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Abstract: Elevated circulating triglyceride levels have been linked to an increased risk of diabetes, al-
though the precise mechanisms remain unclear. This study aimed to investigate whether low-density
lipoprotein (LDL) cholesterol, homeostatic model assessment (HOMA) for insulin resistance, and
C-reactive protein (CRP) served as mediators in this association across a sample of 18,435 US adults.
Mediation analysis was conducted using the PROCESS Version 4.3 Macro for SPSS. Simple mediation
analysis revealed that all three potential mediators played a role in mediating the association. How-
ever, in parallel mediation analysis, where all three mediators were simultaneously included, HOMA
for insulin resistance remained a significant mediator (indirect effect coefficient, 0.47; 95% confidence
interval [CI], 0.43–0.52; p < 0.05) after adjusting for all tested confounding factors. Conversely, LDL
cholesterol (indirect effect coefficient, −0.13; 95% CI, −0.31–0.05; p > 0.05) and C-reactive protein
(indirect effect coefficient, 0.01; 95% CI, −0.003–0.02; p > 0.05) ceased to be significant mediators.
HOMA for insulin resistance accounted for 49% of the association between triglycerides and diabetes.
In conclusion, HOMA for insulin resistance was the dominant mediator underlying the association
between triglycerides and diabetes. Therefore, reducing triglyceride levels may hold promise for
improving insulin sensitivity in diabetic patients.

Keywords: insulin resistance; lipoprotein; diabetes; mediation analysis

1. Introduction

The prevalence of diabetes is on the rise, currently affecting 11.6% of the US popu-
lation [1]. Diabetes stands as a significant contributor to blindness, kidney failure, heart
attacks, stroke, and lower limb amputation [2], ranking as the eighth leading cause of death
in the US, with approximately 103,000 deaths per year attributed to it [1]. The economic
burden of diabetes care weighs heavily on society, with direct medical costs estimated at
USD 306.6 billion per year in the US alone [1]. Thus, understanding the pathogenesis of the
disease and developing new preventative and therapeutic strategies are imperative.

A plethora of studies suggests that higher triglyceride levels may promote the de-
velopment and progression of diabetes. Elevated triglycerides correlate with increased
diabetes prevalence [3–5], incidence [6,7], and mortality [8]. Notably, a genetic study re-
vealed that alleles associated with higher triglycerides heightened the risk of diabetes [9].
Moreover, fenofibrate, a triglyceride-lowering medication, demonstrated glucose-lowering
effects in diabetic mice [10], hinting at a potential causal link between higher triglycerides
and diabetes.

However, the precise mechanism bridging triglycerides and diabetes remains elusive.
Low-density lipoprotein (LDL) cholesterol [11], insulin resistance [12,13], and inflamma-
tion [14,15] emerge as potential players in elucidating this association.

The association between high triglycerides and elevated LDL cholesterol in elderly
individuals hints at a possible involvement of LDL cholesterol [16]. Mechanistically,

Diagnostics 2024, 14, 733. https://doi.org/10.3390/diagnostics14070733 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14070733
https://doi.org/10.3390/diagnostics14070733
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-6264-6443
https://doi.org/10.3390/diagnostics14070733
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14070733?type=check_update&version=2


Diagnostics 2024, 14, 733 2 of 15

triglyceride-rich very-low-density lipoprotein (VLDL) can form LDL through delipida-
tion [17]. Epidemiological evidence suggests a link between high triglycerides and insulin
resistance, as evidenced by positive associations with homeostatic model assessment
(HOMA) for insulin resistance in diverse populations worldwide, including the US [8],
South Korea [18], and China [19,20]. Likewise, inflammation might contribute to the
triglyceride–diabetes nexus. High triglycerides can increase inflammation [11,21] and pose
a risk for pancreatitis [22]. Furthermore, triglycerides correlate positively with C-reactive
protein [23,24], a well-established inflammatory marker [25].

Nevertheless, questions linger: do LDL cholesterol, insulin resistance, and inflam-
mation indeed mediate the association between triglycerides and diabetes? If so, to what
extent do they mediate this link? The current study aimed to address these questions
by examining a large group of US adults who participated in the National Health and
Nutrition Examination Survey (NHANES) from 1988 to 2014.

