Advanced Diagnostic Tools in Hypothermia-Related Fatalities—A Pathological Perspective
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Cerebral Pathological and Postmortem Immunohistochemical Features
3.2. Pulmonary Pathological and Postmortem Immunohistochemical Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morleo, B.; Teresinski, G.; Rousseau, G.; Tse, R.; Tettamanti, C.; Augsburger, M.; Palmiere, C. Biomarkers of cerebral damage in fatal hypothermia: Preliminary results. Am. J. Forensic Med. Pathol. 2019, 40, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Mohammed, S.S.; Tammam, H.G.; Abdel-Karim, R.I.; Farag, M.M. Histopathological, histochemical and biochemical postmortem changes in induced fatal hypothermia in rats. Forensic Sci. Res. 2021, 7, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Hlescu, A.A.; Grigoras, A.; Covatariu, G.; Moscalu, M.; Amalinei, C. The Value of myocardium and kidney histopathological and immunohistochemical findings in accidental hypothermia-related fatalities. Medicina 2022, 58, 1507. [Google Scholar] [CrossRef] [PubMed]
- Bjertnæs, L.J.; Næsheim, T.O.; Reierth, E.; Suborov, E.V.; Kirov, M.Y.; Lebedinskii, K.M.; Tveita, T. Physiological changes in subjects exposed to accidental hypothermia: An update. Front. Med. 2022, 9, 824395. [Google Scholar] [CrossRef] [PubMed]
- Jeican, I.I. The pathophysiological mechanisms of the onset of death through accidental hypothermia and the presentation of “The little match girl” case. Clujul Med. 2014, 87, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Castellani, J.W.; Young, A.J. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton. Neurosci. 2016, 196, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ishikawa, T.; Michiue, T.; Zhu, B.L.; Guan, D.W.; Maeda, H. Evaluation of human brain damage in fatalities due to extreme environmental temperature by quantification of basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP), S100β and single-stranded DNA (ssDNA) immunoreactivities. Forensic Sci. Int. 2012, 219, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Elshama, S.S.; Osman, H.E.H.; El-Kenawy, A.E.M. Postmortem diagnosis of induced fatal hypothermia in adult albino rats. Rom. J. Leg. Med. 2016, 24, 106–114. [Google Scholar]
- Salman, M.M.; Kitchen, P.; Woodroofe, M.N.; Bill, R.M.; Conner, A.C.; Heath, P.R.; Conner, M.T. Transcriptome analysis of gene expression provides new insights into the effect of mild therapeutic hypothermia on primary human cortical astrocytes cultured under hypoxia. Front. Cell Neurosci. 2017, 11, 386. [Google Scholar] [CrossRef]
- Mazzone, G.; Nistri, A. S100β as an early biomarker of excitotoxic damage in spinal cord organotypic cultures. J. Neurochem. 2014, 130, 598–604. [Google Scholar] [CrossRef]
- Cox, S.R.; Allerhand, M.; Ritchie, S.J.; Maniega, S.M.; Hernández, M.V.; Harris, S.E.; Dickie, D.A.; Anblagan, D.; Aribisala, B.S.; Morris, Z.; et al. Longitudinal serum S100β and brain aging in the Lothian Birth Cohort 1936. Neurobiol. Aging 2018, 69, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.S.; Park, J.; Kim, K.; Jeong, H.H.; Oh, Y.M.; Choi, S.; Choi, K.H. HSP70-mediated neuroprotection by combined treatment of valproic acid with hypothermia in a rat asphyxial cardiac arrest model. PLoS ONE 2021, 16, e0253328. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol. Life Sci. 2005, 62, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Barua, S.; Huang, M.Y.; Park, J.; Yenari, M.; Lee, J.E. Heat shock protein 70 (HSP70) induction: Chaperonotherapy for neuroprotection after brain injury. Cells 2020, 9, 2020. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.S.; Jung, E.; Lee, Y.; Chung, S.H. Hypothermia decreased the expression of heat shock proteins in neonatal rat model of hypoxic ischemic encephalopathy. Cell Stress. Chaperones 2017, 22, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, K.; Wang, Y.; Zhang, R.; Shang, J.; Jiang, W.; Wang, A. The effects of aquaporin-1 in pulmonary edema induced by fat embolism syndrome. Int. J. Mol. Sci. 2016, 17, 1183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ishikawa, T.; Michiue, T.; Zhu, B.L.; Guan, D.W.; Maeda, H. Molecular pathology of pulmonary edema in forensic autopsy cases with special regard to fatal hyperthermia and hypothermia. Forensic Sci. Int. 2013, 228, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Nixdorf-Miller, A.; Hunsaker, D.M.; Hunsaker, J.C., 3rd. Hypothermia and hyperthermia medicolegal investigation of morbidity and mortality from exposure to environmental temperature extremes. Arch. Pathol. Lab. Med. 2006, 130, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Paal, P.; Pasquier, M.; Darocha, T.; Lechner, R.; Kosinski, S.; Wallner, B.; Zafren, K.; Brugger, H. Accidental hypothermia: 2021 update. Int. J. Environ. Res. Public Health 2022, 19, 501. [Google Scholar] [CrossRef]
- Zafren, K.; Atkins, D.; Brugger, H. Reported resuscitation of a hypothermic avalanche victim with assisted ventilation in 1939. Wilderness Environ. Med. 2018, 29, 275–277. [Google Scholar] [CrossRef]
- Mrozek, S.; Vardon, F.; Geeraerts, T. Brain temperature: Physiology and pathophysiology after brain injury. Anesthesiol. Res. Pract. 2012, 2012, 989487. [Google Scholar] [CrossRef] [PubMed]
- Patabendige, A.; Singh, A.; Jenkins, S.; Sen, J.; Chen, R. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int. J. Mol. Sci. 2021, 22, 4280. [Google Scholar] [CrossRef] [PubMed]
- Thuringer, D.; Garrido, C. Molecular chaperones in the brain endothelial barrier: Neurotoxicity or neuroprotection? FASEB J. 2019, 33, 11629–11639. [Google Scholar] [CrossRef] [PubMed]
- Usmanov, E.S.; Chubarova, M.A.; Saidov, S.K. Emerging trends in the use of therapeutic hypothermia as a method for neuroprotection in brain damage (Review). Sovrem. Tekhnologii Med. 2021, 12, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Tirapelli, D.P.C.; Carlotti Jr, C.G.; Leite, J.P.; Tirapelli, L.F.; Colli, B.O. Expression of HSP70 in cerebral ischemia and neuroprotetive action of hypothermia and ketoprofen. Arq. Neuropsiquiatr. 2010, 68, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Chai, Y.; Lv, S.; Ye, M.; Wu, M.; Xie, L.; Fan, Y.; Zhu, X.; Gao, Z. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int. J. Mol. Med. 2017, 40, 1201–1209. [Google Scholar] [CrossRef]
- Lee, K.J.; Terada, K.; Oyadomari, S.; Inomata, Y.; Mori, M.; Gotoh, T. Induction of molecular chaperones in carbon tetrachloride-treated rat liver: Implications in protection against liver damage. Cell Stress Chaperones 2004, 9, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Olsson, T.; Hansson, O.; Nylandsted, J.; Jäättelä, M.; Smith, M.L.; Wieloch, T. Lack of neuroprotection by heat shock protein 70 overexpression in a mouse model of global cerebral ischemia. Exp. Brain Res. 2004, 154, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Mallet, M.L. Pathophysiology of accidental hypothermia. Q. J. Med. 2002, 95, 775–785. [Google Scholar] [CrossRef]
- Autilio, C.; Echaide, M.; Cruz, A.; García-Mouton, C.; Hidalgo, A.; Da Silva, E.; De Luca, D.; Sørli, J.B.; Pérez-Gil, J. Molecular and biophysical mechanisms behind the enhancement of lung surfactant function during controlled therapeutic hypothermia. Sci. Rep. 2021, 11, 728. [Google Scholar] [CrossRef]
