Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers
Abstract
:1. Introduction
2. Pathophysiology and Risk Factors of AMD
2.1. Oxidative Stress in AMD Pathogenesis
2.2. Mitochondrial Dysfunction and Its Role in Macular Drusen
2.3. Lipid and Protein Dysregulation in AMD Pathogenesis
2.4. Lipofuscin Accumulation in AMD Pathogenesis
2.5. Impact of Cytochrome P450 in AMD Pathogenesis
2.6. Genetic Variants Related to AMD Pathogenesis
2.7. Extracellular Matrix Regulation in AMD Pathogenesis
2.8. Lysosomal and Proteolysis Dysfunctions in AMD Pathogenesis
2.9. Inflammation in AMD Pathogenesis
3. Imagistic Evaluation of Non-Neovascular AMD
3.1. OCT Progression Risk Assessment in Patients with Early and Intermediate AMD
3.1.1. Correlations between OCT Macular Thickness and AMD Changes
3.1.2. OCT Evaluation of Drusen
3.1.3. Other OCT Biomarkers Related to AMD Progression to Advanced Stages
- 1.
- Hyperreflective foci overlying drusen
- 2.
- Ellipsoid zone disruption
- 3.
- Subretinal drusenoid deposits (reticular pseudodrusen)
- 4.
- Choroidal hyper-transmission
- 5.
- iRORA
3.2. OCT Evaluation of Geographic Atrophy
3.3. Particular Features Regarding OCT Biomarkers in Patients with GA That Are Candidates for Complement Inhibitor Therapy
3.4. Directional Optical Coherence Tomography in AMD
3.5. OCT-Angiography Changes in Early and Intermediate Non-Neovascular AMD
3.6. OCT-Angiography Changes in Geographic Atrophy
3.7. Fundus Autofluorescence Imaging in Early and Intermediate AMD
3.8. Fundus Autofluorescence Imaging in Geographic Atrophy
3.9. Color Fundus Photography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coulibaly, L.M.; Reiter, G.S.; Fuchs, P.; Lachinov, D.; Leingang, O.; Vogl, W.-D.; Bogunovic, H.; Schmidt-Erfurth, U. Progression Dynamics of Early versus Later Stage Atrophic Lesions in Nonneovascular Age-Related Macular Degeneration Using Quantitative OCT Biomarker Segmentation. Ophthalmol. Retin. 2023, 7, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-Related Macular Degeneration. Lancet 2018, 392, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.D.L.; Cukras, C.A.; Chew, E.Y. Age-Related Macular Degeneration: Epidemiology and Clinical Aspects. Adv. Exp. Med. Biol. 2021, 1256, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.J.; Mirza, R.G.; Gill, M.K. Age-Related Macular Degeneration. Med. Clin. N. Am. 2021, 105, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.W.; Chakravarthy, U.; Hogg, R.E.; Muldrew, K.A.; Young, I.S.; Kee, F. Identifying features of early and late age-related macular degeneration: A Comparison of Multicolor Versus Traditional Color Fundus Photography. Retina 2018, 38, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.; Carneiro, Â.; Vieira, M.; Tenreiro, S.; Seabra, M.C. Age-Related Macular Degeneration: Pathophysiology, Management, and Future Perspectives. Ophthalmologica 2021, 244, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Abdouh, M.; Lu, M.; Chen, Y.; Goyeneche, A.; Burnier, J.V.; Burnier, M.N. Filtering Blue Light Mitigates the Deleterious Effects Induced by the Oxidative Stress in Human Retinal Pigment Epithelial Cells. Exp. Eye Res. 2022, 217, 108978. [Google Scholar] [CrossRef] [PubMed]
- Sultan, F.; Parkin, E.T. The Amyloid Precursor Protein Plays Differential Roles in the UVA Resistance and Proliferation of Human Retinal Pigment Epithelial Cells. Protein Pept. Lett. 2022, 29, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Kunchithapautham, K.; Atkinson, C.; Rohrer, B. Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation. J. Biol. Chem. 2014, 289, 14534–14546. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Cano, M.; Ebrahimi, K.; Wang, L.; Handa, J.T. The Impact of Oxidative Stress and Inflammation on RPE Degeneration in Non-Neovascular AMD. Prog. Retin. Eye Res. 2017, 60, 201–218. [Google Scholar] [CrossRef]
- Bellezza, I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Front. Pharmacol. 2018, 9, 1280. [Google Scholar] [CrossRef] [PubMed]
- Lin, L. RAGE on the Toll Road? Cell Mol. Immunol. 2006, 3, 351–358. [Google Scholar] [PubMed]
- Zhao, Z.; Chen, Y.; Wang, J.; Sternberg, P.; Freeman, M.L.; Grossniklaus, H.E.; Cai, J. Age-Related Retinopathy in NRF2-Deficient Mice. PLoS ONE 2011, 6, e19456. [Google Scholar] [CrossRef] [PubMed]
- Felszeghy, S.; Viiri, J.; Paterno, J.J.; Hyttinen, J.M.T.; Koskela, A.; Chen, M.; Leinonen, H.; Tanila, H.; Kivinen, N.; Koistinen, A.; et al. Loss of NRF-2 and PGC-1α Genes Leads to Retinal Pigment Epithelium Damage Resembling Dry Age-Related Macular Degeneration. Redox Biol. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Sinha, D.; Valapala, M.; Shang, P.; Hose, S.; Grebe, R.; Lutty, G.A.; Zigler, J.S.; Kaarniranta, K.; Handa, J.T. Lysosomes: Regulators of Autophagy in the Retinal Pigmented Epithelium. Exp. Eye Res. 2016, 144, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Abokyi, S.; To, C.-H.; Lam, T.T.; Tse, D.Y. Central Role of Oxidative Stress in Age-Related Macular Degeneration: Evidence from a Review of the Molecular Mechanisms and Animal Models. Oxid. Med. Cell. Longev. 2020, 2020, 7901270. [Google Scholar] [CrossRef] [PubMed]
- Camelo, S.; Latil, M.; Veillet, S.; Dilda, P.J.; Lafont, R. Beyond AREDS Formulations, What Is Next for Intermediate Age-Related Macular Degeneration (IAMD) Treatment? Potential Benefits of Antioxidant and Anti-Inflammatory Apocarotenoids as Neuroprotectors. Oxid. Med. Cell. Longev. 2020, 2020, 4984927. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, S.; Ambati, B.K. The Value of Nutritional Supplements in Treating Age-Related Macular Degeneration: A Review of the Literature. Int. Ophthalmol. 2019, 39, 2975–2983. [Google Scholar] [CrossRef] [PubMed]
- Nordgaard, C.L.; Karunadharma, P.P.; Feng, X.; Olsen, T.W.; Ferrington, D.A. Mitochondrial Proteomics of the Retinal Pigment Epithelium at Progressive Stages of Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2008, 49, 2848. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, V.; D’Silva, P. Loss of Function of MtHsp70 Chaperone Variants Leads to Mitochondrial Dysfunction in Congenital Sideroblastic Anemia. Front. Cell Dev. Biol. 2022, 10, 847045. [Google Scholar] [CrossRef] [PubMed]
- Mehrzadi, S.; Hemati, K.; Reiter, R.J.; Hosseinzadeh, A. Mitochondrial Dysfunction in Age-Related Macular Degeneration: Melatonin as a Potential Treatment. Expert Opin. Ther. Targets 2020, 24, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhang, X.; Han, Y.Y.; Burke, N.A.; Kochanek, P.M.; Watkins, S.C.; Graham, S.H.; Carcillo, J.A.; Szabó, C.; Clark, R.S.B. Intra-Mitochondrial Poly(ADP-Ribosylation) Contributes to NAD+ Depletion and Cell Death Induced by Oxidative Stress. J. Biol. Chem. 2003, 278, 18426–18433. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, G.K.; Yin, Y.W. The Role of Poly(ADP-Ribose) Polymerase 1 in Nuclear and Mitochondrial Base Excision Repair. Biomolecules 2023, 13, 1195. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.G.; Ablonczy, Z.; Koutalos, Y.; Hanneken, A.M.; Spraggins, J.M.; Calcutt, M.W.; Crouch, R.K.; Caprioli, R.M.; Schey, K.L. Bis(Monoacylglycero)Phosphate Lipids in the Retinal Pigment Epithelium Implicate Lysosomal/Endosomal Dysfunction in a Model of Stargardt Disease and Human Retinas. Sci. Rep. 2017, 7, 17352. [Google Scholar] [CrossRef] [PubMed]
