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Abstract: The role of the intestinal microbiota in the diagnosis and treatment of pancreatic diseases
is increasingly significant. Consequently, fecal microbiota transplantation (FMT) is emerging as a
promising therapeutic avenue for various pancreatic disorders, including cancer, pancreatitis, and
type 1 diabetes (T1D). This innovative procedure entails transferring gut microbiota from healthy
donors to individuals affected by pancreatic ailments with the potential to restore intestinal balance
and alleviate associated symptoms. FMT represents a pioneering approach to improve patient out-
comes in pancreatic diseases, offering tailored treatments customized to individual microbiomes and
specific conditions. Recent research highlights the therapeutic benefits of targeting the gut microbiota
for personalized interventions in pancreatic disorders. However, a comprehensive understanding of
the intricate interplay between gut microbiota and pancreatic physiology warrants further investi-
gation. The necessity for additional studies and research endeavors remains crucial, especially in
elucidating both adult and pediatric cases affected by pathological pancreatic conditions.
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1. Introduction

The medical community is increasingly focusing on the intestinal microbiota, es-
pecially due to its discovered links to the functioning of various organs in the human
body [1]. Microbiota alterations seem to be especially beneficial for diagnosing certain
pancreatic pathologies and it is possible that the future of non-invasive diagnosis may
emerge from this realm [2]. Certainly, influencing the microbiota through fecal microbiota
transplantation (FMT) is gaining recognition as a promising treatment strategy for a range
of conditions, including pancreatic diseases like cancer, pancreatitis, and diabetes. FMT
involves transferring gut microbiota and their byproducts from an individual in good
health to one who is ailing. This procedure is drawing attention for its effectiveness and
the ease of use, presently considered the most effective method for restoring intestinal flora
and addressing both intestinal and potentially non-intestinal illnesses [3–5]. This technique
involves altering the composition of the gut microbiota to normalize it, thereby obtaining
therapeutic benefits [6,7].

As Antushevich outlines, the selection of donors for fecal material is subject to very
stringent criteria to mitigate the risk of disease transmission from a nominally healthy
donor to the recipient [8]. Before undergoing FMT, donors are subjected to thorough
screening to rule out conditions such as HIV, syphilis, hepatitis A, B, C, or autoimmune
diseases. Similarly, donors must not be overweight and they must be free of any tumors,
inflammation, diabetes, infectious diseases, or metabolic syndromes [8–11].

Up until 2020, the only established application for FMT was in treating the persistent
and difficult cases of the Clostridioides difficile infection (CDI), where it has been shown to be
highly effective, achieving success rates of over 80–85% [12–14]. Recent studies, however,
indicate that disorders specific to the pancreas might be influenced by the microbiota,
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whether through the direct effects of the pancreatic microbiota or indirectly via the intestinal
microbiota [15–17].

The link between such microbial modulation and the emergence of pancreatic diseases,
including pancreatic ductal adenocarcinoma, acute and chronic pancreatitis, and type 1
diabetes mellitus, will be explored. This insight opens up the potential use of the FMT
in the treatment of these pancreatic conditions. This review aims to collate and discuss
recent research on how gut microbiota can be utilized in diagnosing pancreatic pathologies
through distinctive changes and particularly how modulating the microbiota via FMT can
impact treatments for various pancreatic disorders, highlighting its potential benefits.

2. Microbiota Changes in Pancreatic Disorders

Analyzing microbiota is increasingly widespread in the study of digestive tract dis-
orders, including those affecting the pancreas. Several authors have started identifying
specific microbiota patterns for each disease. This approach could markedly enhance the
diagnosis of future patients, especially in the cases of pancreatic cancer, by relying exclu-
sively on the analysis of the microbiota [18,19]. Microbiota analysis is non-invasive, which
could increase patient compliance with this type of testing and consequently increase the
number of diagnoses at an earlier stage. Ren et al. not only showed that certain bacterial
species are found in higher quantities in patients suffering from a certain pathology, but
also observed notable differences in the quantity of Streptococcus in stool between those
with pancreatic head cancer and those with pancreatic body cancer. The interaction be-
tween the intrapancreatic microbiome and gut microbiota has been recognized as a factor
affecting the progression of patients with pancreatic tumor diseases [20]. Lu et al. have
even demonstrated that the pattern of oral microbiota alterations can be correlated with
the diagnosis of pancreatic cancer [21]. Both oral and rectal microbiota were utilized in a
multicentric study involving over 400 patients, which identified that the composition of the
microbiota can predict the course of acute pancreatitis. In the future, this kind of analysis
could play a role in diagnosing pancreatitis and in directing treatment strategies [22].

