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Abstract: We present a deep learning (DL) network-based approach for detecting and semantically
segmenting two specific types of tuberculosis (TB) lesions in chest X-ray (CXR) images. In the
proposed method, we use a basic U-Net model and its enhanced versions to detect, classify, and
segment TB lesions in CXR images. The model architectures used in this study are U-Net, Attention
U-Net, U-Net++, Attention U-Net++, and pyramid spatial pooling (PSP) Attention U-Net++, which
are optimized and compared based on the test results of each model to find the best parameters.
Finally, we use four ensemble approaches which combine the top five models to further improve
lesion classification and segmentation results. In the training stage, we use data augmentation
and preprocessing methods to increase the number and strength of lesion features in CXR images,
respectively. Our dataset consists of 110 training, 14 validation, and 98 test images. The experimental
results show that the proposed ensemble model achieves a maximum mean intersection-over-union
(MIoU) of 0.70, a mean precision rate of 0.88, a mean recall rate of 0.75, a mean F1-score of 0.81, and an
accuracy of 1.0, which are all better than those of only using a single-network model. The proposed
method can be used by clinicians as a diagnostic tool assisting in the examination of TB lesions in
CXR images.

Keywords: chest X-ray; tuberculosis lesion; artificial intelligence; deep learning; U-Net; semantic
segmentation; ensemble classifier

1. Introduction

According to the World Health Organization’s (WHO) Global Tuberculosis Report of
2021, tuberculosis (TB) is the 13th leading cause of death worldwide, affecting an estimated
9.9 million people per year. The report states that every year, 1.3 million people die from
this disease, and 98% of them in low- and middle-income countries [1]. TB is caused by
Mycobacterium tuberculosis infection, which most often affects the lungs (this is called
pulmonary TB) and is spread by airborne transmission. If this disease is detected early, it
can be treated with a course of antibiotics for six months, and the spread of the disease can
be limited [2].

Chest X-ray (CXR) is an affordable and rapid diagnostic technique for detecting pul-
monary TB [3]. There are several types of lesions associated with pulmonary TB that can be
identified from a CXR image, such as nodular and cavitary lesions, pleural effusions, infil-
trations/bronchiectasis, and opacities/consolidations. Nodular lesions are small, roundish
spots that can appear in the lungs and may be associated with TB. Cavitary lesions are
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larger, hollow areas that may indicate a more active form of the disease. Pleural effusion,
the most common form of extrapulmonary TB, is characterized by an intense chronic accu-
mulation of fluid and inflammatory cells in the pleural space. Infiltrations/bronchiectasis
are areas of increased bronchovascular markings with ill-defined margins that can indicate
a local inflammatory response within the bronchioles. Finally, opacities/consolidations are
mass-like lesions that may manifest as multi-focal involvement in the lungs. Depending on
the types and locations of lesions which are indicative of pulmonary TB in CXR images,
physicians may need to further investigate patients with additional tests, including sputum
collection or surgical biopsy, for a definite diagnosis of TB.

In addition to diagnoses conducted by radiologists, computer-aided diagnosis using
digitized CXR images has been shown to provide significant contributions to TB lesion
detection. Automatic TB screening and constructing datasets of annotated CXR images have
been significant research findings in TB-related topics [4–9]. Recently, the deep learning
technique has received great attention due to its ability to perform image classification
and organ/lesion segmentation for TB in medical image processing [10–27]. By collecting
a large enough dataset, researchers can design a neural-network-based model using a
supervised learning/training process. Significant features in the training data can be
automatically extracted and used to build an efficient network model. For example, in a
study investigating common thorax diseases, the researchers trained their deep learning
networks with a large number of images and annotations using the public CXR dataset
ChestX-ray8 [28]. In addition, a benchmark called ChestX-Det10 [29] is proposed to provide
bounding-box annotations of ten categories of thoracic diseases or abnormalities from a
subset of the ChestX-ray14 dataset. This shows the feasibility of a computer-aided diagnosis
based on deep learning, with promising results for clinicians.

Among the various network architectures used in deep learning techniques, the U-Net
has shown its significance for and great performance in medical image segmentation [30–32].
In addition, accumulating studies using the U-Net model have promising results in lung
segmentation in CXR images [33,34] and further studies have already been conducted in
TB-specific images [12,21,35]. However, when reviewing these published studies, which use
various datasets [29,36–38], the precise size and exact location of TB lesions annotated using
a closed contour are not provided, and all of these studies lack object-level annotations.
Furthermore, there is no detailed description of TB-consistent lesions, which contain several
types of radiologic findings. Additionally, these studies only contain a limited number of
images and selecting appropriate data augmentation schemes is difficult. Therefore, their
segmentation results need to be improved.

