.
The performance of LLE and Isomap was evaluated using thresholded binary images. To
quantitatively evaluate the performance of LLE and Isomap, we used Dice similarity to
measure the overlap between lesion boundaries in embedded and ground truth lesions. By
converting LLE and Isomap embedding to binary images, we assigned “1” to pixels related
to active MS lesions, and a zero to all other pixels.



Diagnostics 2024, 14, 632 8 of 14

Figure 3. Multiparametric input brain MRI integration framework for embedding reconstruction.
(Top row) Four brain MRIs are inputted and then integrated into a single embedded image using
NLDR methods. The NLDR maps are thresholded for lesions. (Bottom row) T1-pre and post are
subtracted. Next, active lesions are masked to obtain the ground truths binary masks. At the
end, the two binary images are compared using dice similarity (DS) score, for the evaluation of
proposed methods.

2.7. Performance Evaluation

To describe the overlap between the embedded and ground truth binary images, we
use DS

DS = 2
A ∩ B
A + B

(10)

where A is the ground truth and B represents lesions identified on the binary thresholded
images.

DS =
2TP

2TP + FN + FP
(11)

Equation (11), as shown in Figure 4, TP, FP, FN, represent the true positive, false
positive, and false negative sets of pixels [43], based on the overlap between A and B. Thus,
if no overlap is found, DS = 0, or 1 if A and B perfectly overlap. Brain MR image resolution
and the nearest neighbor value, K, were the input parameters to the model. We empirically
evaluated the performance of LLE and Isomap for optimizing different input parameters.

Figure 4. Dice Similarity is used to describe the overlap between embedded and ground truth
active lesions.

3. Results

In order to choose the optimal input parameters for Isomap and LLE, we evaluated
their sensitivity to various input resolutions and nearest neighbor values, K.
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Due to high computational times in testing Isomap and LLE on original brain MR
images, we initially reduced the input resolutions. However, Figure 5 shows that reducing
the input resolution of LLE and Isomap degrades both methods’ ability to provide accurate
DS scores due to the blurring of active lesion boundaries. Our results suggest that Isomap
and LLE are able to segment active lesions given 1282 input images but achieve optimal
performance on the original 2562 input resolution. As a result, we chose 2562 as the input
resolution for LLE and Isomap to obtain accurate DS measurements.

Figure 5. Examples of LLE algorithm sensitivity to different image matrix sizes and resolutions. We
compared the active lesion (yellow arrow) in the embedded image to ground truth lesions using
DS scores. (A–C) As shown in 642 images, (bottom row) DS was significantly lower. However, no
significant differences were observed between 2562 and 1282.

As shown in Figure 6, both Isomap and LLE are insensitive to K ≥ 100. However,
LLE appears to have a minor fluctuation of dice scores across k-values, and thus is more
sensitive to k-values compared to Isomap, which is more stable.

Figure 6. Evaluation of the sensitivity of NLDR methods to control parameters (K; neighborhood
size): (A) Isomap (B) LLE.

To evaluate Isomap and LLE on all MS patients (n = 40), we chose K to be 100. With
the chosen input resolution and K value, Isomap and LLE successfully segmented active
lesions from brain MRI. Figure 7 shows single embedded images reconstructed by Isomap
and LLE, while Figure 8 shows the segmentation performance of Isomap and LLE on all
subjects. Isomap achieved a median DS of 0.78 ± 0.09, compared to LLE with a median DS
of 0.74 ± 0.1. These results need to be further validated on a larger sample size.
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Figure 7. (A) Multiparametric brain MRI data as input to nonlinear dimensionality reduction (NLDR)
methods. (B-upper) Output embedded images from locally linear embedding (LLE) and isometric
feature mapping (Isomap). (B-lower) The resulting binary masks are shown. (C-upper) The ground
truth (contrast subtraction image). (C-lower) Corresponding binary image for ground truth, used to
evaluate methods using dice similarity scores.

Figure 8. The performance of nonlinear dimensionality reduction methods, locally linear embedding
(LLE) and isometric feature mapping (Isomap), are shown in the box plot. Isomap marginally
outperformed LLE with a median and standard deviation for dice similarity (DS) score, respectively,
as 0.78 ± 0.09 and 0.74 ± 0.09.

4. Discussion

To the best of our knowledge, this is one of the first implementations of Isomap
and LLE for gadolinium (Gd) enhancing (active) lesion segmentation. We utilized NLDR
techniques to combine brain MR images into an embedded image and identify lesions. Our
results show, based on DS, that both Isomap and LLE were excellent at identifying active
lesions, with Isomap providing slightly better results relative to LLE. Based on our results,
LLE and Isomap could potentially reduce the need for the administration of contrast agents
and outperform previous state-of-the-art active lesion segmentation DL methods.