- Kaarniranta, K.; Salminen, A.; Eskelinen, E.-L.; Kopitz, J. Heat Shock Proteins as Gatekeepers of Proteolytic Pathways—Implications for Age-Related Macular Degeneration (AMD). Ageing Res. Rev. 2009, 8, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Ferrington, D.A.; Sinha, D.; Kaarniranta, K. Defects in Retinal Pigment Epithelial Cell Proteolysis and the Pathology Associated with Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2016, 51, 69–89. [Google Scholar] [CrossRef]
- Hiona, A. The Role of Mitochondrial DNA Mutations in Aging and Sarcopenia: Implications for the Mitochondrial Vicious Cycle Theory of Aging. Exp. Gerontol. 2008, 43, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, M. Lipid Homeostasis and Its Links with Protein Misfolding Diseases. Front. Mol. Neurosci. 2022, 15, 829291. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Davey Smith, G. Mendelian Randomization Implicates High-Density Lipoprotein Cholesterol–Associated Mechanisms in Etiology of Age-Related Macular Degeneration. Ophthalmology 2017, 124, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Colijn, J.M.; den Hollander, A.I.; Demirkan, A.; Cougnard-Grégoire, A.; Verzijden, T.; Kersten, E.; Meester-Smoor, M.A.; Merle, B.M.J.; Papageorgiou, G.; Ahmad, S.; et al. Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration. Ophthalmology 2019, 126, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.X.; Germer, C.J.; La Cunza, N.; Lakkaraju, A. Complement Activation, Lipid Metabolism, and Mitochondrial Injury: Converging Pathways in Age-Related Macular Degeneration. Redox Biol. 2020, 37, 101781. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Esteve-Rudd, J.; Lopes, V.S.; Diemer, T.; Lillo, C.; Rump, A.; Williams, D.S. Microtubule Motors Transport Phagosomes in the RPE, and Lack of KLC1 Leads to AMD-like Pathogenesis. J. Cell Biol. 2015, 210, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Inana, G.; Murat, C.; An, W.; Yao, X.; Harris, I.R.; Cao, J. RPE Phagocytic Function Declines in Age-Related Macular Degeneration and Is Rescued by Human Umbilical Tissue Derived Cells. J. Transl. Med. 2018, 16, 63. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Ooto, S.; Curcio, C.A. Subretinal Drusenoid Deposits AKA Pseudodrusen. Surv. Ophthalmol. 2018, 63, 782–815. [Google Scholar] [CrossRef] [PubMed]
- Monge, M.; Araya, A.; Wu, L. Subretinal Drusenoid Deposits: An Update. Taiwan J. Ophthalmol. 2022, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Investig. Opthalmology Vis. Sci. 2018, 59, AMD160. [Google Scholar] [CrossRef] [PubMed]
- Veerappan, M.; El-Hage-Sleiman, A.-K.M.; Tai, V.; Chiu, S.J.; Winter, K.P.; Stinnett, S.S.; Hwang, T.S.; Hubbard, G.B.; Michelson, M.; Gunther, R.; et al. Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmology 2016, 123, 2554–2570. [Google Scholar] [CrossRef] [PubMed]
- Hagag, A.M.; Kaye, R.; Hoang, V.; Riedl, S.; Anders, P.; Stuart, B.; Traber, G.; Appenzeller-Herzog, C.; Schmidt-Erfurth, U.; Bogunovic, H.; et al. Systematic Review of Prognostic Factors Associated with Progression to Late Age-Related Macular Degeneration: Pinnacle Study Report 2. Surv. Ophthalmol. 2024, 69, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Bermond, K.; Wobbe, C.; Tarau, I.-S.; Heintzmann, R.; Hillenkamp, J.; Curcio, C.A.; Sloan, K.R.; Ach, T. Autofluorescent Granules of the Human Retinal Pigment Epithelium: Phenotypes, Intracellular Distribution, and Age-Related Topography. Investig. Opthalmology Vis. Sci. 2020, 61, 35. [Google Scholar] [CrossRef] [PubMed]
- Bermond, K.; von der Emde, L.; Tarau, I.-S.; Bourauel, L.; Heintzmann, R.; Holz, F.G.; Curcio, C.A.; Sloan, K.R.; Ach, T. Autofluorescent Organelles Within the Retinal Pigment Epithelium in Human Donor Eyes with and without Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2022, 63, 23. [Google Scholar] [CrossRef]
- Pollreisz, A.; Messinger, J.D.; Sloan, K.R.; Mittermueller, T.J.; Weinhandl, A.S.; Benson, E.K.; Kidd, G.J.; Schmidt-Erfurth, U.; Curcio, C.A. Visualizing Melanosomes, Lipofuscin, and Melanolipofuscin in Human Retinal Pigment Epithelium Using Serial Block Face Scanning Electron Microscopy. Exp. Eye Res. 2018, 166, 131–139. [Google Scholar] [CrossRef]
- Feldman, T.B.; Dontsov, A.E.; Yakovleva, M.A.; Ostrovsky, M.A. Photobiology of Lipofuscin Granules in the Retinal Pigment Epithelium Cells of the Eye: Norm, Pathology, Age. Biophys. Rev. 2022, 14, 1051–1065. [Google Scholar] [CrossRef] [PubMed]
- Ach, T.; Tolstik, E.; Messinger, J.D.; Zarubina, A.V.; Heintzmann, R.; Curcio, C.A. Lipofuscin Redistribution and Loss Accompanied by Cytoskeletal Stress in Retinal Pigment Epithelium of Eyes with Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2015, 56, 3242. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.A.; Woulfe, J. Lipofuscin and Aging: A Matter of Toxic Waste. Sci. Aging Knowl. Environ. 2005, 2005, re1. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gorusupudi, A.; Arunkumar, R.; Bernstein, P.S. Extraction, detection, and imaging of the macular carotenoids. Methods Enzymol. 2022, 674, 185–213. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, J.R.; Gregory-Roberts, E.; Yamamoto, K.; Blonska, A.; Ghosh, S.K.; Ueda, K.; Zhou, J. The Bisretinoids of Retinal Pigment Epithelium. Prog. Retin. Eye Res. 2012, 31, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.J.; Rakoczy, P.E.; Constable, I.J. Lipofuscin of the Retinal Pigment Epithelium: A Review. Eye 1995, 9, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Blasiak, J.; Piechota, M.; Pawlowska, E.; Szatkowska, M.; Sikora, E.; Kaarniranta, K. Cellular Senescence in Age-Related Macular Degeneration: Can Autophagy and DNA Damage Response Play a Role? Oxid. Med. Cell. Longev. 2017, 2017, 5293258. [Google Scholar] [CrossRef] [PubMed]
- Yakovleva, M.; Dontsov, A.; Trofimova, N.; Sakina, N.; Kononikhin, A.; Aybush, A.; Gulin, A.; Feldman, T.; Ostrovsky, M. Lipofuscin Granule Bisretinoid Oxidation in the Human Retinal Pigment Epithelium Forms Cytotoxic Carbonyls. Int. J. Mol. Sci. 2021, 23, 222. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, E.; Inafuku, S.; Mulki, L.; Okunuki, Y.; Yanai, R.; Smith, K.E.; Kim, C.B.; Klokman, G.; Bielenberg, D.R.; Puli, N.; et al. Cytochrome P450 Monooxygenase Lipid Metabolites Are Significant Second Messengers in the Resolution of Choroidal Neovascularization. Proc. Natl. Acad. Sci. USA 2017, 114, E7545–E7553. [Google Scholar] [CrossRef] [PubMed]