3. Fecal Microbiota Transplantation (FMT) and Its Role in Pancreatic Illness

It is important to understand the foundational techniques involved in preparing the
FMT, which may differ depending on the illness being addressed. The approach to donor
selection, screening, and fecal material processing must be customized to suit the condition
at hand [23].

A procedure for FMT, particularly aimed at treating CDI, is detailed by Perez et al. [24].
It involves mixing 50–60 g of stool with 200–300 mL of a diluent until it becomes a liquid
suspension [24]. After allowing the mixture to settle for 5 min, it is filtered through gauze.
The resulting liquid can be used immediately, refrigerated for up to 24 h at 2–8 ◦C, or
frozen for up to 30 days at −20 ◦C. If glycerin is added, the fecal material can be pre-
served at −80 ◦C without losing its effectiveness. The method of FMT administration can
vary, including oral (via the upper gastrointestinal tract), nasal, or rectal (via colonoscopy)
routes [25–27]. Rectal administration is often preferred due to the fecal substrate’s location
deep within the cecum, minimizing the risk of its removal (Figure 1). However, administer-
ing FMT through a nasogastric or nasoduodenal tube may lead to complications from the
high levels of pathogenic bacteria in the upper digestive and respiratory tracts, potentially
causing pulmonary or gastrointestinal issues [24]. Important studies in the literature have
underscored the feasibility of culturing the microbiota to manipulate its content, aiming to
stimulate the growth of specific bacterial strains, thus leading to the enhanced efficacy of
the FMT [28,29].

In addition to its role in combatting recurrent CDI, FMT has shown promise in the
field of oncology, especially in mitigating the side effects of tumor radiotherapy [30–32].
Radiation therapy often leads to damage and has negative effects on the gut microbiota’s
composition [33]. Research by Cui et al. highlighted that animals subjected to radia-
tion exhibited a higher survival rate following FMT [34]. Furthermore, both male and
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female mice that received the transplant showed an increase in peripheral white blood
cell counts, along with enhancements in gastrointestinal function and the integrity of the
intestinal epithelium [34]. Consequently, the researchers proposed that FMT could serve
as a radioprotective agent, potentially improving outcomes in cancer treatment involving
radiotherapy [34,35].

Diagnostics 2024, 14, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Necessary steps for preparing the stool for microbiota transfer. 

In addition to its role in combatting recurrent CDI, FMT has shown promise in the 
field of oncology, especially in mitigating the side effects of tumor radiotherapy [30–32]. 
Radiation therapy often leads to damage and has negative effects on the gut microbiota’s 
composition [33]. Research by Cui et al. highlighted that animals subjected to radiation 
exhibited a higher survival rate following FMT [34]. Furthermore, both male and female 
mice that received the transplant showed an increase in peripheral white blood cell counts, 
along with enhancements in gastrointestinal function and the integrity of the intestinal 
epithelium [34]. Consequently, the researchers proposed that FMT could serve as a radi-
oprotective agent, potentially improving outcomes in cancer treatment involving radio-
therapy [34,35]. 

In addition to the discoveries concerning radiotherapy, a groundbreaking develop-
ment in oncology involving the gut microbiota is the realization that the pancreas pos-
sesses its own unique microbial makeup. This challenges the previous belief that the pan-
creas was a sterile organ [15,36]. Numerous studies have confirmed the presence of micro-
organisms within the pancreas under non-diseased conditions, referred to as the inherent 
pancreatic microbiota [16]. Although research in this area is still in its early stages and 
thus limited, this revelation introduces new avenues for exploring oncogenesis and iden-
tifying novel treatment targets for pancreatic tumors. 

Additionally, a novel concept known as the “microbiota-pancreas axis” has been in-
troduced, detailing a bidirectional communication system that illustrates the influence of 
pancreatic physiological functions on the intestinal microbiota and how the intestinal mi-
crobiota, in turn, affects the pancreas [37–39]. The FMT induces a notable response, par-
ticularly involving regulatory T cells, iNKT cells, and Antigen Presenting Cells (among 
others), which diminish the inflammatory response. This has been evidenced not only in 
patients with Clostridioides difficile infection but also in those with other pathologies. Re-
ducing the activity of the inflammatory system could offer substantial advantages in pan-
creatic conditions, a significant number of which are inflammation-driven [40–42]. 

Figure 1. Necessary steps for preparing the stool for microbiota transfer.