2. Materials and Methods
2.1. Study Participants

This study included participants from NHANES III (1988–1994) and the subsequent
eight cycles of NHANES from 1999 to 2014. NHANES was designed to assess the health
and nutritional status of the civilian noninstitutionalized US population. It employed a
complex, multistage probability sampling design to select a participant sample that was
representative of the population. About 83% of the initially invited individuals participated
in the data collection. The survey was well planned by the National Center for Health
Statistics (NCHS) within the Centers for Disease Control and Prevention (CDC) [26]. The
inclusion criteria included age of ≥20 years and the presence of the following data: fasting
triglycerides, LDL cholesterol, HOMA for insulin resistance, and C-reactive protein. This
resulted in a group of 19,111 participants. The following participants were excluded from
the analysis: those without blood hemoglobin A1c (HbA1c, n = 43), body mass index
(n = 226), or systolic blood pressure (n = 407). Therefore, the remaining 18,435 participants
were included in the final analysis (Figure 1).
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2.2. Exposure Variable

The exposure variable of this study was triglyceride levels in fasting serum. Fast-
ing blood was collected from participants with a time between 8.0 and 23.9 h after their
last caloric intake [8,27,28]. The concentrations of triglycerides in the serum were mea-
sured using an enzymatic method which employed a series of coupled reactions in which
triglycerides were hydrolyzed to produce glycerol [29]. The resultant glycerol was then
phosphorylated and oxidized to produce hydrogen peroxide. The formed hydrogen perox-
ide was then converted by peroxidase to form a color product that was measured using a
spectrophotometer at a wavelength of 500 nm.

2.3. Outcome Variable

The outcome of the current study was diabetes, defined by a range of criteria, including
a fasting plasma glucose level at or above 126 mg/dL, an HbA1c level in whole blood at or
above 6.5%, and a 2 h oral glucose tolerance test result at or above 200 mg/dL. In addition,
the use of hypoglycemic medications and self-reported diagnosis of diabetes were also
regarded as criteria for diabetes [30].

2.4. Candidate Mediators
2.4.1. LDL Cholesterol

LDL cholesterol was retrieved directly from the NHANES website [31]. It was cal-
culated according to the Friedewald formula based on total cholesterol, high-density
lipoprotein (HDL) cholesterol, and triglyceride concentrations for those with
triglycerides ≤ 400 mg/dL [32].

2.4.2. HOMA for Insulin Resistance

HOMA for insulin resistance was calculated using the following published formula [33]:
(serum insulin in µU/mL × plasma glucose in mmol/L)/22.5. The values of fasting plasma
glucose and serum insulin were directly obtained from the NHANES website, and they
were measured using the following methods.

The levels of glucose in the plasma were measured using the hexokinase-mediated
reaction method, as described previously [34]. Briefly, hexokinase catalyzed glucose to
produce glucose-6-phosphate. In the presence of nicotinamide adenine dinucleotide (NAD),
the enzyme glucose-6-phosphate dehydrogenase catalyzed glucose-6-phosphate to gen-
erate 6-phosphogluconate, in which process, NAD was reduced to the reduced form of
nicotinamide adenine dinucleotide (NADH). The resultant increases in NADH levels were
proportional to the plasma glucose concentrations and were measured using a spectropho-
tometer at a wavelength of 340 nm [35].

Insulin levels in the serum were measured by an immunoenzymometric assay [36].
Briefly, insulin was captured by binding with a non-labeled monoclonal antibody immobi-
lized on a magnetic solid phase, and the captured insulin was then bound with another
enzyme-labeled monoclonal antibody. Magnetic beads containing insulin and bound
enzyme-labeled monoclonal antibodies were incubated with 4-methylumbelliferyl phos-
phate, a fluorogenic substrate. The fluorescence intensity produced at a certain reaction
time was proportional to the insulin concentration in the serum.

2.4.3. C-Reactive Protein

C-reactive protein in the serum was measured using the latex-enhanced nephelometry
method [37]. Briefly, a dilute solution of the serum sample was mixed with latex particles,
and the latter were coated with monoclonal anti-C-reactive protein antibodies that were
generated from mice. C-reactive protein present in the test sample formed an antigen–
antibody complex with the latex particles. The resultant complex would scatter light. The
extent of light scattering was then measured using a nephelometric procedure after 6 min,
and it was proportional to the C-reactive protein concentrations in the testing samples.
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2.5. Confounding Covariables

Details of confounding covariables were described in previous publications [5,38].
The list included age, sex, ethnicity, body mass index, education, poverty–income ratio,
survey periods, physical activity, alcohol consumption, smoking, systolic blood pressure,
total cholesterol, HDL cholesterol, and family history of diabetes. Among these variables,
age, body mass index, systolic blood pressure, total cholesterol, and HDL cholesterol were
continuous variables.