In this study, we created our own CXR dataset, specifically for infiltrations/bronchiectasis
and opacity/consolidation lesions, which are the two most common presentations of TB in
CXR images. We collected CXR images from National Cheng Kung University Hospital,
Douliu Branch, and the exact locations of both lesion types in the CXR images were
manually identified by two experienced pulmonologists. We then implemented a multiclass
semantic segmentation method for TB lesions based on deep learning networks, including
the basic U-Net, Attention U-Net, U-Net++, Attention U-Net++, and PSP Attention U-
Net++ models. Finally, an ensemble model based on a linear regression scheme was used
to combine the above five networks and to further improve their performance. By using an
adequate training process with the correct network parameters to avoid model overfitting,
the experimental results of the test images show that the proposed method can efficiently
detect and segment two-class TB lesions in CXR images.

A common labeling scheme for TB lesions in CXR images is delineating them with
a rectangular bounding box [22,29,39]. In addition, heatmaps, which utilize different
color distributions to represent the likelihood of TB lesions, are frequently used as
well [7,14,15,19–21,24–26]. However, the shape of a real lesion is hardly rectangular, and
heatmaps provide even less information about the location and shape of lesions. Only a
few public datasets or studies providing semantic segmentation results for different TB
lesions are available [37]. It is important to be able to obtain more detailed information
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about detected lesions. Therefore, in this work, we not only detect and classify but also
extract the exact location and shape of the two major types of TB lesions.

The remainder of this paper is organized as follows: first, the backgrounds and relevant
techniques used to obtain CXR images and perform TB lesion detection are described in
Section 2. Section 3 deals with the proposed methods. The experimental results are
provided in Section 4. Finally, the conclusion is drawn in Section 5.

2. Backgrounds and Related Techniques

CXR is usually used as the first radiological examination and remains a core technique
for the screening, diagnosis, and treatment of various pulmonary diseases [40]. There are
three main types of CXR based on the position and direction of the patient in relation to
the X-ray source and detector panel: posterior–anterior (PA), anterior–posterior (AP), and
lateral. As shown in Figure 1, PA frontal CXR images were used in our experimental dataset.

Diagnostics 2024, 14, x FOR PEER REVIEW 3 of 27 
 

 

heatmaps provide even less information about the location and shape of lesions. Only a 
few public datasets or studies providing semantic segmentation results for different TB 
lesions are available [37]. It is important to be able to obtain more detailed information 
about detected lesions. Therefore, in this work, we not only detect and classify but also 
extract the exact location and shape of the two major types of TB lesions. 

The remainder of this paper is organized as follows: first, the backgrounds and rele-
vant techniques used to obtain CXR images and perform TB lesion detection are described 
in Section 2. Section 3 deals with the proposed methods. The experimental results are pro-
vided in Section 4. Finally, the conclusion is drawn in Section 5.  

2. Backgrounds and Related Techniques 
CXR is usually used as the first radiological examination and remains a core tech-

nique for the screening, diagnosis, and treatment of various pulmonary diseases [40]. 
There are three main types of CXR based on the position and direction of the patient in 
relation to the X-ray source and detector panel: posterior–anterior (PA), anterior–posterior 
(AP), and lateral. As shown in Figure 1, PA frontal CXR images were used in our experi-
mental dataset. 

 
Figure 1. A healthy CXR image without TB lesions. 

TB lesions in the thorax mainly include five types: infiltration/bronchiectasis, opac-
ity/consolidation, cavity, pleural effusion, and miliary nodule. Due to the data available 
from our collaborating hospital, in this study, we only consider the most common two 
types of lesion pattern: infiltrations/bronchiectasis and opacities/consolidation lesions. 
During our image collection process, there was no special selection in terms of the distri-
bution of lesions. We selected all images that were available at our hospital due to the 
limited number of available images. Images with lesion types other than the two types 
considered in this study were excluded. As shown in Figure 2a, infiltrations/bronchiecta-
sis lesions have a “tram-track” appearance, with parallel and ring-like opacities in CXR 
images, which is related to the thickened walls of dilated bronchi [41]. A frontal CXR im-
age shows parallel linear opacities indicative of bronchial dilatation. Figure 2b shows an 
example of opacity/consolidation lesions, which are characterized by mass-like patches or 
large air space consolidation in CXR images. 

Figure 1. A healthy CXR image without TB lesions.