In addition to the discoveries concerning radiotherapy, a groundbreaking development
in oncology involving the gut microbiota is the realization that the pancreas possesses its
own unique microbial makeup. This challenges the previous belief that the pancreas was a
sterile organ [15,36]. Numerous studies have confirmed the presence of micro-organisms
within the pancreas under non-diseased conditions, referred to as the inherent pancreatic
microbiota [16]. Although research in this area is still in its early stages and thus limited,
this revelation introduces new avenues for exploring oncogenesis and identifying novel
treatment targets for pancreatic tumors.

Additionally, a novel concept known as the “microbiota-pancreas axis” has been
introduced, detailing a bidirectional communication system that illustrates the influence
of pancreatic physiological functions on the intestinal microbiota and how the intestinal
microbiota, in turn, affects the pancreas [37–39]. The FMT induces a notable response,
particularly involving regulatory T cells, iNKT cells, and Antigen Presenting Cells (among
others), which diminish the inflammatory response. This has been evidenced not only
in patients with Clostridioides difficile infection but also in those with other pathologies.
Reducing the activity of the inflammatory system could offer substantial advantages in
pancreatic conditions, a significant number of which are inflammation-driven [40–42].
Building on this, the discussion will extend to the effects of both the inherent pancreatic and
intestinal microbiota on the progression of intrinsic pancreatic diseases, whether malignant
or benign.

The bacteria identified in the transplanted fecal matter that showed the most significant
beneficial effects for patients with various pathologies are listed in Table 1, but the table also
highlights the dominant microbiotas in humans and mice. These are particularly important
because they can be stimulated to enhance the desired effect of the FMT.
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Table 1. Predominant beneficial bacteria in fecal microbiota transplantation and dominant microbiota
in humans and mice.

Dominant Microbiota in Humans and Mice

Authors Dominant microbiota Host

Li et al. [43]

Lactobacillus reuteri,
Enterococcus faecium,

Escherichia coli, Bacteroides
ovatus, Fusobacterium gastrosuis

Mice

Rinninella et al. [44]

Fecalibacterium prausnitzii,
Clostridium spp., Lactobacillus
reuteri, Enterococcus faecium,

Bacteroides vulgatus, Bacteroides
uniformis Prevotella spp.,
Parabacteroides distasonis

Human

Predominantly Beneficial Microbiota in Various Pathologies

Authors Micro-organism Pathology Main Findings

Lima et al. [45] Odoribacter splanchnicus Ulcerative Colitis

Odoribacter splanchnicus plays a
crucial role in enhancing both

metabolic functions and immune
cell resilience against colitis.

Yang et al. [46]
Lactobacillus acidophilus,
coleohominis, gallinarum;

Selenomonas artemidis

Constipation, depression, and
anxiety

Psychiatric symptoms were
improved after the FMT.

Aggarwala et al. [47]

Bacteroides vulgatus, uniformis
ovatus, cellulosilyticus;

Parabacteroides
distasonis, merdae

Clostridioides difficile
infection

Significantly predicted the clinical
outcomes of the transplantation for

up to five years.

Lee et al. [48] Bacteroidales Non specific intestinal
disorders

The study effectively used
genome-resolved metagenomics to
track and identify bacterial strains

that persist in FMT recipients,
deepening insights into microbiota

dynamics post-transplant.

Zhang et al. [49] Faecalibacterium; Eubacterium;
Roseburia Inflammatory Bowel Disease

Symptoms were improved after
FMT but outcomes are linked to gut

microbiota and methodology
variations, emphasizing the need

for standardized research to
improve FMT effectiveness through

microbial and
metabolite adjustments.

4. The Intestinal-Pancreatic Axis

The gut–pancreatic axis, modulated by the microbiome, plays a pivotal role in pan-
creatic immunity and disease pathogenesis. This axis is defined by critical interactions:
gut-derived short-chain fatty acids (SCFAs) regulate immune responses in the pancreas by
controlling the production of the cathelicidin-related antimicrobial peptide in beta-cells [50].
Furthermore, pancreatic acinar cells affect gut microbiota and intestinal immunity through
the secretion of specific antimicrobials [50]. These findings refute the traditional view of the
pancreas as a sterile environment, illustrating instead a dynamic pancreatic microbiome
of migratory bacteria and fungi from the gut, which may impact diseases like pancreatic
ductal adenocarcinoma (PDAC) [50].
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5. Pancreatic Cancer

Pancreatic cancer (PC) ranks among the deadliest diseases globally. In the United
States, pancreatic ductal adenocarcinoma (PDAC), a particular type of pancreatic tumor, is
recognized as the third highest cause of cancer death and accounts for 85% of all malignant
pancreatic conditions [51].