2.6. Statistical Analyses

The presentation of data involved reporting numbers (with percentages) for categori-
cal variables, medians (with interquartile ranges) for continuous variables that were not
normally distributed, and means (with standard deviations) for normally distributed con-
tinuous variables, to outline the characteristics of the participants [39]. Differences among
categorical variables were assessed using Pearson’s chi-square analysis [40], while differ-
ences in continuous variables were examined using one-way ANOVA tests for normally
distributed variables and Kruskal–Wallis one-way ANOVA tests for those not following a
normal distribution [41].

The association between triglycerides and diabetes was analyzed using binary logistic
regression [42], with or without adjustment for confounding factors. Mediation analysis
was conducted using the PROCESS Version 4.3 Macro for SPSS [43], a regression path
analysis modeling tool that was accessible via the processmacro website [44]. At the first
stage, a simple mediation analysis was conducted (Figure 2A), in which the three candidate
mediators (LDL cholesterol, HOMA for insulin resistance, and C-reactive protein) were put
into the model separately to investigate the individual mediation effects on the association
between triglycerides and diabetes. Secondly, parallel mediation analysis was employed
(Figure 2B), in which all three candidate mediators were simultaneously put into the model.

The association coefficients a (between the triglycerides and the tested mediator) and b
(between the tested mediator and diabetes) were generated by mediation analysis (Figure 2).
The direct effect (c’) was the association coefficient between triglycerides and diabetes in the
presence of the tested mediator(s). The indirect effect, or mediation effect, was calculated
by multiplying a and b (a × b). The 95% confidence interval (CI) was generated using the
bootstrapping method [45] with 5000 samples to assess the significance of the mediating
effects [46]. The mediation effect (a × b) was regarded as significant (p < 0.05) if the 95%
CI did not encompass zero [47]. The proportion mediated (PM) was calculated using the
formula a × b/(a × b + c’) and it provided an estimate of the extent to which the association
between triglycerides and diabetes was accounted for by the pathway through the tested
mediator [48].

The not normally distributed variables underwent natural log-transformation to en-
hance data distribution prior to inclusion in regression and mediation analysis models [49];
these variables included triglycerides, HOMA for insulin resistance, C-reactive protein,
body mass index, systolic blood pressure, total cholesterol, and HDL cholesterol. The
null hypothesis was rejected for two-tailed p-values < 0.05. Statistical analyses were con-
ducted using SPSS version 27.0 (IBM SPSS Statistics for Windows, Armonk, NY, USA,
IBM Corporation).
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Figure 2. Mediation analysis models. (A) Simple mediation. LDL cholesterol, HOMA for insulin
resistance, or C-reactive protein was added as single mediator for the association of triglycerides
with diabetes. (B) Parallel mediation. In this analysis, LDL cholesterol, HOMA for insulin resistance,
and C-reactive protein were added simultaneously to assess their mediation effects on the association
of triglycerides with diabetes. a, association coefficient between triglycerides and the tested mediator;
b, association coefficient between the tested mediator and diabetes; c’, also known as direct effect,
referring to the association coefficient between triglycerides and diabetes in the presence of the tested
mediator (simple mediation) or all tested mediators (parallel mediation); CRP, C-reactive protein;
DM, diabetes; HOMA-IR, homeostasis model assessment for insulin resistance; LDL-C, low-density
lipoprotein cholesterol; TG, triglycerides. This figure was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

3. Results
3.1. General Characteristics

This study included 18,435 US adult participants including 2550 individuals with
diabetes. The participants had a mean (standard deviation) age of 49 (19) years. Individuals
with higher fasting triglycerides had a higher prevalence of diabetes. Higher triglycerides
were accompanied by higher levels of LDL cholesterol, HOMA for insulin resistance, C-
reactive protein, body mass index, systolic blood pressure, and total cholesterol, as well as
lower levels of HDL cholesterol. Those with higher triglycerides were older and had less
education and income (Table 1).
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Table 1. Characteristics of the 18,435 participants, stratified according to observed quartiles of triglycerides.