TB lesions in the thorax mainly include five types: infiltration/bronchiectasis, opac-
ity/consolidation, cavity, pleural effusion, and miliary nodule. Due to the data available
from our collaborating hospital, in this study, we only consider the most common two types
of lesion pattern: infiltrations/bronchiectasis and opacities/consolidation lesions. During
our image collection process, there was no special selection in terms of the distribution
of lesions. We selected all images that were available at our hospital due to the limited
number of available images. Images with lesion types other than the two types considered
in this study were excluded. As shown in Figure 2a, infiltrations/bronchiectasis lesions
have a “tram-track” appearance, with parallel and ring-like opacities in CXR images, which
is related to the thickened walls of dilated bronchi [41]. A frontal CXR image shows parallel
linear opacities indicative of bronchial dilatation. Figure 2b shows an example of opac-
ity/consolidation lesions, which are characterized by mass-like patches or large air space
consolidation in CXR images.

Figure 3a shows the network architecture of U-Net, which is often used for medical
image segmentation tasks as it provides effective segmentation results. The U-Net net-
work is divided into two main parts: first, the encoder path consists of two consecutive
3 × 3 convolution layers for each sample, followed by a rectified linear unit (ReLU) and
a 2 × 2 maximum pooling layer. The second part of the U-Net is called the decoder path,
where each up-sample uses a 2 × 2 deconvolution of the feature map until it is the same
pixel size as the input image. The U-Net architecture is capable of adding encoder paths
using different backbones, which define the arrangement in the encoder path. In this study,
we use either ResNet-50 or DenseNet121 as the backbone.
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Many improved versions of U-Net have been proposed to achieve better segmentation
performance. Therefore, we also implement four U-Net-based models, which are briefly
described below. Figure 3b–e show the network architectures for the other four U-Net-
based models. As shown in Figure 3b, the design of U-Net++ is based on the structure
of DenseNet [42], which uses a dense skip-connected grid for the middle layer between
the encoder and decoder paths. This network architecture enhances the network by prop-
agating more semantic information between the two paths. Each skip-connected grid
obtains all previous feature maps for the same level. Thus, each level is the equivalent of a
dense module, which is designed in a way that significantly reduces the loss of semantic
information between the two paths.

Oktay et al. proposed Attention U-Net, which is implemented through the use of
attention gates [43]. Figure 3c demonstrates this network’s architecture. The main function
of an attention gate is to remove irrelevant features. Each layer in the extended path has
an attention gate that must be passed before connecting to the up-sampled features in the
extended path. The use of repeated attention gates can significantly improve segmentation
performance without adding too much computational complexity to the model.

Li et al. proposed Attention U-Net++ to improve the U-Net++ segmentation architec-
ture by using an attention gate approach [44]. As shown in Figure 3d, each convolutional
block in the encoder extracts feature information, which is then transferred to the decoder
through dense skip connections. The attention gates are inserted between nested convo-
lution blocks. It can integrate hierarchical levels of feature information to improve the
segmentation result.

Zhao et al. proposed a pyramid scene parsing network (PSPNet) implemented by
using a pyramid space pooling (PSP) module [45]. The PSP module performs global
average pooling for different sizes of values in the feature map. The PSP module is used
in four different sizes, 1 × 1, 2 × 2, 3 × 3, and 6 × 6, to generate a maximum pooling
pyramid structure, which stacks the final characteristic output. Figure 3e demonstrates the
network architecture. Here, the Attention U-Net++ network model is modified with the
PSP module, which is added between the down-sampling and up-sampling paths to obtain
different sizes of image features and collect different levels of information.

Table 1 shows the weblinks to the source codes of the network architectures shown in
Figure 3, except for Attention U-Net++. In our study, the code for Attention U-Net++ was
derived by combining the codes of U-Net++ and Attention U-Net++.

Table 1. Source codes and references of the five U-Net-based network architectures.

Network Architecture Weblink to Source Code

U-Net https://github.com/yingkaisha/keras-unet-collection/blob/main/keras_unet_collection/_model_
unet_2d.py, accessed on 30 April 2024

U-Net++
[42]

https://github.com/MrGiovanni/UNetPlusPlus/blob/master/pytorch/nnunet/network_
architecture/generic_UNetPlusPlus.py, accessed on 30 April 2024

Attention
U-Net [43] https://github.com/sfczekalski/attention_unet/blob/master/model.py, accessed on 30 April 2024

Attention
U-Net++ [44]

Based on U-Net++ [42] & use Attention gate function proposed in Ref. [44]. A similar version can be
found in https://github.com/kushalchordiya216/Attention-UNet-plus/blob/master/unetplus.ipynb,
accessed on 30 April 2024