The combination of ineffective treatments and late diagnosis contributes to the ex-
tremely low survival rates in pancreatic cancer, further hampered by the slim prospects for
successful tumor removal. Although the complex interactions between pancreatic cancer
and the gut microbiota are recognized, it is still unclear whether a causal relationship exists.
Modifying the gut microbiota presents a promising approach for influencing tumorigenesis
and the management of pancreatic cancer in the future, with ongoing research exploring
antibiotics, probiotics, and FMT as potential treatments [52–54].

Studies have indicated that individuals with periodontal disease exhibit a higher
incidence of PDAC compared to those without periodontal issues [55]. In light of this,
Farrell and colleagues’ study was conducted to profile the oral microbiome of patients to
explore its potential link with pancreatic cancer [56]. The researchers identified significant
microbiome differences using bacterial microarrays and qPCR validation. Specifically,
PDAC patients showed alterations in 31 species and reductions in 25, notably within the
Firmicutes, Proteobacteria, and Actinobacteria groups. Further validation highlighted Neisseria
elongata and Streptococcus mitis as significantly reduced in PDAC patients, suggesting their
potential as biomarkers for the disease [56].

Pushalkar et al. undertook a study to investigate if gut bacteria could move to the
pancreas, employing Enterococcus faecalis marked with fluorescent labels and Escherichia coli
tagged with GFP, administered to mice [57]. The study confirmed bacterial migration to
the pancreas, suggesting a direct impact of the gut bacteria on the pancreatic environment.
Further, using 16S rRNA FISH and qPCR, a higher bacterial abundance was found in
PDAC in both mice and humans compared to normal pancreas. The sequencing of 16S
rRNA genes in human PDAC tumors identified 13 bacterial phyla with Proteobacteria,
Bacteroidetes, and Firmicutes being predominant. Significant differences in bacterial
composition between PDAC and normal pancreas were highlighted and oral antibiotics
were found to slow oncogenesis, while transferring specific bacteria or fecal material from
PDAC mice accelerated tumorigenesis. These results underline the microbiome’s role in
disease progression and suggest that targeting the microbiota could potentially reduce
PDAC risk [57].

FMT is being recognized as a promising strategy that could hinder the progression of
pancreatic cancer. This process might be enabled by adjusting the gut microbiota, which
includes decreasing the production of the inflammatory agents and cytotoxic byproducts,
as well as correcting dysbiosis in the gut flora [58].

Another research focused on FMT related to pancreatic cancer involved transferring
fecal matter from subjects with advanced stages of PC, those who have survived PC
for more than five years, and healthy participants into mice. Thirty-five days after the
transplantation, mice that received the FMT from the group with advanced pancreatic
cancer showed markedly larger tumors compared to those receiving FMT from long-term
PC survivors or healthy controls [20].

In addition to the previous studies about the connection between periodontal disease
and a higher risk of PC, Castillo et al. explored the link between oral bacteria and pancreatic
cancer progression by examining tissue samples from 50 pancreatic cancer patients at Rhode
Island Hospital and 34 organs from the National Disease Research Interchange [59]. Using
16S rRNA gene sequencing on 189 tissue samples and 57 swabs, along with 12 stool samples,
the study found diverse bacterial DNA in pancreatic tissues [59]. Bacterial DNA varied
highly among individuals and sites within the pancreas and duodenum, regardless of
cancer presence. Non-cancer subjects had higher levels of Lactobacillus, while cancer
subjects showed an increased abundance of the Fusobacterium spp., known to be associated
with colorectal cancer [59]. This study suggests bacteria may migrate from the gut to
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the pancreas, highlighting the need for further research on their potential causal role in
pancreatic cancer [59].

Mitsuhashi et al. found that individuals with PC exhibit a higher abundance of
Fusobacterium compared to healthy individuals. Their research further indicated that the
increased occurrence of the Fusobacterium species in tissues affected by pancreatic cancer
independently correlates with a worse outcome. This suggests that Fusobacterium species
might serve as a promising prognostic marker for pancreatic cancer [60].

These studies collectively suggest that both intra- and extra-pancreatic microbiota play
roles in the development, progression, and severity of pancreatic cancer, paving the way
for potential new treatments centered around microbiota. FMT, known for its effectiveness
and safety in conditions like Clostridioides difficile, emerges as a promising option. However,
research on FMT’s use in pancreatic cancer treatment is sparse. Upcoming studies on
animals are essential to verify the effectiveness and safety of the FMT and to investigate
its potential for clinical application. There is also a need for tailored therapeutic strategies
that target specific gut microbiota functions, improve transplant compatibility, and refine
personalized FMT treatments for pancreatic cancer [3].