Quartile 1 Quartile 2 Quartile 3 Quartile 4 Overall p Value

Sample size 4738 4569 4523 4605 18,435 NA
Diabetes, n (%) 320 (6.8) 519 (11.4) 698 (15.4) 1013 (22.0) 2550 (13.8) <0.001
Triglycerides, mg/dL, median (IQR) 63 (53–72) 95 (87–104) 134 (123–147) 210 (183–255) 112 (79–162) <0.001
LDL cholesterol, mg/dL, mean (SD) 107.5 (32.2) 121.4 (34.2) 129.3 (36.1) 129.5 (40.5) 121.8 (37.0) <0.001
HOMA-IR, median (IQR) 1.6 (1.1–2.5) 2.1 (1.4–3.2) 2.6 (1.7–4.1) 3.3 (2.2–5.4) 2.3 (1.5–3.7) <0.001
CRP, mg/dL, median (IQR) 0.21 (0.09–0.30) 0.21 (0.14–0.42) 0.21 (0.18–0.55) 0.26 (0.21–0.60) 0.21 (0.15–0.47) <0.001
Glucose, mg/dL, median (IQR) 93 (88–100) 96 (90–104) 99 (92–108) 101 (93–113) 97 (90–106) <0.001
Insulin, uU/mL, median (IQR) 7.1 (5.1–10.2) 8.5 (6.0–12.8) 10.4 (7.2–15.5) 12.7 (8.8–19.1) 9.4 (6.4–14.4) <0.001
HbA1c, %, median (IQR) 5.3 (5.0–5.6) 5.4 (5.1–5.7) 5.4 (5.1–5.8) 5.5 (5.2–5.9) 5.4 (5.1–5.7) <0.001
BMI, kg/m2, median (IQR) 24.9 (21.9–28.8) 26.4 (23.3–30.3) 27.9 (24.6–31.8) 29.0 (26.0–32.9) 27.1 (23.8–31.2) <0.001
SBP, mm Hg, median (IQR) 115 (107–127) 120 (110–133) 123 (113–137) 125 (114–139) 121 (111–134) <0.001
HDL cholesterol, mg/dL, median (IQR) 58 (49–70) 53 (44–63) 48 (41–58) 43 (36–52) 50 (42–62) <0.001
Total cholesterol, mg/dL, median (IQR) 178 (156–202) 194 (170–219) 204 (180–232) 217 (191–246) 197 (171–226) <0.001
Age, y, mean (SD) 43 (18) 49 (19) 52 (18) 52 (18) 49 (19) <0.001
Sex (male), n (%) 2004 (42.3) 2174 (47.6) 2194 (48.5) 2333 (50.7) 8705 (47.2) <0.001
Ethnicity, n (%)

Non-Hispanic white 1930 (40.7) 2161 (47.3) 2251 (49.8) 2362 (51.3) 8704 (47.2) <0.001
Non-Hispanic black 1637 (34.6) 1055 (23.1) 725 (16.0) 487 (10.6) 3904 (21.2)
Hispanic 1030 (21.7) 1213 (26.5) 1400 (31.0) 1613 (35.0) 5256 (28.5)
Other 141 (3.0) 140 (3.1) 147 (3.3) 143 (3.1) 571 (3.1)

Education, n (%)
<High school 1269 (26.8) 1460 (30.2) 1564 (34.6) 1805 (39.2) 6098 (33.1) <0.001
High school 1224 (25.8) 1190 (26.0) 1201 (26.6) 1207 (26.2) 4822 (26.2)
>High school 2236 (47.2) 1906 (41.7) 1743 (38.5) 1585 (34.4) 7470 (40.5)
Unknown 9 (0.2) 13 (0.3) 15 (0.3) 8 (0.2) 45 (0.2)

Poverty–income ratio, n (%)
<130% 1226 (25.9) 1175 (25.7) 1188 (26.3) 1350 (29.3) 4939 (26.S8) <0.001
130–349% 1752 (37.0) 1722 (37.7) 1781 (39.4) 1718 (37.3) 6973 (37.8)
≥350% 1358 (28.7) 1256 (27.5) 1200 (26.5) 1131 (24.6) 4945 (26.8)
Unknown 402 (8.5) 416 (9.1) 354 (7.8) 406 (8.8) 1578 (8.6)

Physical activity, n (%)
Active 1385 (29.2) 1234 (27.0) 1056 (23.3) 1033 (22.4) 4708 (25.5) <0.001
Insufficiently active 1921 (40.5) 1801 (39.4) 1863 (41.2) 1802 (39.1) 7387 (40.1)
Inactive 1431 (30.2) 1531 (33.5) 1602 (35.4) 1767 (38.4) 6331 (34.3)
Unknown 1 (0) 3 (0.1) 2 (0) 3 (0.1) 9 (0)
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Table 1. Cont.