- Yerramothu, P. New Therapies of Neovascular AMD—Beyond Anti-VEGFs. Vision 2018, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, M.E.; Hammer, S.S.; McCollum, G.W.; Penn, J.S. Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation. Sci. Rep. 2016, 6, 39211. [Google Scholar] [CrossRef] [PubMed]
- Sarparast, M.; Dattmore, D.; Alan, J.; Lee, K.S.S. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020, 12, 3523. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A. Antecedents of Soft Drusen, the Specific Deposits of Age-Related Macular Degeneration, in the Biology of Human Macula. Investig. Opthalmology Vis. Sci. 2018, 59, AMD182. [Google Scholar] [CrossRef] [PubMed]
- Kiel, C.; Nebauer, C.A.; Strunz, T.; Stelzl, S.; Weber, B.H.F. Epistatic Interactions of Genetic Loci Associated with Age-Related Macular Degeneration. Sci. Rep. 2021, 11, 13114. [Google Scholar] [CrossRef] [PubMed]
- Liutkeviciene, R.; Vilkeviciute, A.; Kriauciuniene, L.; Banevicius, M.; Budiene, B.; Stanislovaitiene, D.; Zemaitiene, R.; Deltuva, V.P. Association of Genetic Variants at CETP, AGER, and CYP4F2 Locus with the Risk of Atrophic Age-related Macular Degeneration. Mol. Genet. Genom. Med. 2020, 8, e1357. [Google Scholar] [CrossRef] [PubMed]
- Acar, İ.E.; Lores-Motta, L.; Colijn, J.M.; Meester-Smoor, M.A.; Verzijden, T.; Cougnard-Gregoire, A.; Ajana, S.; Merle, B.M.J.; de Breuk, A.; Heesterbeek, T.J.; et al. Integrating Metabolomics, Genomics, and Disease Pathways in Age-Related Macular Degeneration. Ophthalmology 2020, 127, 1693–1709. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Reynolds, R.; Fagerness, J.; Rosner, B.; Daly, M.J.; Seddon, J.M. Association of Variants in the LIPC and ABCA1 Genes with Intermediate and Large Drusen and Advanced Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2011, 52, 4663. [Google Scholar] [CrossRef] [PubMed]
- Losonczy, G.; Fekete, Á.; Vokó, Z.; Takács, L.; Káldi, I.; Ajzner, É.; Kasza, M.; Vajas, A.; Berta, A.; Balogh, I. Analysis of Complement Factor H Y402H, LOC387715, HTRA1 Polymorphisms and ApoE Alleles with Susceptibility to Age-related Macular Degeneration in Hungarian Patients. Acta Ophthalmol. 2011, 89, 255–262. [Google Scholar] [CrossRef]
- Sarks, S.H. Drusen and their relationship to senile macular degeneration. Aust. New Zealand J. Ophthalmol. 1980, 8, 117–130. [Google Scholar] [CrossRef]
- Krogh Nielsen, M.; Subhi, Y.; Rue Molbech, C.; Nilsson, L.L.; Nissen, M.H.; Sørensen, T.L. Imbalances in Tissue Inhibitors of Metalloproteinases Differentiate Choroidal Neovascularization from Geographic Atrophy. Acta Ophthalmol. 2019, 97, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Dolz-Marco, R.; Gal-Or, O.; Freund, K.B. Choroidal Thickness Influences Near-Infrared Reflectance Intensity in Eyes With Geographic Atrophy Due To Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2016, 57, 6440. [Google Scholar] [CrossRef]
- García-Onrubia, L.; Valentín-Bravo, F.J.; Coco-Martin, R.M.; González-Sarmiento, R.; Pastor, J.C.; Usategui-Martín, R.; Pastor-Idoate, S. Matrix Metalloproteinases in Age-Related Macular Degeneration (AMD). Int. J. Mol. Sci. 2020, 21, 5934. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, D.; Silver, R.E.; Louzada, R.N.; Novais, E.A.; Collins, G.K.; Seddon, J.M. Optical Coherence Tomography Features Preceding the Onset of Advanced Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3519–3529. [Google Scholar] [CrossRef] [PubMed]
- Eichler, W.; Friedrichs, U.; Thies, A.; Tratz, C.; Wiedemann, P. Modulation of Matrix Metalloproteinase and TIMP-1 Expression by Cytokines in Human RPE Cells. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2767–2773. [Google Scholar]
- Korovila, I.; Hugo, M.; Castro, J.P.; Weber, D.; Höhn, A.; Grune, T.; Jung, T. Proteostasis, Oxidative Stress and Aging. Redox Biol. 2017, 13, 550–567. [Google Scholar] [CrossRef] [PubMed]
- Press, M.; Jung, T.; König, J.; Grune, T.; Höhn, A. Protein Aggregates and Proteostasis in Aging: Amylin and β-Cell Function. Mech. Ageing Dev. 2019, 177, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Dimayuga, E.; Keller, J.N. Proteasome Regulation of Oxidative Stress in Aging and Age-Related Diseases of the CNS. Antioxid. Redox Signal. 2006, 8, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Breusing, N.; Grune, T. Regulation of Proteasome-Mediated Protein Degradation during Oxidative Stress and Aging. BCHM 2008, 389, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Golestaneh, N.; Chu, Y.; Xiao, Y.-Y.; Stoleru, G.L.; Theos, A.C. Dysfunctional Autophagy in RPE, a Contributing Factor in Age-Related Macular Degeneration. Cell Death Dis. 2017, 8, e2537. [Google Scholar] [CrossRef]
- Wang, L.; Ebrahimi, K.B.; Chyn, M.; Cano, M.; Handa, J.T. Biology of P62/Sequestosome-1 in Age-Related Macular Degeneration (AMD). Adv. Exp. Med. Biol. 2016, 854, 17–22. [Google Scholar] [CrossRef]
- Wang, L.; Cano, M.; Handa, J.T. P62 Provides Dual Cytoprotection against Oxidative Stress in the Retinal Pigment Epithelium. Biochim. Biophys. Acta BBA Mol. Cell Res. 2014, 1843, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Kaarniranta, K.; Tokarz, P.; Koskela, A.; Paterno, J.; Blasiak, J. Autophagy Regulates Death of Retinal Pigment Epithelium Cells in Age-Related Macular Degeneration. Cell Biol. Toxicol. 2017, 33, 113–128. [Google Scholar] [CrossRef]
- Kauppinen, A.; Paterno, J.J.; Blasiak, J.; Salminen, A.; Kaarniranta, K. Inflammation and Its Role in Age-Related Macular Degeneration. Cell. Mol. Life Sci. 2016, 73, 1765–1786. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Clark, M.E.; Crossman, D.K.; Kojima, K.; Messinger, J.D.; Mobley, J.A.; Curcio, C.A. Abundant Lipid and Protein Components of Drusen. PLoS ONE 2010, 5, e10329. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Messinger, J.D.; Zhang, Y.; Spaide, R.F.; Freund, K.B.; Curcio, C.A. Subretinal drusenoid deposit in age-related macular degeneration. Retina 2020, 40, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.A.; Thein, T.; Kinnunen, K.; Lashkari, K.; Gregory, M.S.; D’Amore, P.A.; Ksander, B.R. NLRP3 Inflammasome Activation in Retinal Pigment Epithelial Cells by Lysosomal Destabilization: Implications for Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2013, 54, 110. [Google Scholar] [CrossRef] [PubMed]
- Piippo, N.; Korkmaz, A.; Hytti, M.; Kinnunen, K.; Salminen, A.; Atalay, M.; Kaarniranta, K.; Kauppinen, A. Decline in Cellular Clearance Systems Induces Inflammasome Signaling in Human ARPE-19 Cells. Biochim. Biophys. Acta BBA Mol. Cell Res. 2014, 1843, 3038–3046. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, N.; Piippo, N.; Ranta-aho, S.; Mysore, Y.; Kaarniranta, K.; Kauppinen, A. Effects of Resvega on Inflammasome Activation in Conjunction with Dysfunctional Intracellular Clearance in Retinal Pigment Epithelial (RPE) Cells. Antioxidants 2021, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Blevins, H.M.; Xu, Y.; Biby, S.; Zhang, S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci. 2022, 14, 879021. [Google Scholar] [CrossRef]