6. Acute and Chronic Pancreatitis

In addition to PC, other pancreatic disorders like pancreatitis, which can be either
acute or chronic, also exhibit changes in gut microbiota composition, highlighting them as
potential targets for FMT treatments.

Acute pancreatitis (AP) is a medical emergency characterized by the rapid-onset in-
flammation of the pancreas that can escalate into a systemic illness, presenting symptoms
such as intense abdominal pain, vomiting, and nausea and may result in serious com-
plications like infection and organ failure [61–63]. Given the critical nature of AP and
its potential to endanger life, understanding the microbiome’s influence on the disease’s
progression and severity has become a key research focus. This includes investigating how
dysbiosis or microbial imbalance in the gut flora may contribute to the breakdown of the
intestinal barrier function [61].

Patients with AP have been found to show changes in the diversity and composition of
their intestinal microbiota [64–68]. Research indicates that acute inflammation can heighten
intestinal permeability, possibly by altering the expression of claudin-4, a protein vital for
tight junction integrity in intestinal epithelia [69]. Reduced claudin-4 levels weaken the
connections between epithelial cells, impairing the epithelial barrier and resulting in an
increased permeability. This allows substances to pass through more easily, potentially
causing systemic and pancreatic bacterial translocation and perpetuating inflammation [69].

In addition to the increased permeability caused by inflammation, other contributing
pathological mechanisms, such as microcirculation changes and ischemia–reperfusion
injury also induce similar effects [37]. These changes compromise intestinal permeability,
resulting in a condition referred to as leaky gut. When coupled with bacterial overgrowth,
this leaky gut condition further facilitates the movement of bacteria and toxins towards
the pancreas, aggravating pancreatic inflammation. This escalation of the inflammation
can lead to further damage, potentially resulting in fibrosis or, in more severe instances,
necrosis [37].

Furthermore, recent research has observed a rise in pathogenic bacteria during acute
inflammatory states, alongside a reduction in short-chain fatty acids (SCFAs) such as propi-
onate, acetate, and butyrate, which are metabolites generated by the gut bacteria via the
fermentation of dietary fibers [20]. They play a vital role in maintaining gut homeostasis by
restoring its flora, strengthening the intestinal epithelial barrier, and modulating inflamma-
tion [61]. They can also reduce systemic inflammatory responses, aid in the repair of the
damaged pancreas and prevent dysfunction in other organs. Given these multiple benefits,
increasing SCFA levels could represent a novel protective strategy for treating AP. Such
treatments could be directly applied through butyrate administration or indirectly through
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fiber and probiotic supplementation via FMT. These approaches offer promising additions
to conventional enteral nutrition support in AP therapy.

A stratified study analyzing patients with AP found that microbiota alterations vary
with the disease’s severity, notably including a decrease in SCFA-producing bacteria which
correlates with increased severity due to compromised intestinal barrier integrity [70].
Zhu et al. collected clinical data and fecal samples from 165 adults, revealing that severe
AP is marked by a reduction in commensal bacteria like Bacteroides, Alloprevotella, and
Blautia [70]. Further investigation in male mice with AP showed significant differences in
intestinal microbiota compared to healthy controls, linking altered microbiota with systemic
inflammation and intestinal barrier dysfunction.

Tan et al.’s findings align with Zhu et al.’s research, highlighting that microbial com-
position changes as AP progresses [71]. Specifically, they observed a significant rise in
potentially pathogenic bacteria like Enterobacteriaceae and Enterococcus in severe AP (SAP)
compared to milder forms (MAP or MSAP) [71]. Both studies conclude that the intestinal
microbiota significantly influences AP as a mediator, with its imbalance associated with the
disease’s severity [71].

Yang et al. documented a case where FMT was applied to a patient with moderately
severe acute pancreatitis (MSAP) complicated by a severe CDI, a condition for which FMT
is a common treatment [72]. The treatment led to the resolution of diarrhea within five
days, with no adverse events reported and a colonoscopy 40 days after discharge showed
complete recovery. However, the impact of the FMT on MSAP itself was not evaluated
and while some studies have explored FMT in AP within mice models, showing increased
bacteria translocation and mortality in AP mice receiving FMT from healthy ones, the
effects and safety of the FMT for AP in humans remain unclear, indicating a need for
further research [72].

Chronic pancreatitis (CP) is defined by the persistent inflammation of the gland,
marked by distinctive features including the dilation of the Wirsung duct, calcifications,
atrophy, and fibrosis [73]. Chronic pancreatitis results in the progressive dysfunction of
both the endocrine and exocrine systems, with studies showing that individuals with CP
undergo dysbiosis characterized by a rise in pathogenic bacteria [74,75].