Quartile 1 Quartile 2 Quartile 3 Quartile 4 Overall p Value

Alcohol consumption, n (%)
0 drink/week 762 (16.1) 838 (18.3) 880 (19.5) 931 (20.2) 3411 (18.5) <0.001
<1 drink/week 1060 (22.4) 1071 (23.4) 1038 (22.9) 1012 (22.0) 4181 (22.7)
1–6 drinks/week 1115 (23.5) 958 (21.0) 879 (19.4) 806 (17.5) 3758 (20.4)
≥7 drinks/week 611 (12.9) 630 (13.8) 572 (12.6) 588 (12.8) 2401 (13.0)
Unknown 1190 (25.1) 1072 (23.5) 1154 (25.5) 1268 (27.5) 4684 (25.4)

Smoking status, n (%)
Past smoker 963 (20.3) 1111 (24.3) 1009 (22.3) 1048 (22.8) 4131 (22.4) <0.001
Current smoker 963 (20.3) 1114 (24.4) 1259 (27.8) 1414 (30.7) 4750 (25.8)
Nonsmoker 2808 (59.3) 2343 (51.3) 2252 (49.8) 2140 (46.5) 9543 (51.8)
Unknown 4 (0.1) 1 (0) 3 (0.1) 3 (0.1) 11 (0.1)

Family history of diabetes, n (%)
Yes 2012 (42.5) 1926 (42.2) 1973 (43.6) 2229 (48.4) 8140 (44.2) <0.001
No 2615 (55.2) 2561 (56.1) 2471 (54.6) 2298 (49.9) 9945 (53.9)
Unknown 111 (2.3) 82 (1.8) 79 (1.7) 78 (1.7) 350 (1.9)

Abbreviations: BMI, body mass index; CRP, C-reactive protein; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; HOMA-IR, homeostatic model assessment for insulin resistance;
IQR, interquartile range; LDL, low-density lipoprotein; n, number; NA, not applicable; SBP, systolic blood pressure; SD, standard deviation.
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3.2. Association of Triglycerides with Diabetes Diagnosis

A 1-natural-log-unit increase in triglycerides was associated with a 2.54-fold higher
risk of diabetes (odds ratio, OR, 2.54; 95% CI, 2.23–2.89; p < 0.001; Model 5, Table 2) after
adjustment for risk factors except for the tested mediators (i.e., LDL cholesterol, HOMA
for insulin resistance, and C-reactive protein). After further adjustment for these three
tested mediators, a 1-natural-log-unit increase in triglycerides remained associated with
a higher risk of diabetes (OR, 1.88; 95% CI, 1.48–2.37; p < 0.001; Model 9, Table 2). This
suggested that if LDL cholesterol, HOMA for insulin resistance, or C-reactive protein
mediated the association between triglycerides and diabetes in subsequent analyses, the
mediation would be partial rather than complete [50].

Table 2. Natural log-transformed triglycerides and risk for diabetes in 18,435 participants.

Models Odds Ratio 95% CI p Value

Model 1 2.69 2.47–2.93 <0.001
Model 2 2.60 2.36–2.86 <0.001
Model 3 2.18 1.97–2.42 <0.001
Model 4 2.58 2.28–2.93 <0.001
Model 5 2.54 2.23–2.89 <0.001
Model 6 (Model 5 + LDL-C) 2.95 2.37–3.68 <0.001
Model 7 (Model 5 + HOMA-IR) 1.61 1.40–1.85 <0.001
Model 8 (Model 5 + CRP) 2.55 2.24–2.90 <0.001
Model 9 (Model 5 + LDL-C + HOMA-IR + CRP) 1.88 1.48–2.37 <0.001

CI, confidence interval; CRP, C-reactive protein; HOMA-IR, homeostatic model assessment for insulin resistance;
LDL-C, low-density lipoprotein cholesterol. Model 1: not adjusted; Model 2: adjusted for age, sex, and ethnicity;
Model 3: adjusted for factors in Model 2 plus body mass index, poverty–income ratio, education, physical activity,
alcohol consumption, smoking status, and survey period; Model 4: adjusted for factors in Model 3 plus systolic
blood pressure, total cholesterol, and HDL cholesterol; Model 5: adjusted for factors in Model 4 plus family history
of diabetes.