- Anderson, D.H.; Mullins, R.F.; Hageman, G.S.; Johnson, L.V. A Role for Local Inflammation in the Formation of Drusen in the Aging Eye. Am. J. Ophthalmol. 2002, 134, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Nicklason, E.; Ham, Y.; Ng, D.; Glance, S.; Abel, K.; Harraka, P.; Mack, H.; Colville, D.; Savige, J. Retinal Drusen Counts Are Increased in Inflammatory Bowel Disease, and with Longer Disease Duration, More Complications and Associated IgA Glomerulonephritis. Sci. Rep. 2022, 12, 11744. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Jiang, S.; Gericke, A. Age-Related Macular Degeneration: Role of Oxidative Stress and Blood Vessels. Int. J. Mol. Sci. 2021, 22, 1296. [Google Scholar] [CrossRef] [PubMed]
- Ghita, A.M.; Iliescu, D.A.; Ghita, A.C.; Ilie, L.A.; Otobic, A. Ganglion Cell Complex Analysis: Correlations with Retinal Nerve Fiber Layer on Optical Coherence Tomography. Diagnostics 2023, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, M.V.; Tai, V.; Sleiman, K.; Winter, K.; Chiu, S.J.; Farsiu, S.; Stinnett, S.S.; Lad, E.M.; Wong, W.T.; Chew, E.Y.; et al. Local Anatomic Precursors to New-Onset Geographic Atrophy in Age-Related Macular Degeneration as Defined on OCT. Ophthalmol. Retin. 2021, 5, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Giocanti-Auregan, A.; Tadayoni, R.; Fajnkuchen, F.; Dourmad, P.; Magazzeni, S.; Cohen, S.Y. Predictive Value of Outer Retina En Face OCT Imaging for Geographic Atrophy Progression. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8325–8330. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, T.; Liu, Z.; Nalbandyan, M.; Cleland, S.; Blodi, B.A.; Mares, J.A.; Bailey, S.; Wallace, R.; Gehrs, K.; Tinker, L.F.; et al. Association of Macular Thickness with Age and Age-Related Macular Degeneration in the Carotenoids in Age-Related Eye Disease Study 2 (CAREDS2), An Ancillary Study of the Women’s Health Initiative. Transl. Vis. Sci. Technol. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Ko, F.; Foster, P.J.; Strouthidis, N.G.; Shweikh, Y.; Yang, Q.; Reisman, C.A.; Muthy, Z.A.; Chakravarthy, U.; Lotery, A.J.; Keane, P.A.; et al. Associations with Retinal Pigment Epithelium Thickness Measures in a Large Cohort: Results from the UK Biobank. Ophthalmology 2017, 124, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.X.; Li, H.; Tham, Y.C.; Teo, K.Y.C.; Tan, A.C.S.; Schmetterer, L.; Wong, T.Y.; Cheung, C.M.G.; Cheng, C.-Y.; Fan, Q. Relationship Between Retinal Layer Thickness and Genetic Susceptibility to Age-Related Macular Degeneration in Asian Populations. Ophthalmol. Sci. 2023, 3, 100396. [Google Scholar] [CrossRef] [PubMed]
- Kaye, R.A.; Patasova, K.; Patel, P.J.; Hysi, P.; Lotery, A.J. UK Biobank Eye and Vision Consortium Macular Thickness Varies with Age-Related Macular Degeneration Genetic Risk Variants in the UK Biobank Cohort. Sci. Rep. 2021, 11, 23255. [Google Scholar] [CrossRef] [PubMed]
- Zekavat, S.M.; Sekimitsu, S.; Ye, Y.; Raghu, V.; Zhao, H.; Elze, T.; Segrè, A.V.; Wiggs, J.L.; Natarajan, P.; Del Priore, L.; et al. Photoreceptor Layer Thinning Is an Early Biomarker for Age-Related Macular Degeneration: Epidemiologic and Genetic Evidence from UK Biobank OCT Data. Ophthalmology 2022, 129, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Antonio-Aguirre, B.; Arevalo, J.F. Treating Patients with Geographic Atrophy: Are We There Yet? Int. J. Retin. Vitr. 2023, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- De Sisternes, L.; Simon, N.; Tibshirani, R.; Leng, T.; Rubin, D.L. Quantitative SD-OCT Imaging Biomarkers as Indicators of Age-Related Macular Degeneration Progression. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7093–7103. [Google Scholar] [CrossRef]
- Guymer, R.; Wu, Z. Age-Related Macular Degeneration (AMD): More than Meets the Eye. The Role of Multimodal Imaging in Today’s Management of AMD-A Review. Clin. Exp. Ophthalmol. 2020, 48, 983–995. [Google Scholar] [CrossRef]
- Ferris, F.L.; Wilkinson, C.P.; Bird, A.; Chakravarthy, U.; Chew, E.; Csaky, K.; Sadda, S.R. Beckman Initiative for Macular Research Classification Committee Clinical Classification of Age-Related Macular Degeneration. Ophthalmology 2013, 120, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Oncel, D.; Corradetti, G.; Wakatsuki, Y.; Nittala, M.G.; Velaga, S.B.; Stambolian, D.; Pericak-Vance, M.A.; Haines, J.L.; Sadda, S.R. Drusen Morphometrics on Optical Coherence Tomography in Eyes with Age-Related Macular Degeneration and Normal Aging. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 2525–2533. [Google Scholar] [CrossRef] [PubMed]
- Au, A.; Santina, A.; Abraham, N.; Levin, M.F.; Corradetti, G.; Sadda, S.; Sarraf, D. Relationship Between Drusen Height and OCT Biomarkers of Atrophy in Non-Neovascular AMD. Investig. Ophthalmol. Vis. Sci. 2022, 63, 24. [Google Scholar] [CrossRef] [PubMed]
- Balaratnasingam, C.; Yannuzzi, L.A.; Curcio, C.A.; Morgan, W.H.; Querques, G.; Capuano, V.; Souied, E.; Jung, J.; Freund, K.B. Associations Between Retinal Pigment Epithelium and Drusen Volume Changes During the Lifecycle of Large Drusenoid Pigment Epithelial Detachments. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5479–5489. [Google Scholar] [CrossRef]
- Flores, R.; Carneiro, Â.; Tenreiro, S.; Seabra, M.C. Retinal Progression Biomarkers of Early and Intermediate Age-Related Macular Degeneration. Life 2021, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, W.; Shi, F.; Su, J.; Chen, H.; Yu, K.; Zhou, Y.; Peng, Y.; Chen, Z.; Chen, X. MsTGANet: Automatic Drusen Segmentation from Retinal OCT Images. IEEE Trans. Med. Imaging 2022, 41, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Cheng, Y.; Li, J.; Liu, Z.; Shen, M.; Zhang, Q.; Liu, J.; Herrera, G.; Hiya, F.E.; Morin, R.; et al. Automated Segmentation and Quantification of Calcified Drusen in 3D Swept Source OCT Imaging. Biomed. Opt. Express 2023, 14, 1292–1306. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Akram, M.U.; Hassan, T.; Jameel, A.; Khalil, T. Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD. J. Digit. Imaging 2018, 31, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Ly, A.; Kalloniatis, M.; Nivison-Smith, L. Multispectral Pattern Recognition Measures Change in Drusen Area in Age-Related Macular Degeneration with High Congruency to Expert Graders. Sci. Rep. 2022, 12, 7442. [Google Scholar] [CrossRef] [PubMed]
- Gregori, G.; Yehoshua, Z.; Garcia Filho, C.A.d.A.; Sadda, S.R.; Portella Nunes, R.; Feuer, W.J.; Rosenfeld, P.J. Change in Drusen Area over Time Compared Using Spectral-Domain Optical Coherence Tomography and Color Fundus Imaging. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7662–7668. [Google Scholar] [CrossRef] [PubMed]
- Zeiss Group Global, Germany, CIRRUS HD-OCT User Manual; 2019.