PSP Attention
U-Net++ [45] https://github.com/hszhao/PSPNet/tree/master/src/caffe, accessed on 30 April 2024

3. Methodology
3.1. System Architecture Overview

The system architecture used in this study can be divided into three major parts:
(1) dataset partition; (2) the training stage; (3) the test stage. Figure 4 shows the dataset
partition scheme. First, we transformed the original CXR images from the DICOM (Digital
Imaging and Communications in Medicine) format into 8-bit grayscale images in the PNG

https://github.com/yingkaisha/keras-unet-collection/blob/main/keras_unet_collection/_model_unet_2d.py
https://github.com/yingkaisha/keras-unet-collection/blob/main/keras_unet_collection/_model_unet_2d.py
https://github.com/MrGiovanni/UNetPlusPlus/blob/master/pytorch/nnunet/network_architecture/generic_UNetPlusPlus.py
https://github.com/MrGiovanni/UNetPlusPlus/blob/master/pytorch/nnunet/network_architecture/generic_UNetPlusPlus.py
https://github.com/sfczekalski/attention_unet/blob/master/model.py
https://github.com/kushalchordiya216/Attention-UNet-plus/blob/master/unetplus.ipynb
https://github.com/hszhao/PSPNet/tree/master/src/caffe
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(Portable Network Graphics) format. Next, we separated the collected CXR images into a
training set, a validation set, and a test set. We used the same preprocessing methods for
each dataset and data augmentation for the training set. In the training stage, the training
set and the validation set were fed into a deep learning network to train the model. After
obtaining the trained model, the test images were sent to the model to detect the lesion
type and obtain the segmentation results.
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Figure 5a shows the detailed steps of the network model training stage. The training
inputs include three parts: (1) preprocessed grayscale CXR images for training, as shown
in Figure 3; (2) corresponding lesion regions labeled by a physician; (3) selected network
model and training parameters. Figure 5b shows a block diagram of the proposed method in
the test stage. First, an input grayscale CXR image is processed with the same preprocessing
scheme used in the training stage. Then, the image is sent to the trained network model for
lesion detection and segmentation. In the postprocessing step, a morphological opening
operation is applied onto the result of detected lesion region segmentation. This tiny region,
which is less than the structural element in the opening operation and is considered noise,
can be removed. Then, the detected lesion type and region are added onto the original CXR
image for better observation in the resultant image.
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3.2. Image Dataset Collection

Our dataset currently consists of 222 CXR images, which include 142 images with TB
lesions and 80 normal images, and all were collected from National Cheng Kung Univer-
sity Hospital, Yunlin Branch. Two CXR experts annotated the reference images with the
details shown in Table 2. They identified the major types of lesion pattern in TB, i.e., infil-
tration/bronchiectasis and opacity/consolidation, which are defined as bronchoalveolar
spreading (tree in bud) and small nodular patches or large air space consolidations, respec-
tively. Figure 6a–d show selected examples CXR images from our dataset with and without
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the mentioned lesion patterns. Figure 6a shows a normal CXR image without any lesions.
Figure 6b shows an example of an opacity/consolidation lesion, shown with a red contour
in the CXR image. Figure 6c shows an example of an infiltration/bronchiectasis lesion,
shown with a yellow contour in the CXR image. Figure 6d shows a CXR image with both of
these TB lesions. As shown in Figure 4, the datasets are divided into three parts, of which
49.6% are for training, 6.3% are for validation, and 44.1% are for the final testing. In order to
enhance the network’s learning capability, the training images were augmented eight times
using the operations of random rotations, panning, and horizontal flips. Table 3 shows
the exact numbers of images in the three datasets in this study. In addition to the eighteen
test images with lesions, three normal CXR images without any lesions were considered
as well.

Table 2. Dataset information.

TB Lesion Types Number of Images

Infiltration/Bronchiectasis 41

Opacity/Consolidation 31

Both TB lesions 70

Normal 80

Total 222
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Table 3. Data augmentation.

Dataset Number of Images

Training Set 110→880

Validation Set 14

Test Set 18 w/ + 80 w/o TB lesions

3.3. Image Preprocessing and Data Augmentation

Selvan et al. proposed an efficient lung segmentation method for abnormal CXR
images [46]. This method uses the U-Net segmentation model with variational data im-
putation, which facilitates the segmentation of lung lesions. By applying this method to a
CXR image, we can obtain a mask of the lung region according to the lung segmentation
result. Rajaraman et al. proposed a ResNet-based bone suppression model [47] in which
the convolutional block has 64 filters of size 3 × 3 and which uses zero padding to preserve
input size. In total, 16 ResNet blocks are used in the proposed model. This model identifies
and removes bony structures from frontal CXR images to assist in reducing possible errors
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in interpreting TB lesions for both radiologists and deep learning models. The texture fea-
tures of TB lesions in the original CXR images are usually not obvious. Therefore, they may
not be enough for direct detection and diagnosis using deep learning-based methods. In
this study, CXR images were preprocessed by applying image enhancement methods [48],
such as the CLAHE method [49], to enhance the details, textures, and low-contrast regions
of the images.