Administration of GBCA [7,44,45] is still used for identifying active lesions in MS.
With recent observations about GBCA retention in various tissues, different methods have
been proposed to identify Gd-enhancing lesions, either by reducing the amount of GBCA
administered or eliminating it. However, the majority of published methods, particularly
those based on DL, utilized multiparametric MRI and supervised learning. These methods
have their own disadvantages. In this preliminary study, we attempted to overcome
these disadvantages by using unsupervised techniques, Isomap, and LLE. Our results
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suggest that NLDR methods if confirmed on a larger sample size, can be deployed in a
clinical setting.

Multiple MRI studies are reported on the detection of active lesions on unenhanced
scans. The results of subtraction images are compared with post-T1W images to assess the
accuracy. However, they did not perform lesion segmentation [7,14,46–48]. Thus, it is very
difficult to compare our results with these published ones. On the other hand, there are
existing AI-based clinical applications for active lesion identification. In [7], Rudie et al.
identified active MS lesions on non-contrast images using a computer-assisted-detection
(CAD)-based system. This work demonstrated that it is possible to perform real-time
assessments of non-contrast images to determine the necessity of contrast administration.
However, this work requires manual annotations of MS lesions to achieve optimal perfor-
mance. LLE and Isomap achieved excellent performance in identifying active MS lesions
without need for manual annotated trained images as input. Identifying active lesions
without contrast agents and less supervision could potentially improve patient safety and
reduce the cost of clinical care.

Based on Coronado et al. [17], our work appears to outperform current state-of-
the-art (SOTA) DL methods in segmenting active lesions in brain MRI. However, this
work included GBCA imaging while we excluded post-contrast T1W images from testing.
Current methods for active MS lesion segmentation use deep convolutional neural networks
(CNNs) [17,19,40,41] to segment active lesions from brain MRI. Coronado et al. achieved a
mean dice similarity score of 0.77 which is considered to be excellent. Our method offered
a very comparable score of 0.78. Our method offers a number of advantages over the
CNN method, which typically needs a large amount of annotated imaging data by experts,
which could be very time-consuming and not feasible for large data. Although this work
achieved dice similarity performance as shown in this preliminary study, our method is an
unsupervised machine learning technique and does not require using a subset of data for
training and the entire dataset could be used as a validation set.

Instead of using manual lesion annotations to guide reconstruction, LLE and Isomap
use local image features from K nearest neighbor graphs to reconstruct high dimensional
inputs in a lower dimensional space. This suggests NLDR performance is dependent on
local topological features [22,32]. Other segmentation studies of breast [25], and ischemic
lesions in brain MRI [49], used Isomap and LLE to reconstruct multiparametric MRI data
with fewer than 30 subjects.

Akhbardeh et al. [25] used DR to embed multiple breast MR images and segment breast
lesions. The performance of linear and nonlinear DR methods was compared to determine
the best method for breast tissue segmentation. Both LLE and Isomap outperformed LDR
methods, principal component analysis and MDS, and resulted in excellent similarity to
post-contrast T1-weighted images that are consistent with our results. In this work, we
exploited the robustness of NLDR methods for segmenting smaller embedded MS lesions
compared to larger breast lesions.

To segment tissue at risk in stroke patients and quantify the amount of salvageable
brain tissue, Parekh et al. [49] integrated multiparametric stroke MRI data using LLE and
Isomap, demonstrating high similarity to radiological gold standards. However, this study
was limited to animal MRI data, and thus needs to be further validated on human subjects.
With the application of NLDR in early cerebral ischemia detection, this work shows NLDR
methods as potential solutions for other diseases that require multiparametric MRI data
to perform accurate diagnosis. Similarly, with brain MRI data, Park [50] used Isomap to
quantify the shape of brain MRI and detection of Alzheimer’s Disease. This work revealed
that Isomap can delineate the true shape of brain MR images, distinguish between AD and
normal manifolds, and potentially be used for brain MRI time-series analysis.

There are potential limitations in our study. For example, there is increased computa-
tional complexity, in both Isomap and LLE, when reconstructing embedded images. This
is largely due to shortest path distance and eigenvalue calculations. This limitation could
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be overcome using a subset, “landmarks”, of high dimensional data points to reduce the
computations required for both Isomap and LLE [51–54].

Another limitation is that our sample size was 40 subjects. Further validation is needed
on a larger and independent sample size that is drawn from a different distribution. Lastly,
this work does not measure the sensitivity of LLE and Isomap to different lesion sizes.
Investigating and addressing active MS lesion identification performance as a function of
lesion sizes could further improve the performance of LLE and Isomap.

5. Conclusions

In conclusion, we demonstrated unsupervised learning techniques, LLE and Isomap,
are able to capture the manifold of multiparametric MRI data and segment active MS lesions.
Although both methods exhibited excellent performance, Isomap slightly outperformed
LLE and showed more consistent results in the sensitivity analysis of input parameters.
LLE and Isomap potentially could assist in the clinical management of MS patients, and
reduce the usage of GBCAs for identifying active lesions in brain MRIs.

6. Patents

A.A. and M.A.J. have patent, “Multiparametric non-linear dimension reduction meth-
ods and systems related thereto”, US Patent 9,256,966.
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