- Saßmannshausen, M.; Behning, C.; Weinz, J.; Goerdt, L.; Terheyden, J.H.; Chang, P.; Schmid, M.; Poor, S.H.; Zakaria, N.; Finger, R.P.; et al. Characteristics and Spatial Distribution of Structural Features in Age-Related Macular Degeneration: A MACUSTAR Study Report. Ophthalmol. Retin. 2023, 7, 420–430. [Google Scholar] [CrossRef]
- Schlanitz, F.G.; Sacu, S.; Baumann, B.; Bolz, M.; Platzer, M.; Pircher, M.; Hitzenberger, C.K.; Schmidt-Erfurth, U. Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography. Am. J. Ophthalmol. 2015, 160, 335–344.e1. [Google Scholar] [CrossRef] [PubMed]
- Corbelli, E.; Borrelli, E.; Parravano, M.; Sacconi, R.; Gilardi, M.; Costanzo, E.; Cavalleri, M.; Querques, L.; Bandello, F.; Querques, G. Multimodal Imaging Characterization of Peripheral Drusen. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 543–549. [Google Scholar] [CrossRef]
- Yang, S.; Gao, Z.; Qiu, H.; Zuo, C.; Mi, L.; Xiao, H.; Liu, X. Low-Reflectivity Drusen with Overlying RPE Damage Revealed by Spectral-Domain OCT: Hint for the Development of Age-Related Macular Degeneration. Front. Med. 2021, 8, 706502. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Heussen, F.M.; Hariri, A.; Keane, P.A.; Sadda, S.R. Optical Coherence Tomography-Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-Related Macular Degeneration. Ophthalmology 2013, 120, 2656–2665. [Google Scholar] [CrossRef] [PubMed]
- Lad, E.M.; Finger, R.P.; Guymer, R. Biomarkers for the Progression of Intermediate Age-Related Macular Degeneration. Ophthalmol. Ther. 2023, 12, 2917–2941. [Google Scholar] [CrossRef] [PubMed]
- Nittala, M.G.; Corvi, F.; Maram, J.; Velaga, S.B.; Haines, J.; Pericak-Vance, M.A.; Stambolian, D.; Sadda, S.R. Risk Factors for Progression of Age-Related Macular Degeneration: Population-Based Amish Eye Study. J. Clin. Med. 2022, 11, 5110. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.L.; Abbott, C.J.; Hadoux, X.; Jannaud, M.; Hodgson, L.A.B.; van Wijngaarden, P.; Guymer, R.H.; Wu, Z. Hyporeflective Cores within Drusen: Association with Progression of Age-Related Macular Degeneration and Impact on Visual Sensitivity. Ophthalmol. Retin. 2022, 6, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Laiginhas, R.; Shen, M.; Shi, Y.; Li, J.; Trivizki, O.; Waheed, N.K.; Gregori, G.; Rosenfeld, P.J. Multimodal Imaging and En Face OCT Detection of Calcified Drusen in Eyes with Age-Related Macular Degeneration. Ophthalmol. Sci. 2022, 2, 100162. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.S.; Pilgrim, M.G.; Fearn, S.; Bertazzo, S.; Tsolaki, E.; Morrell, A.P.; Li, M.; Messinger, J.D.; Dolz-Marco, R.; Lei, J.; et al. Calcified Nodules in Retinal Drusen Are Associated with Disease Progression in Age-Related Macular Degeneration. Sci. Transl. Med. 2018, 10, eaat4544. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.F.; Hitzenberger, C.K.; Yasuno, Y. Polarization Sensitive Optical Coherence Tomography—A Review [Invited]. Biomed. Opt. Express 2017, 8, 1838–1873. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.; Gotzinger, E.; Pircher, M.; Sattmann, H.; Schuutze, C.; Schlanitz, F.; Ahlers, C.; Schmidt-Erfurth, U.; Hitzenberger, C.K. Segmentation and Quantification of Retinal Lesions in Age-Related Macular Degeneration Using Polarization-Sensitive Optical Coherence Tomography. J. Biomed. Opt. 2010, 15, 061704. [Google Scholar] [CrossRef] [PubMed]
- Oncel, D.; Corradetti, G.; He, Y.; Ashrafkhorasani, M.; Nittala, M.G.; Stambolian, D.; Pericak-Vance, M.A.; Haines, J.L.; Sadda, S.R. Assessment of Intraretinal Hyperreflective Foci Using Multimodal Imaging in Eyes with Age-Related Macular Degeneration. Acta Ophthalmol. 2024, 102, e126–e132. [Google Scholar] [CrossRef] [PubMed]
- Augustin, S.; Lam, M.; Lavalette, S.; Verschueren, A.; Blond, F.; Forster, V.; Przegralek, L.; He, Z.; Lewandowski, D.; Bemelmans, A.-P.; et al. Melanophages Give Rise to Hyperreflective Foci in AMD, a Disease-Progression Marker. J. Neuroinflammation 2023, 20, 28. [Google Scholar] [CrossRef]
- Cao, D.; Leong, B.; Messinger, J.D.; Kar, D.; Ach, T.; Yannuzzi, L.A.; Freund, K.B.; Curcio, C.A. Hyperreflective Foci, Optical Coherence Tomography Progression Indicators in Age-Related Macular Degeneration, Include Transdifferentiated Retinal Pigment Epithelium. Investig. Ophthalmol. Vis. Sci. 2021, 62, 34. [Google Scholar] [CrossRef]
- Kikushima, W.; Sakurada, Y.; Sugiyama, A.; Yoneyama, S.; Matsubara, M.; Fukuda, Y.; Shijo, T.; Kotoda, Y.; Fragiotta, S.; Kashiwagi, K. Characteristics of Intermediate Age-Related Macular Degeneration with Hyperreflective Foci. Sci. Rep. 2022, 12, 18420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Miller, J.M.L. Basic-Science Observations Explain How Outer Retinal Hyperreflective Foci Predict Drusen Regression and Geographic Atrophy in Age-Related Macular Degeneration. Eye 2022, 36, 1115–1118. [Google Scholar] [CrossRef]
- Duic, C.; Pfau, K.; Keenan, T.D.L.; Wiley, H.; Thavikulwat, A.; Chew, E.Y.; Cukras, C. Hyperreflective Foci in Age-Related Macular Degeneration Are Associated with Disease Severity and Functional Impairment. Ophthalmol. Retin. 2023, 7, 307–317. [Google Scholar] [CrossRef]
- Goh, K.L.; Wintergerst, M.W.M.; Abbott, C.J.; Hadoux, X.; Jannaud, M.; Kumar, H.; Hodgson, L.A.B.; Guzman, G.; Janzen, S.; van Wijngaarden, P.; et al. Hyperreflective Foci Not Seen as Hyperpigmentary Abnormalities on Color Fundus Photographs in Age-Related Macular Degeneration. Retina 2024, 44, 214–221. [Google Scholar] [CrossRef]
- Echols, B.S.; Clark, M.E.; Swain, T.A.; Chen, L.; Kar, D.; Zhang, Y.; Sloan, K.R.; McGwin, G.; Singireddy, R.; Mays, C.; et al. Hyperreflective Foci and Specks Are Associated with Delayed Rod-Mediated Dark Adaptation in Nonneovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2020, 4, 1059–1068. [Google Scholar] [CrossRef]
- Fragiotta, S.; Abdolrahimzadeh, S.; Dolz-Marco, R.; Sakurada, Y.; Gal-Or, O.; Scuderi, G. Significance of Hyperreflective Foci as an Optical Coherence Tomography Biomarker in Retinal Diseases: Characterization and Clinical Implications. J. Ophthalmol. 2021, 2021, 6096017. [Google Scholar] [CrossRef] [PubMed]
- Tiosano, L.; Byon, I.; Alagorie, A.R.; Ji, Y.-S.; Sadda, S.R. Choriocapillaris Flow Deficit Associated with Intraretinal Hyperreflective Foci in Intermediate Age-Related Macular Degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.; Fradinho, A.C.; Pereira, R.S.; Mendes, J.M.; Seabra, M.C.; Tenreiro, S.; Carneiro, Â. Identifying Imaging Predictors of Intermediate Age-Related Macular Degeneration Progression. Transl. Vis. Sci. Technol. 2023, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Toprak, I.; Yaylalı, V.; Yildirim, C. Early Deterioration in Ellipsoid Zone in Eyes with Non-Neovascular Age-Related Macular Degeneration. Int. Ophthalmol. 2017, 37, 801–806. [Google Scholar] [CrossRef]