3.3. Mediation Analyses of the Association of Triglycerides with Diabetes

The mediation coefficients of LDL cholesterol, HOMA for insulin resistance, and C-
reactive protein for the association between triglycerides and diabetes are listed in Table 1.
When LDL cholesterol, HOMA for insulin resistance, and C-reactive protein were added
as single mediators in the mediation analysis (simple mediation), all of the three tested
mediators were found to play a role in mediating the association between triglycerides and
diabetes (Figure 3). HOMA for insulin resistance was the dominant mediator (indirect effect
coefficient, 0.84; 95% CI, 0.79–0.90; p < 0.05), which accounted for 76% of the association.
However, LDL cholesterol negatively mediated the association by 10% (Figure 3).

When LDL cholesterol, HOMA for insulin resistance, and C-reactive protein were
added simultaneously as mediators in the same model (parallel mediation analysis), in
the absence of adjustment for confounding factors, only HOMA for insulin resistance and
LDL cholesterol mediated the association between triglycerides and diabetes (Figure 4).
HOMA for insulin resistance remained the dominant mediator, which accounted for 76%
of the association, whereas LDL cholesterol negatively mediated the association by 8%
(Figure 4). After further adjustment for all the tested confounding factors, only HOMA for
insulin resistance mediated the association between triglycerides and diabetes (indirect
effect coefficient, 0.47; 95% CI, 0.43–0.52; p < 0.05), accounting for 49% of the association
(Table 3 & Figure 5).
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Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 un-
ported license. 
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  LDL-C −26.6 (−26.9–−26.3) * 0.005 (−0.001–0.011) 

0.63 (0.39–0.86) * 
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Figure 3. Simple mediation analysis. LDL cholesterol, HOMA for insulin resistance, or C-reactive
protein was added as single mediator for the association of triglycerides with diabetes. a, association
coefficient between triglycerides and the tested mediator; b, association coefficient between the tested
mediator and diabetes; c’, association coefficient between triglycerides and diabetes in the presence
of the tested mediator; CI, confidence interval; CRP, C-reactive protein; DM, diabetes; HOMA-IR,
homeostasis model assessment for insulin resistance; LDL-C, low-density lipoprotein cholesterol; TG,
triglycerides. Green tick = yes. * p < 0.05. This figure was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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Figure 4. Unadjusted parallel mediation analysis. LDL cholesterol, HOMA for insulin resistance,
and C-reactive protein were added as parallel mediators for the association of triglycerides with
diabetes without adjustment for confounding factors. a, association coefficient between triglycerides
and the tested mediator; b, association coefficient between the tested mediator and diabetes; c’,
association coefficient between triglycerides and diabetes in the presence of all the tested mediators;
CI, confidence interval; CRP, C-reactive protein; DM, diabetes; HOMA-IR, homeostasis model
assessment for insulin resistance; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides.
Green tick = yes. Red cross = no. * p < 0.05. This figure was partly generated using Servier Medical
Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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macological interventions, such as fenofibrate alone or in combination with omega-3 fatty 
acids, improve insulin sensitivity in individuals with hypertriglyceridemia [51]. However, 
the precise mechanism linking triglycerides to insulin resistance remains elusive. Pro-
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oxidation [53], and decreased glycogen synthesis [54], collectively resulting in diminished 
cellular response to insulin. 
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Figure 5. Parallel mediation analysis with adjustment for confounding factors. LDL cholesterol,
HOMA for insulin resistance, and C-reactive protein were placed simultaneously into the analysis as
parallel mediators for the association of triglycerides with diabetes. This analysis was adjusted for
confounding factors. The latter confounding factors included age, sex, ethnicity, body mass index,
poverty–income ratio, education, survey period, lifestyle confounding factors (physical activity,
alcohol consumption, and smoking status), clinical confounding factors (systolic blood pressure,
total cholesterol, HDL cholesterol, and family history of diabetes), and fasting time. Abbreviations:
a, association coefficient between triglycerides and the tested mediator; b, association coefficient
between the tested mediator and diabetes; c’, association coefficient between triglycerides and
diabetes in the presence of the tested mediators; CI, confidence interval; CRP, C-reactive protein;
DM, diabetes; HOMA-IR, homeostasis model assessment for insulin resistance; LDL-C, low-density
lipoprotein cholesterol; TG, triglycerides. The green tick represents yes and the red cross represents
no. * p < 0.05. This figure was partly produced using Servier Medical Art which was licensed under a
Creative Commons Attribution 3.0 unported license.