Pan et al. highlight that intestinal dysbiosis, especially the reduction in SCFA-producing
bacteria, accelerates the advancement of CP, similar to what is observed in AP [70,76]. Re-
duced SCFA levels undermine intestinal barrier integrity, leading to worsened pancreatic
fibrosis, increased monocyte recruitment, and enhanced M2 macrophage polarization [77].
Supplementation with SCFAs has been shown to bolster intestinal barrier function and
decrease monocyte recruitment, thereby offering greater protection against CP develop-
ment. This highlights the therapeutic potential of dietary SCFAs and the targeting of
SCFA-producing Gram-positive bacteria in CP’s prevention and management [77]. Addi-
tionally, studies indicate that pancreatic enzyme replacement therapy (PERT) effectively
manages exocrine pancreatic insufficiency (PEI) symptoms by improving patients’ nutri-
tional status [77,78].

Nishiyama et al. analyzed fecal samples from mice receiving pancreatic enzyme re-
placement therapy (PERT) compared to control mice to investigate changes in the intestinal
microbiota. Their results bolstered the theory that PERT alleviates symptoms associated
with exocrine pancreatic insufficiency (PEI), observing modifications in the gut microbiota
composition of the treated mice. In particular, mice treated with PERT exhibited a notable
rise in Akkermansia muciniphila and Lactobacillus reuteri populations [79].

In a double-blind, controlled, randomized trial, Dos Santos and colleagues examined
the impact of synbiotics on the gut microenvironment in patients with CP [80]. The in-
tervention group was administered a synbiotic combination that included 12 g daily of
Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, and Bifidobac-
terium bifidum, whereas the control group was given 12 g daily of a medium absorption
complex carbohydrate [80]. The research concluded that synbiotics resulted in better clinical
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and laboratory results for patients with CP, highlighting the potential of strategies aimed at
manipulating the intestinal microbiome as viable treatments for this chronic condition [80].

These studies collectively hint at microbiota manipulation, with its affordability and
ease of implementation, as not only a novel therapeutic avenue for CP but also as a
preventive strategy to mitigate its symptoms and complications.

7. Type 1 Diabetes

Type 1 diabetes (T1D) is an autoimmune disorder characterized by the autoimmune
destruction of the β cells in the pancreas, which are responsible for insulin production,
and is another disorder likely linked to the dysregulation of our microbiota. Consequently,
T1D may also stand to benefit from FMT treatments [74,81–83]. The development of T1D
is shaped by environmental and genetic influences that affect immune regulation, with
factors like viral infections, diet, and vitamin D deficiency linked to its onset.

Research, including a 2018 longitudinal study, has explored how gut microbiota may
predispose individuals to T1D [84]. This study tracked the gut microbiomes of infants
at genetic risk for T1D, collecting fecal samples from 3 months old until T1D diagnosis.
Although the overall microbial composition was similar between T1D cases and controls,
children without T1D showed a higher abundance of SCFA-producing bacteria in their
gut microbiomes.

The research suggests that SCFAs may play a protective role in preventing T1D, as
a lower presence of SCFA-producing bacteria is noted in T1D cases [74]. Zheng et al.
also found a link between T1D and an increased Bacteroidetes/Firmicutes ratio, along with
a reduced α-diversity in fecal microbiota [85]. T1D individuals showed higher levels of
certain bacteria like Clostridium and Bacteroides, while beneficial bacteria such as Lactobacillus
and Bifidobacterium were less common. This imbalance in gut microbiota is associated
with an increased intestinal permeability seen in T1D children. Although no current
treatments directly target gut microbiome alterations to delay or prevent T1D, emerging
data point towards potential strategies, including microbiome modulation and enhancing
diversity, perhaps by using Escherichia coli Nissle (EcN) to reduce pathogenic bacteria
colonization [86].

8. Therapeutic Prospects in Pancreatic Disorders
8.1. Pancreatic Cancer

The role of micro-organisms like HCV, HBV, Helicobacter pylori, and HPV in cancer
development highlights a complex interplay between environmental factors and host
genetics, suggesting micro-organisms may synergistically contribute to tumorigenesis.
The microbiota, a community of such micro-organisms, has been recognized as a crucial
element in cancer biology. Although not fully understood, the interaction between the
microbiota and cancer may involve bacterial metabolites that offer protective benefits
against tumors [81]. For instance, acetate not only mitigates pancreatitis and reduces PDAC
risk factors but also influences epigenetic changes in mesenchymal stem cells, promoting
their transformation into cancer-associated fibroblasts that increase PDAC cell invasiveness.
The link between the microbiota and pancreatic cancer was initially proposed following
the detection of H. pylori (HP) in pancreatitis patients, leading to further research on
the connections between fecal, pancreatic, intestinal, and oral microbiota and pancreatic
cancer [81].