- Cassels, N.K.; Wild, J.M.; Margrain, T.H.; Chong, V.; Acton, J.H. The Use of Microperimetry in Assessing Visual Function in Age-Related Macular Degeneration. Surv. Ophthalmol. 2018, 63, 40–55. [Google Scholar] [CrossRef]
- Takahashi, A.; Ooto, S.; Yamashiro, K.; Oishi, A.; Tamura, H.; Nakanishi, H.; Ueda-Arakawa, N.; Tsujikawa, A.; Yoshimura, N. Photoreceptor Damage and Reduction of Retinal Sensitivity Surrounding Geographic Atrophy in Age-Related Macular Degeneration. Am. J. Ophthalmol. 2016, 168, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Fragiotta, S.; Carnevale, C.; Cutini, A.; Vingolo, E.M. Correlation between Retinal Function and Microstructural Foveal Changes in Intermediate Age Related Macular Degeneration. Int. J. Retin. Vitr. 2017, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Laíns, I.; Miller, J.B.; Park, D.H.; Tsikata, E.; Davoudi, S.; Rahmani, S.; Pierce, J.; Silva, R.; Chen, T.C.; Kim, I.K.; et al. Structural Changes Associated with Delayed Dark Adaptation in Age-Related Macular Degeneration. Ophthalmology 2017, 124, 1340–1352. [Google Scholar] [CrossRef] [PubMed]
- Emamverdi, M.; Habibi, A.; Ashrafkhorasani, M.; Nittala, M.G.; Kadomoto, S.; Sadda, S.R. Optical Coherence Tomography Features of Macular Hyperpigmented Lesions without Intraretinal Hyperreflective Foci in Age-Related Macular Degeneration. Curr. Eye Res. 2024, 49, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Wightman, A.J.; Guymer, R.H. Reticular Pseudodrusen: Current Understanding. Clin. Exp. Optom. 2019, 102, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Zarubina, A.V.; Neely, D.C.; Clark, M.E.; Huisingh, C.E.; Samuels, B.C.; Zhang, Y.; McGwin, G.; Owsley, C.; Curcio, C.A. Prevalence of Subretinal Drusenoid Deposits in Older Persons with and without Age-Related Macular Degeneration, by Multimodal Imaging. Ophthalmology 2016, 123, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Mauschitz, M.M.; Hochbein, B.J.; Klinkhammer, H.; Saßmannshausen, M.; Terheyden, J.H.; Krawitz, P.; Finger, R.P. Prevalence and Determinants of Subretinal Drusenoid Deposits in Patients’ First-Degree Relatives. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.J.; Chazaro, J.; Otero-Marquez, O.; Ledesma-Gil, G.; Tong, Y.; Coughlin, A.C.; Teibel, Z.R.; Alauddin, S.; Tai, K.; Lloyd, H.; et al. SUBRETINAL DRUSENOID DEPOSITS AND SOFT DRUSEN: Are They Markers for Distinct Retinal Diseases? Retina 2022, 42, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.T.; Olsen, T.W.; Chong, V.; Kim, J.; Hammer, M.; Lema, G.; Deobhakta, A.; Tan, A.; Tong, Y.; Tai, K.; et al. Subretinal Drusenoid Deposits, Age Related Macular Degeneration, and Cardiovascular Disease. Asia Pac. J. Ophthalmol. 2024, 13, 100036. [Google Scholar] [CrossRef] [PubMed]
- Çeper, S.B.; Afrashi, F.; Değirmenci, C.; Menteş, J.; Nalçacı, S.; Akkın, C. Multimodal Imaging of Reticular Pseudodrusen in Turkish Patients. Turk. J. Ophthalmol. 2023, 53, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.; Cougnard-Grégoire, A.; Delyfer, M.-N.; Combillet, F.; Rougier, M.-B.; Schweitzer, C.; Dartigues, J.-F.; Korobelnik, J.-F.; Delcourt, C. Multimodal Imaging of Reticular Pseudodrusen in a Population-Based Setting: The Alienor Study. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3058–3065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Rivero, E.B.; Clark, M.E.; Witherspoon, C.D.; Spaide, R.F.; Girkin, C.A.; Owsley, C.; Curcio, C.A. Photoreceptor Perturbation around Subretinal Drusenoid Deposits as Revealed by Adaptive Optics Scanning Laser Ophthalmoscopy. Am. J. Ophthalmol. 2014, 158, 584–596.e1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Sadda, S.R.; Clark, M.E.; Witherspoon, C.D.; Spaide, R.F.; Owsley, C.; Curcio, C.A. Lifecycles of Individual Subretinal Drusenoid Deposits and Evolution of Outer Retinal Atrophy in Age-Related Macular Degeneration. Ophthalmol. Retin. 2020, 4, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Abdolrahimzadeh, S.; Di Pippo, M.; Sordi, E.; Cusato, M.; Lotery, A.J. Subretinal Drusenoid Deposits as a Biomarker of Age-Related Macular Degeneration Progression via Reduction of the Choroidal Vascularity Index. Eye 2023, 37, 1365–1370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sadda, S.R.; Sarraf, D.; Swain, T.A.; Clark, M.E.; Sloan, K.R.; Warriner, W.E.; Owsley, C.; Curcio, C.A. Spatial Dissociation of Subretinal Drusenoid Deposits and Impaired Scotopic and Mesopic Sensitivity in AMD. Investig. Ophthalmol. Vis. Sci. 2022, 63, 32. [Google Scholar] [CrossRef] [PubMed]
- Grewal, M.K.; Chandra, S.; Gurudas, S.; Rasheed, R.; Sen, P.; Menon, D.; Bird, A.; Jeffery, G.; Sivaprasad, S. Functional Clinical Endpoints and Their Correlations in Eyes with AMD with and without Subretinal Drusenoid Deposits-a Pilot Study. Eye 2022, 36, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Neely, D.; Zarubina, A.V.; Clark, M.E.; Huisingh, C.E.; Jackson, G.R.; Zhang, Y.; McGwin, G.; Curcio, C.A.; Owsley, C. Association between visual function and subretinal drusenoid deposits in normal and early age-related macular degeneration eyes. Retina 2017, 37, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, J.; Feuer, W.; Gregori, G.; Rosenfeld, P.J. Persistent Hypertransmission Defects on En Face OCT Imaging as a Stand-Alone Precursor for the Future Formation of Geographic Atrophy. Ophthalmol. Retin. 2021, 5, 1214–1225. [Google Scholar] [CrossRef] [PubMed]
- Corvi, F.; Corradetti, G.; Laiginhas, R.; Liu, J.; Gregori, G.; Rosenfeld, P.J.; Sadda, S.R. Comparison between B-Scan and En Face Images for Incomplete and Complete Retinal Pigment Epithelium and Outer Retinal Atrophy. Ophthalmol. Retin. 2023, 7, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, M.; Laiginhas, R.; Herrera, G.; Li, J.; Shi, Y.; Hiya, F.; Trivizki, O.; Waheed, N.K.; Chung, C.Y.; et al. Onset and Progression of Persistent Choroidal Hypertransmission Defects in Intermediate Age-Related Macular Degeneration: A Novel Clinical Trial Endpoint. Am. J. Ophthalmol. 2023, 254, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Biarnés, M.; Coco-Martin, R.M.; Sala-Puigdollers, A.; Monés, J. Early Detection of Incipient Retinal Pigment Epithelium Atrophy Overlying Drusen with Fundus Autofluorescence vs. Spectral Domain Optical Coherence Tomography. J. Ophthalmol. 2020, 2020, 9457457. [Google Scholar] [CrossRef] [PubMed]
- Guymer, R.H.; Rosenfeld, P.J.; Curcio, C.A.; Holz, F.G.; Staurenghi, G.; Freund, K.B.; Schmitz-Valckenberg, S.; Sparrow, J.; Spaide, R.F.; Tufail, A.; et al. Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration: Classification of Atrophy Meeting Report 4. Ophthalmology 2020, 127, 394–409. [Google Scholar] [CrossRef]
- Jhingan, M.; Singh, S.R.; Samanta, A.; Arora, S.; Tucci, D.; Amarasekera, S.; Cagini, C.; Lupidi, M.; Chhablani, J. Drusen Ooze: Predictor for Progression of Dry Age-Related Macular Degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2687–2694. [Google Scholar] [CrossRef] [PubMed]