Table 3. Association coefficients of LDL cholesterol, HOMA for insulin resistance, and C-reactive
protein for mediating the association between triglycerides and diabetes.

Tested
Mediators a (95% CI) b (95% CI) Direct Effect,

c’ (95% CI)

Indirect (Mediation)
Effect

a × b (95% CI)

Unadjusted simple mediation 1

LDL-C 16.5 (15.5–17.5) * −0.006
(−0.007–−0.005) * 1.06 (0.98–1.15) * −0.10 (−0.12–−0.08) *

HOMA-IR 0.55 (0.53–0.57) * 1.54 (1.46–1.61) * 0.27 (0.17–0.37) * 0.84 (0.79–0.90) *

CRP 0.44 (0.41–0.47) * 0.23 (0.19–0.27) * 0.92 (0.83–1.00) * 0.10 (0.08–0.12) *

Unadjusted parallel mediation 2
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Table 3. Cont.

Tested
Mediators a (95% CI) b (95% CI) Direct Effect,

c’ (95% CI)

Indirect (Mediation)
Effect

a × b (95% CI)

LDL-C 16.5 (15.5–17.5) * −0.005
(−0.007–−0.004) *

0.33 (0.23–0.43) *

−0.09 (−0.11–−0.07) *

HOMA-IR 0.55 (0.53–0.57) * 1.51 (1.43–1.59) * 0.83 (0.77– 0.88) *

CRP 0.44 (0.41–0.47) * 0.04 (−0.001–0.09) 0.02 (−0.002–0.04)

Adjusted parallel mediation 3

LDL-C −26.6 (−26.9–−26.3) * 0.005 (−0.001–0.011)

0.63 (0.40–0.86) *

−0.13 (−0.31–0.05)

HOMA-IR 0.31 (0.29–0.33) * 1.52 (1.42–1.61) * 0.47 (0.43–0.52) *

CRP 0.18 (0.14–0.22) * 0.03 (−0.02–0.09) 0.01 (−0.003–0.02)

Adjusted parallel mediation, with further adjustment for fasting time 4

LDL-C −26.6 (−26.9–−26.3) * 0.005 (−0.001–0.011)

0.63 (0.39–0.86) *

−0.13 (−0.31–0.05)

HOMA-IR 0.31 (0.29–0.33) * 1.52 (1.42–1.61) * 0.47 (0.43–0.52) *

CRP 0.18 (0.14–0.22) * 0.03 (−0.02–0.09) 0.01 (−0.003–0.02)

Abbreviations: a, association coefficient between triglycerides and the tested mediator; b, association coefficient
between the tested mediator and diabetes; c’, also known as direct effect, referring to the association coefficient
between triglycerides and diabetes in the presence of the tested mediator (simple mediation) or all the tested
mediators (parallel mediation); CI, confidence interval; CRP, C-reactive protein; HOMA-IR, homeostasis model
assessment for insulin resistance; LDL-C, low-density lipoprotein cholesterol. 1 LDL cholesterol, HOMA for
insulin resistance, or C-reactive protein was added as single mediator in the mediation analysis. The analysis was
unadjusted. 2 LDL cholesterol, HOMA for insulin resistance, and C-reactive protein were added simultaneously
as parallel mediators in the mediation analysis. The analysis was unadjusted. 3 LDL cholesterol, HOMA for
insulin resistance, and C-reactive protein were added simultaneously as parallel mediators in the mediation
analysis. The analysis was adjusted for age, sex, ethnicity, body mass index, poverty–income ratio, education,
physical activity, alcohol consumption, smoking status, survey period, systolic blood pressure, total cholesterol,
HDL cholesterol, and family history of diabetes. 4 LDL cholesterol, HOMA for insulin resistance, and C-reactive
protein were added simultaneously as parallel mediators in the mediation analysis. The analysis was adjusted for
all the confounding factors in footnote 3 plus fasting time. * p < 0.05.