- Angus, S.; Henderson, W.; Banoei, M.; Molgat-Seon, Y.; Peters, C.; Parmar, H.; Griesdale, D.; Sekhon, M.; Sheel, A.W.; Winston, B.; et al. Effect of therapeutic hypothermia on physiologic, histologic and metabolomic markers of lung injury in experimental acute respiratory distress syndrome. Physiol. Rep. 2022, 10, e15286. [Google Scholar] [CrossRef] [PubMed]
- Arbak, S.; Yalin, A.; Ercan, F. Effects of preservation of rat lungs in a hypothermic medium on alveolar morphology. Acta Histochem. 1999, 101, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Gao, L.; Shen, H.; Chen, G.; Cai, R.J.; Mu, F.; Zhao, F. Morphological changes in canine lungs perfused with modified Euro-Collins solution. Di Yi Jun Yi Da Xue Xue Bao 2002, 22, 898–901. [Google Scholar] [PubMed]
- Herrero, R.; Sanchez, G.; Lorente, J.A. New insights into the mechanisms of pulmonary edema in acute lung injury. Ann. Transl. Med. 2018, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Park, J.; Suk, K.; Moon, C.; Park, Y.K.; Han, H.S. Mild hypothermia attenuates intercellular adhesion molecule-1 induction via activation of extracellular signal-regulated kinase-1/2 in a focal cerebral ischemia model. Stroke Res. Treat. 2011, 2011, 846716. [Google Scholar] [CrossRef] [PubMed]
- Calfee, C.; Eisner, M.; Parsons, P.; Thompson, T.; Conner Jr, E.; Matthay, M.; Ware, L. NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med. 2009, 35, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Kira, S.; Daa, T.; Kashima, K.; Mori, M.; Noguchi, T.; Yokoyama, S. Mild hypothermia reduces expression of intercellular adhesion molecule-1 (ICAM-1) and the accumulation of neutrophils after acid-induced lung injury in the rat. Acta Anaesthesiol. Scand. 2005, 49, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Gao, C.; Wang, C.; Ma, L.; Hou, X.; Liu, X.; Li, Z. Expression of aquaporin-1 and aquaporin-5 in a rat model of high-altitude pulmonary edema and the effect of hyperbaric oxygen exposure. Dose Response 2020, 18, 1559325820970821. [Google Scholar] [CrossRef]
- Jensen, K.O.; Held, L.; Kraus, A.; Hildebrand, F.; Mommsen, P.; Mica, L.; Wanner, G.A.; Steiger, P.; Moos, R.M.; Simmen, H.P.; et al. The impact of mild induced hypothermia on the rate of transfusion and the mortality in severely injured patients: A retrospective multi-centre study. Eur. J. Med. Res. 2016, 21, 37. [Google Scholar] [CrossRef]
Cerebral Gross Findings | No. of Cases n (%); (nF; nM) | |
---|---|---|
Congestion | 74 (69.15%); (16 F; 58 M) | |
Edema | moderate | 94 (87.85%); (22 F; 72 M) |
marked | 11 (10.28%); (4 F; 7 M) | |
Subarachnoid hemorrhage | 6 (5.6%); (1 F; 5 M) | |
Cerebral hemorrhage | 1 (0.93%) (0 F; 1 M) | |
Brain softening | 5 (4.67%); (0 F; 5 M) | |
Cerebral atherosclerosis | 17 (15.88%); (5 F; 12 M) | |
Scalp hematomas | 16 (14.95%); (6 F; 10 M) |
Histopathological Features | S100β | r | p-Value | Hsp 70 | r | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
Negative | Positive | Negative | Positive | ||||||
Diffuse perineuronal and perivascular edema | Absent | 2 | 0 | 0.34 | 0.019 | 2 | 0 | 0.22 | 0.077 |
Present | 13 | 92 | 28 | 77 | |||||
Arteriolosclerosis | Absent | 3 | 90 | −0.80 | <0.001 | 16 | 77 | −0.62 | <0.001 |
Present | 12 | 2 | 14 | 0 | |||||
Gliosis and mononuclear cell infiltration | Absent | 11 | 91 | −0.42 | 0.001 | 25 | 77 | −0.35 | 0.001 |
Present | 4 | 1 | 5 | 0 | |||||
Acute brain injuries (contusions) | Absent | 14 | 90 | −0.09 | 0.367 | 27 | 77 | −0.27 | 0.020 |
Present | 1 | 2 | 3 | 0 | |||||
Meningeal fibrosis | Absent | 14 | 92 | −0.24 | 0.140 | 29 | 77 | −0.15 | 0.280 |
Present | 1 | 0 | 1 | 0 | |||||