Xu’s study finds a significant link between HP infection and pancreatic cancer, es-
pecially in economically underdeveloped regions. However, no positive association is
observed between specific H. pylori strains (CagA+ or VacA-positive) and pancreatic can-
cer [87]. While HP infection overall may raise pancreatic cancer risk, further research is
needed to understand this relationship fully [87].

As the literature also underscores, the potential of the FMT as a novel therapeutic
avenue is gaining attention. Research suggests a link between gut dysbiosis and pancreatic
cancer, potentially due to bacterial translocation [88]. The role of both the oral and endoge-
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nous pancreatic microbiota further highlights the intricate microbial interactions involved
in pancreatic cancer, underscoring FMT’s potential to address these imbalances. Yet, the
efficacy and safety of the FMT in this context require further investigation [53,89].

8.2. Acute and Chronic Pancreatitis

AP leads to an imbalance in the intestinal microbiota, exacerbating pancreatic harm
and systemic inflammatory reactions. In this context, FMT offers a promising approach to
diminish tissue damage and inflammation and to mitigate the dysbiosis [50,90].

In their study, Li Wei Liu and colleagues investigated how the gut microbiota and
their metabolites affect AP to understand the related pancreatic damage and inflammation
better [91]. They discovered that normobiotic FMT corrects gut dysbiosis caused by AP,
reducing its severity, including mitochondrial dysfunction, oxidative stress, and inflam-
mation [91]. This improvement was linked to the increased levels of the NAD+-related
metabolites, notably NMN, which mitigated the adverse effects of AP by enhancing pan-
creatic NAD+ levels. Furthermore, the study highlighted that activating the SIRT3-PRDX5
pathway through normobiotic FMT and NMN metabolism played a crucial role in exert-
ing antioxidant and anti-inflammatory actions, suggesting normobiotic FMT as a viable
treatment for PsA [91].

In Ding and his team’s study, they assessed FMT’s role in managing AP, focusing on its
effect on intra-abdominal pressure, gastrointestinal function and infection rates [92]. Sixty
patients were randomly assigned to receive either FMT or saline, showing no significant
difference in gastrointestinal recovery between the two groups [92]. Although FMT led to
increased levels of D-lactate and IL-6, suggesting potential adverse effects on the gastroin-
testinal barrier, it did not significantly benefit PAH or reduce infectious complications [92].
The findings indicate a need for further research to understand FMT’s effects and suggest
using changes in gut microbiota as biomarkers for pancreatic fibrosis evaluation.

In the realm of pancreatic inflammation, including acute and chronic pancreatitis,
FMT emerges as a promising treatment for addressing dysbiosis and its consequent effects.
While its potential to alleviate the severity of acute pancreatitis through the modulation
of the gut microbiota and the enhancement of the anti-inflammatory and antioxidative
processes is recognized, the therapeutic impact on chronic pancreatitis and the prevention
of fibrosis through microbiota modification also warrants further exploration [93,94].

These insights pave the way for new therapeutic strategies for acute, chronic, and
autoimmune pancreatitis, with FMT offering a potential means to alter disease progression.

A study conducted by Li et al. explores how saikosaponin A affects the gut micro-
biota and SAP [95]. Through 16S rRNA gene sequencing and analyzing inflammatory
and antioxidant markers, it was found that saikosaponin A promotes a healthier gut, in-
creasing Lactobacillus and Prevotella, and reduces SAP symptoms [95]. This includes lower
serum amylase, lipase, oxidative stress, and inflammation, with a boost in antioxidant
signaling (Keap1-Nrf2-ARE) [95]. Similar outcomes from FMT suggest saikosaponin A‘s
beneficial effects might be through microbiota improvement, highlighting the need for
further investigation [95].

8.3. Type 1 Diabetes

T1D often leads to vascular and neurological complications, with current effective
treatments being limited to lifestyle changes and pharmacological methods like insulin
injections. However, chronic insulin use can result in obesity, hypoglycemia, hyperinsu-
linemia, as well as psychological and financial burdens. Given that T1D usually affects
individuals at a young age and taking into account the significance of the gut microbiota in
the disease’s development and progression, FMT presents a promising alternative.