4. Discussion

Utilizing a robust sample of US adults (n = 18,435), this study revealed that HOMA
for insulin resistance partially mediated the association between fasting triglycerides and
diabetes, explaining 49% of the association after adjusting for confounding factors. Notably,
LDL cholesterol and C-reactive protein did not exhibit significant mediation effects.

It has been well known that triglycerides are positively associated with insulin resis-
tance in humans [8,18–20], which is confirmed by the current study. Consistently, phar-
macological interventions, such as fenofibrate alone or in combination with omega-3 fatty
acids, improve insulin sensitivity in individuals with hypertriglyceridemia [51]. However,
the precise mechanism linking triglycerides to insulin resistance remains elusive. Pro-
posed mechanisms include impediments to glucose transport [52], hindrance of glucose
oxidation [53], and decreased glycogen synthesis [54], collectively resulting in diminished
cellular response to insulin.

Insulin resistance mediated 49% of the association between triglycerides and diabetes.
Approximately 55% of type-2 diabetes patients from 11 European countries exhibit elevated
triglyceride levels (>150 mg/dL) [55]. The current study showed that 46% of US patients
with diabetes had elevated triglyceride levels. Thus, reducing triglycerides could hold
therapeutic promise in enhancing insulin sensitivity, an avenue yet to be recognized by
the American Diabetes Association [56]. Further research is needed to establish the role of
lowering triglycerides in glycemic control.

High triglycerides have been implicated in inflammation [11,21], as evidenced by
positive associations with C-reactive protein [23,24] and pancreatitis risk [57,58]. In addition,
pharmacologically lowering triglycerides decreases circulating levels of inflammatory
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markers including C-reactive protein and fibrinogen [51]. Yet, C-reactive protein failed to
contribute significantly to the association between triglycerides and diabetes in this study,
suggesting that inflammation might not play a significant role in high-triglyceride-induced
diabetes. Higher triglycerides have been shown to be positively associated with other
inflammatory markers including interleukin 6 (IL-6) [59] and fibrinogen [25,51]. Therefore,
exploration into the mediating roles of other inflammatory markers like interleukin 6 (IL-6)
and fibrinogen remains warranted.

Elevated triglycerides often coexist with high LDL cholesterol in elderly individuals,
possibly due to the conversion of VLDL to LDL [17]. Interestingly, after adjustment, LDL
cholesterol marginally diminished the association between triglycerides and diabetes by
14%, albeit not reaching statistical significance. The competing effect of LDL cholesterol
against triglycerides has been reported previously. For example, a 1-natural-log increase in
triglycerides was significantly associated with an increased risk of coronary heart disease
mortality (relative risk, 1.86; 95% CI, 1.12–3.08) in male participants with lower LDL
cholesterol (<160 mg/dL) [60]; however, the associated risk was no longer significant
(relative risk, 1.13; 95% CI, 0.64–1.98) in those with higher LDL cholesterol (≥160 mg/dL).

The underlying reasons for LDL cholesterol’s slight competition with triglycerides in
diabetes risk remain unclear. It is plausible that LDL cholesterol exerts an opposing effect on
diabetes compared to triglycerides. Indeed, statin therapy, which lowers LDL cholesterol,
has been associated with a 26% increase in the risk of new-onset diabetes [61,62], while
fenofibrate, a triglyceride-lowering agent, demonstrated glucose-lowering effects in mice
with type-2 diabetes [10].

Strengths of this study include its sizable sample and adjustment for various con-
founding factors, including body mass index, systolic blood pressure, total cholesterol, and
HDL cholesterol. However, its reliance on US participants may limit generalizability to
other populations.

5. Conclusions

This study hypothesized that LDL cholesterol, insulin resistance, and C-reactive
protein mediated the association between triglycerides and diabetes. The results showed
that HOMA for insulin resistance, but not LDL cholesterol or C-reactive protein, is the
primary mediator linking triglycerides and diabetes. Consequently, reducing triglyceride
levels could play a pivotal role in enhancing insulin sensitivity among diabetic patients,
thereby contributing to glycemic control.
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