- Corradetti, G.; Tiosano, L.; Nassisi, M.; Alagorie, A.R.; Corvi, F.; Nittala, M.G.; Sadda, S. Scotopic Microperimetric Sensitivity and Inner Choroid Flow Deficits as Predictors of Progression to Nascent Geographic Atrophy. Br. J. Ophthalmol. 2021, 105, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Goh, K.L.; Hodgson, L.A.B.; Guymer, R.H. Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy: Longitudinal Evaluation in Age-Related Macular Degeneration. Ophthalmology 2023, 130, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Nittala, M.G.; Metlapally, R.; Ip, M.; Chakravarthy, U.; Holz, F.G.; Staurenghi, G.; Waheed, N.; Velaga, S.B.; Lindenberg, S.; Karamat, A.; et al. Association of Pegcetacoplan with Progression of Incomplete Retinal Pigment Epithelium and Outer Retinal Atrophy in Age-Related Macular Degeneration: A Post Hoc Analysis of the FILLY Randomized Clinical Trial. JAMA Ophthalmol. 2022, 140, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Valckenberg, S.; Braun, M.D.; Thiele, S.; Ferrara, D.; Honigberg, L.; Gao, S.S.; Chen, H.; Steffen, V.; Holz, F.G.; Saßmannshausen, M. Conversion from Intermediate Age-Related Macular Degeneration to Geographic Atrophy in a Proxima B Subcohort Using a Multimodal Approach. Ophthalmologica 2021, 244, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Arora, S.; Jhingan, M.; Singh, S.; Amarasekera, S.; Tucci, D.; Cagini, C.; Lupidi, M.; Chhablani, J. Bilateral Evolution of OCT Biomarkers in Dry AMD: Long-Term Follow up Study. Eur. J. Ophthalmol. 2023, 11206721231204384, ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Sadda, S.R.; Guymer, R.; Holz, F.G.; Schmitz-Valckenberg, S.; Curcio, C.A.; Bird, A.C.; Blodi, B.A.; Bottoni, F.; Chakravarthy, U.; Chew, E.Y.; et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. Ophthalmology 2018, 125, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Shmueli, O.; Yehuda, R.; Szeskin, A.; Joskowicz, L.; Levy, J. Progression of CRORA (Complete RPE and Outer Retinal Atrophy) in Dry Age-Related Macular Degeneration Measured Using SD-OCT. Transl. Vis. Sci. Technol. 2022, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.L.; Sun, M.; Khetpal, S.; Grossetta Nardini, H.K.; Del Priore, L. V Topographic Variation of the Growth Rate of Geographic Atrophy in Nonexudative Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 2. [Google Scholar]
- Kabanarou, S.A.; Bontzos, G.; Xirou, T.; Kapsala, Z.; Dimitriou, E.; Theodossiadis, P.; Chatziralli, I. Multimodal Imaging for the Assessment of Geographic Atrophy in Patients with “Foveal” and “No-Foveal” Sparing. Ophthalmic Res. 2021, 64, 675–683. [Google Scholar] [CrossRef]
- Cedro, L.; Hoffmann, L.; Hatz, K. Geographic Atrophy in AMD: Prognostic Factors Based on Long-Term Follow-Up. Ophthalmic Res. 2023, 66, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Cleland, S.C.; Konda, S.M.; Danis, R.P.; Huang, Y.; Myers, D.J.; Blodi, B.A.; Domalpally, A. Quantification of Geographic Atrophy Using Spectral Domain OCT in Age-Related Macular Degeneration. Ophthalmol. Retin. 2021, 5, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Mai, J.; Riedl, S.; Reiter, G.S.; Lachinov, D.; Vogl, W.-D.; Bogunovic, H.; Schmidt-Erfurth, U. Comparison of Fundus Autofluorescence Versus Optical Coherence Tomography-Based Evaluation of the Therapeutic Response to Pegcetacoplan in Geographic Atrophy. Am. J. Ophthalmol. 2022, 244, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Pfau, M.; von der Emde, L.; de Sisternes, L.; Hallak, J.A.; Leng, T.; Schmitz-Valckenberg, S.; Holz, F.G.; Fleckenstein, M.; Rubin, D.L. Progression of Photoreceptor Degeneration in Geographic Atrophy Secondary to Age-Related Macular Degeneration. JAMA Ophthalmol. 2020, 138, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Mai, J.; Lachinov, D.; Riedl, S.; Reiter, G.S.; Vogl, W.-D.; Bogunovic, H.; Schmidt-Erfurth, U. Clinical Validation for Automated Geographic Atrophy Monitoring on OCT under Complement Inhibitory Treatment. Sci. Rep. 2023, 13, 7028. [Google Scholar] [CrossRef] [PubMed]
- Vogl, W.-D.; Riedl, S.; Mai, J.; Reiter, G.S.; Lachinov, D.; Bogunović, H.; Schmidt-Erfurth, U. Predicting Topographic Disease Progression and Treatment Response of Pegcetacoplan in Geographic Atrophy Quantified by Deep Learning. Ophthalmol. Retin. 2023, 7, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Riedl, S.; Vogl, W.-D.; Mai, J.; Reiter, G.S.; Lachinov, D.; Grechenig, C.; McKeown, A.; Scheibler, L.; Bogunović, H.; Schmidt-Erfurth, U. The Effect of Pegcetacoplan Treatment on Photoreceptor Maintenance in Geographic Atrophy Monitored by Artificial Intelligence-Based OCT Analysis. Ophthalmol. Retin. 2022, 6, 1009–1018. [Google Scholar] [CrossRef]
- Wartak, A.; Augustin, M.; Haindl, R.; Beer, F.; Salas, M.; Laslandes, M.; Baumann, B.; Pircher, M.; Hitzenberger, C.K. Multi-Directional Optical Coherence Tomography for Retinal Imaging. Biomed. Opt. Express 2017, 8, 5560–5578. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.M.; Jia, Y.; Johnson, A.J.; Antony, B.J.; McDonald, H.R.; Johnson, R.N.; Lujan, B.J. Directional Reflectivity of the Ellipsoid Zone in Dry Age-Related Macular Degeneration. Ophthalmic Surg. Lasers Imaging Retin. 2021, 52, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Marsh-Armstrong, B.; Murrell, K.S.; Valente, D.; Jonnal, R.S. Using Directional OCT to Analyze Photoreceptor Visibility over AMD-Related Drusen. Sci. Rep. 2022, 12, 9763. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Khan, S.; Nguyen, T.-T.P.; Ng, R.; Lujan, B.J.; Tan, O.; Huang, D.; Jian, Y. Volumetric Directional Optical Coherence Tomography. Biomed. Opt. Express 2022, 13, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Meleppat, R.K.; Zhang, P.; Ju, M.J.; Manna, S.K.; Jian, Y.; Pugh, E.N.; Zawadzki, R.J. Directional Optical Coherence Tomography Reveals Melanin Concentration-Dependent Scattering Properties of Retinal Pigment Epithelium. J. Biomed. Opt. 2019, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Meleppat, R.K.; Ronning, K.E.; Karlen, S.J.; Burns, M.E.; Pugh, E.N.; Zawadzki, R.J. In Vivo Multimodal Retinal Imaging of Disease-Related Pigmentary Changes in Retinal Pigment Epithelium. Sci. Rep. 2021, 11, 16252. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Mohler, K.J.; Potsaid, B.; Lu, C.D.; Liu, J.J.; Jayaraman, V.; Cable, A.E.; Duker, J.S.; Huber, R.; Fujimoto, J.G. Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography. PLoS ONE 2013, 8, e81499. [Google Scholar] [CrossRef] [PubMed]
- Narnaware, S.H.; Bansal, A.; Bawankule, P.K.; Raje, D.; Chakraborty, M. Vessel Density Changes in Choroid, Chorio-Capillaries, Deep and Superficial Retinal Plexues on OCTA in Normal Ageing and Various Stages of Age-Related Macular Degeneration. Int. Ophthalmol. 2023, 43, 3523–3532. [Google Scholar] [CrossRef] [PubMed]
- Waheed, N.K.; Moult, E.M.; Fujimoto, J.G.; Rosenfeld, P.J. Optical Coherence Tomography Angiography of Dry Age-Related Macular Degeneration; 2016; pp. 91–100.