In a 2022 experimental study, He et al. administered one to three cycles of FMT to two
adolescent T1D patients, monitoring clinical outcomes, biochemical indices, and adjust-
ments in therapeutic regimen and dosage [81]. The study, supported by the metagenomic
sequencing of the fecal microbiota post-transplant, suggests that FMT protocols could be
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optimized for more effective outcomes, highlighting FMT’s potential as a viable treatment
for autoimmune T1D, with implications for improving patient quality of life [81].

De Groot and colleagues found that FMT can preserve endogenous insulin production
in patients with T1D diagnosed within the last 12 months [96]. The study divided partic-
ipants aged 18 to 30, with recent T1D onset, into groups receiving either autologous or
allogeneic FMTs for four months [96]. Results showed significant preservation of beta-cell
function in the autologous FMT group over 12 months, linked to specific plasma metabolites
and inversely related to Prevotella in the small intestine [96]. This preservation was evident
regardless of the donor type, indicating FMT’s potential role in early T1D management [96].

Table 2 summarizes the main articles in the literature analyzing fecal microbiota
transplantation in pancreatic disorders.

Table 2. Key Studies in the literature on fecal microbiota transplantation in pancreatic pathology.

Authors Study Objective Methodology Main Findings

Yang et al. [72]

Examined the efficacy of fecal
microbiota transplantation

(FMT) in treating moderately
severe acute pancreatitis
complicated by severe

Clostridioides difficile infection
(CDI).

A case study of FMT
application in patient with

moderately severe acute
pancreatitis and severe CDI.

FMT led to the resolution of diarrhea
within five days with no adverse events

reported.

He et al. [81]
Investigated the efficacy of the

FMT in adolescent patients
with type 1 diabetes (T1D).

The administration of one to
three cycles of the FMT to

adolescent T1D patients with
the monitoring of clinical

outcomes and adjustments in
therapeutic regimen.

FMT protocols showed potential as a
viable treatment for autoimmune T1D,

with implications for improving patient
quality of life.

Li Liu et al. [91]

Explored the impact of the gut
microbiota and their
metabolites on acute

pancreatitis (AP).

The investigation of gut
dysbiosis correction through

normobiotic FMT in AP
patients.

Normobiotic FMT corrected gut dysbiosis
caused by AP, reducing its severity

including mitochondrial dysfunction,
oxidative stress, and inflammation.

Ding et al. [92]
Assessed the role of the FMT

in managing acute
pancreatitis.

Randomized controlled trial
comparing FMT versus saline
administration in AP patients.

No significant difference in
gastrointestinal recovery observed
between FMT and saline groups.

Increased levels of D-lactate and IL-6
were noted with FMT, suggesting

potential adverse effects on the
gastrointestinal barrier.

De Groot et al. [96]

Explored the effect of the FMT
on preserving endogenous

insulin production in patients
with recently diagnosed T1D.

The division of participants
with recent T1D onset into

groups receiving autologous
or allogeneic FMTs.

A significant preservation of beta-cell
function observed in the autologous FMT
group over 12 months, linked to specific

plasma metabolites.

For T1D, the gut microbiome’s role in immune modulation suggests that FMT could
offer therapeutic benefits by restoring gut microbiome balance, potentially slowing disease
progression and reducing inflammation. While preliminary findings are promising, further
studies are essential to validate FMT’s safety and efficacy in T1D management and its
broader implications on patient quality of life and disease management [97,98].

Figure 2 highlights the ability of fecal matter transfer to restore microbiota balance in
pancreatic pathologies.

Although FMT is generally regarded as safe with few adverse effects, its long-term
implications are yet to be thoroughly investigated. Future considerations include determin-
ing the frequency and duration of follow-ups post-FMT to monitor for long-term adverse
events. The goal moving forward is to tailor FMT treatments to individual patients and
specific conditions, considering the diversity of hosts and diseases [99].
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9. Conclusions

The gut microbiota, a vast and intricate ecosystem, has been identified as a key player
in diagnosing pancreatic disorders, but especially in influencing the onset and progression
of pancreatic cancer, as well as acute and chronic pancreatitis and type 1 diabetes mellitus.
Research into the gut microbiota has unveiled mechanisms underlying these pancreatic
conditions, offering insights into their risk, severity, and the potential for new diagnostic
and prognostic strategies.

The role of the intestinal microecology in the pancreas and broader physiological
processes holds substantial scientific interest, warranting further investigation. The pursuit
of novel therapeutic avenues to enhance patient outcomes for pancreatic disorders is crucial,
with the microbiota presenting a vast potential for personalized treatments tailored to each
individual’s microbiome and specific condition.
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