Focal neuronal ischemia | Absent | 13 | 91 | −0.25 | 0.051 | 27 | 77 | −0.27 | 0.020 |
Present | 2 | 1 | 3 | 0 | |||||
Lacunar infarction | Absent | 11 | 92 | −0.48 | <0.001 | 26 | 77 | −0.31 | 0.005 |
Present | 4 | 0 | 4 | 0 | |||||
Subarachnoid hemorrhage | Absent | 7 | 91 | −0.65 | <0.001 | 21 | 77 | −0.48 | <0.001 |
Present | 8 | 1 | 9 | 0 | |||||
Intraparenchymal and perivascular hemorrhages | Absent | 9 | 85 | −0.34 | 0.003 | 18 | 76 | −0.53 | <0.001 |
Present | 6 | 7 | 12 | 1 |
Organ | Gross Findings | No. of Cases n (%); (nF; nM) | |
---|---|---|---|
Congestion | 46 (43.39%); (10 F; 36 M) | ||
Pulmonary edema | moderate | 88 (83.01%) (20 F; 68 M) | |
marked | 18 (16.98%) (6 F; 12 M) | ||
Chronic parenchymal and pleural inflammation and fibrosis | 39 (36.79%); (11 F; 28 M) | ||
Purulent inflammation | 17 (16.03%); (3 F; 14 M) | ||
Lung hemorrhages | 10 (9.43%); (2 F; 8 M) | ||
Pleural petechiae | 8 (7.54%); (1 F; 7 M) | ||
Bullous emphysema | 3 (2.8%); (1 F; 2 M) |
Histopathological Features | ICAM-1 | r | p-Value | AQP1 | r | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
Negative | Positive | Negative | Positive | ||||||
Hemorrhagic alveolar edema | Absent | 9 | 9 | 0.20 | 0.034 | 2 | 16 | 0.13 | 0.199 |
Present | 22 | 66 | 3 | 85 | |||||
Marked diffuse pulmonary alveolar edema | Absent | 22 | 66 | −0.20 | 0.034 | 5 | 83 | 0.10 | 0.586 |
Present | 9 | 9 | 0 | 18 | |||||
Pulmonary emphysema | Absent | 24 | 74 | −0.36 | 0.001 | 3 | 95 | −0.27 | 0.045 |
Present | 7 | 1 | 2 | 6 | |||||
Intra-alveolar and/or pleural hemorrhages | Absent | 25 | 64 | −0.05 | 0.569 | 5 | 84 | 0.09 | 1.000 |
Present | 6 | 11 | 0 | 17 | |||||
Bronchopneumonia | Absent | 24 | 68 | −0.17 | 0.111 | 4 | 88 | −0.04 | 0.515 |
Present | 7 | 7 | 1 | 13 | |||||
Bronchopneumonia with abscess formation | Absent | 29 | 75 | −0.21 | 0.084 | 5 | 99 | 0.03 | 1.000 |
Present | 2 | 0 | 0 | 2 | |||||
Acute respiratory distress syndrome (ARDS) | Absent | 30 | 75 | −0.15 | 0.292 | 5 | 100 | 0.02 | 1.000 |
Present | 1 | 0 | 0 | 1 | |||||
Pleuritis | Absent | 19 | 75 | −0.55 | <0.001 | 4 | 90 | −0.06 | 0.458 |
Present | 12 | 0 | 1 | 11 | |||||
Pleural adhesions | Absent | 21 | 75 | −0.50 | <0.001 | 3 | 93 | −0.23 | 0.069 |
Present | 10 | 0 | 2 | 8 | |||||
Pulmonary tuberculosis | Absent | 30 | 74 | −0.06 | 0.501 | 5 | 99 | 0.03 | 1.000 |
Present | 1 | 1 | 0 | 2 | |||||
Chronic fibroinflammatory lesions | Absent | 28 | 74 | −0.19 | 0.074 | 5 | 97 | 0.04 | 1.000 |
Present | 3 | 1 | 0 | 4 | |||||
Squamous cell carcinoma | Absent | 30 | 75 | −0.15 | 0.292 | 5 | 100 | 0.02 | 1.000 |
Present | 1 | 0 | 0 | 1 | |||||
Intra-alveolar foreign bodies | Absent | 29 | 75 | −0.21 | 0.084 | 5 | 99 | 0.03 | 1.000 |
Present | 2 | 0 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hleșcu, A.A.; Grigoraș, A.; Ianole, V.; Amalinei, C. Advanced Diagnostic Tools in Hypothermia-Related Fatalities—A Pathological Perspective. Diagnostics 2024, 14, 739. https://doi.org/10.3390/diagnostics14070739
Hleșcu AA, Grigoraș A, Ianole V, Amalinei C. Advanced Diagnostic Tools in Hypothermia-Related Fatalities—A Pathological Perspective. Diagnostics. 2024; 14(7):739. https://doi.org/10.3390/diagnostics14070739
Chicago/Turabian StyleHleșcu, Andreea Alexandra, Adriana Grigoraș, Victor Ianole, and Cornelia Amalinei. 2024. "Advanced Diagnostic Tools in Hypothermia-Related Fatalities—A Pathological Perspective" Diagnostics 14, no. 7: 739. https://doi.org/10.3390/diagnostics14070739
APA StyleHleșcu, A. A., Grigoraș, A., Ianole, V., & Amalinei, C. (2024). Advanced Diagnostic Tools in Hypothermia-Related Fatalities—A Pathological Perspective. Diagnostics, 14(7), 739. https://doi.org/10.3390/diagnostics14070739