- Spaide, R.F. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression. Am. J. Ophthalmol. 2016, 170, 58–67. [Google Scholar] [CrossRef]
- Velaga, S.B.; Nittala, M.G.; Vupparaboina, K.K.; Jana, S.; Chhablani, J.; Haines, J.; Pericak-Vance, M.A.; Stambolian, D.; Sadda, S.R. Choroidal vascularity index and choroidal thickness in eyes with reticular pseudodrusen. Retina 2020, 40, 612–617. [Google Scholar] [CrossRef]
- Nassisi, M.; Tepelus, T.; Nittala, M.G.; Sadda, S.R. Choriocapillaris Flow Impairment Predicts the Development and Enlargement of Drusen. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Pellegrini, M.; Sebastiani, S.; Bernabei, F.; Moscardelli, F.; Iovino, C.; Napoli, P.E.; Campos, E. Choroidal vascularity index quantification in geographic atrophy using binarization of enhanced-depth imaging optical coherence tomographic scans. Retina 2020, 40, 960–965. [Google Scholar] [CrossRef]
- Bartlett, H.; Eperjesi, F. Use of Fundus Imaging in Quantification of Age-Related Macular Change. Surv. Ophthalmol. 2007, 52, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Moult, E.M.; Waheed, N.K.; Adhi, M.; Lee, B.; Lu, C.D.; de Carlo, T.E.; Jayaraman, V.; Rosenfeld, P.J.; Duker, J.S.; et al. Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology 2015, 122, 2532–2544. [Google Scholar] [CrossRef] [PubMed]
- Alagorie, A.R.; Verma, A.; Nassisi, M.; Sadda, S.R. Quantitative Assessment of Choriocapillaris Flow Deficits in Eyes with Advanced Age-Related Macular Degeneration Versus Healthy Eyes. Am. J. Ophthalmol. 2019, 205, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Alagorie, A.R.; Nassisi, M.; Verma, A.; Nittala, M.; Corradetti, G.; Velaga, S.; Sadda, S.R. Relationship between Proximity of Choriocapillaris Flow Deficits and Enlargement Rate of Geographic Atrophy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Batoğlu, F.; Demirel, S.; Özmert, E.; Oguz, Y.G.; Özyol, P. Autofluorescence Patterns as a Predictive Factor for Neovascularization. Optom. Vis. Sci. 2014, 91, 950–955. [Google Scholar] [CrossRef]
- Curcio, C.A.; Messinger, J.D.; Sloan, K.R.; McGwin, G.; Medeiros, N.E.; Spaide, R.F. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration. Retina 2013, 33, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Hogg, R.E.; Silva, R.; Staurenghi, G.; Murphy, G.; Santos, A.R.; Rosina, C.; Chakravarthy, U. Clinical Characteristics of Reticular Pseudodrusen in the Fellow Eye of Patients with Unilateral Neovascular Age-Related Macular Degeneration. Ophthalmology 2014, 121, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Knudtson, M.D.; Klein, R.; Klein, B.E.K.; Lee, K.E.; Meuer, S.M.; Tomany, S.C. Location of Lesions Associated with Age-Related Maculopathy Over a 10-Year Period: The Beaver Dam Eye Study. Investig. Opthalmology Vis. Sci. 2004, 45, 2135. [Google Scholar] [CrossRef] [PubMed]
- Bindewald, A.; Bird, A.C.; Dandekar, S.S.; Dolar-Szczasny, J.; Dreyhaupt, J.; Fitzke, F.W.; Einbock, W.; Holz, F.G.; Jorzik, J.J.; Keilhauer, C.; et al. Classification of Fundus Autofluorescence Patterns in Early Age-Related Macular Disease. Investig. Opthalmology Vis. Sci. 2005, 46, 3309. [Google Scholar] [CrossRef]
- Bingöl Kızıltunç, P.; Şermet, F. Fundus Autofluorescence Changes in Age-Related Maculopathy. Turk. J. Ophthalmol. 2018, 48, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Blonska, A.M.; Pumariega, N.M.; Bearelly, S.; Sohrab, M.A.; Hageman, G.S.; Smith, R.T. Reticular macular disease is associated with multilobular geographic atrophy in age-related macular degeneration. Retina 2013, 33, 1850–1862. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Valckenberg, S.; Fleckenstein, M.; Helb, H.-M.; Issa, P.C.; Scholl, H.P.N.; Holz, F.G. In Vivo Imaging of Foveal Sparing in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2009, 50, 3915. [Google Scholar] [CrossRef] [PubMed]
- Khanifar, A.A.; Lederer, D.E.; Ghodasra, J.H.; Stinnett, S.S.; Lee, J.J.; Cousins, S.W.; Bearelly, S. Comparison of color fundus photographs and fundus autofluorescence images in measuring geographic atrophy area. Retina 2012, 32, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Frizziero, L.; Torresin, T.; Boscolo Todaro, P.; Miglionico, G.; Pilotto, E. Optical Coherence Tomography and Color Fundus Photography in the Screening of Age-Related Macular Degeneration: A Comparative, Population-Based Study. PLoS ONE 2020, 15, e0237352. [Google Scholar] [CrossRef] [PubMed]
- Farinha, C.; Cachulo, M.L.; Coimbra, R.; Alves, D.; Nunes, S.; Pires, I.; Marques, J.P.; Costa, J.; Martins, A.; Sobral, I.; et al. Age-Related Macular Degeneration Staging by Color Fundus Photography vs. Multimodal Imaging-Epidemiological Implications (The Coimbra Eye Study-Report 6). J. Clin. Med. 2020, 9, 1329. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliescu, D.A.; Ghita, A.C.; Ilie, L.A.; Voiculescu, S.E.; Geamanu, A.; Ghita, A.M. Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics 2024, 14, 764. https://doi.org/10.3390/diagnostics14070764
Iliescu DA, Ghita AC, Ilie LA, Voiculescu SE, Geamanu A, Ghita AM. Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics. 2024; 14(7):764. https://doi.org/10.3390/diagnostics14070764
Chicago/Turabian StyleIliescu, Daniela Adriana, Ana Cristina Ghita, Larisa Adriana Ilie, Suzana Elena Voiculescu, Aida Geamanu, and Aurelian Mihai Ghita. 2024. "Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers" Diagnostics 14, no. 7: 764. https://doi.org/10.3390/diagnostics14070764
APA StyleIliescu, D. A., Ghita, A. C., Ilie, L. A., Voiculescu, S. E., Geamanu, A., & Ghita, A. M. (2024). Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics, 14(7), 764. https://doi.org/10.3390/diagnostics14070764