There are eight possible combinations of the three preprocessing schemes. In our exper-
iments, these eight combinations, listed in Table 4, were used. We compared the detection
and segmentation results achieved by the various U-Net models based on these eight com-
binational schemes. Figure 7a–e show example images in the corresponding preprocessing
steps. The original CXR image is shown in Figure 7a. As shown in Figure 7b, a 1:1 extraction
of the ROI position was performed using the mask of the lung segmentation network. The
CXR image of the ROI extraction result was resized into 512 × 512 pixels, as shown in
Figure 7c. As shown in Figure 7d, the ROI extraction results were further segmented for
exact lung location. This method ensures that the image of the lung region is maximized
and free from deformation. Figure 7e shows the enhanced results, produced by applying
the CLAHE method to the original image shown in Figure 7d. As shown in Figure 7e, more
detailed structure, texture, and edge information has been successfully extracted.

Table 4. Eight combinations of different preprocessing schemes.

Abbreviation Included Methods

R Lung ROI extraction

RC Lung ROI extraction and CLAHE

RB Lung ROI extraction and bone suppression

RBC Lung ROI extraction, bone suppression, and CLAHE

RS Lung ROI extraction and lung segmentation

RSC Lung ROI extraction, lung segmentation, and CLAHE

RBS Lung ROI extraction, bone suppression, and lung segmentation

RBSC Lung ROI extraction, bone suppression, lung segmentation, and CLAHE
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The original sizes of the CXR images in the dataset vary. In the training stage, the
training images were of the same size. Therefore, the CXR images were resized into
512 × 512 × 3 because their original format was color (red, green, and blue channels).
Data augmentation schemes, which include random rotation by 10 degrees, translation,
and horizontal flip [50], were used to increase the number of images in the training set.
Rotating images helps the model learn to recognize the lesions from different viewpoints.
The model becomes more invariant to rotation variations in CXR images. Shifting an
image horizontally or vertically simulates changes in lesion position within the frame. The
model can learn spatial invariance, making it less sensitive to lesion placement variations.
Horizontal flip creates a new example with the same content but reversed. The model can
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enhance its ability to recognize lesions regardless of their orientation. Figure 8a–d show the
results of applying various data augmentation schemes. The original input CXR image is
shown in Figure 8a. Figure 8b shows the horizontally flipped CXR image. Figure 8c shows
the original CXR image randomly rotated by 10 degrees. Finally, Figure 8d shows the CXR
image which has been both vertically and horizontally translated from its original version
in Figure 8a.
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3.4. U-Net-Based Lesion Detection and Semantic Segmentation

Using the same training and test datasets, the five U-Net-based models mentioned in
Section 2 were trained and then tested. Two kinds of backbone networks, ResNet50 and
DenseNet121, were utilized in the U-Net-based models. To speed up the training process,
we utilized transfer learning to initialize the weighting coefficients in the networks. During
pretraining, the network is first trained by using large datasets for different tasks, and the
trained weights are used for network initiation and for fine-tuning [51]. Our study used
pre-training weights for ImageNet datasets in transfer learning. During the training of each
network model, we considered trying different combinations of the preprocessing schemes
and modifying different network parameters, including batch size, learning rate, epoch
number, and various loss functions, so that the best model could be obtained.

The network output contains the lesion classification and segmentation results for a
given test image. The output segmentation map may contain some tiny regions, which are
obvious noise and should be filtered using the correct image filtering scheme. Therefore,
we applied morphological opening to the lesion regions in the segmentation map. A square
structural element (SE) of size 25 × 25 was selected according to the minimal region that
can be considered a lesion. Next, the detected lesion was pasted onto the original CXR
image and then the output image was converted back to its original size. Figure 9 shows
an example of applying this postprocessing scheme on the network output. As shown in
Figure 9a, two different types of TB lesion are detected. The yellow and red regions denote
opacity/consolidation and infiltration/bronchiectasis lesions, respectively. However, the
red region is smaller than the SE, so it is discarded using the morphological opening
operation. Figure 9b shows the second step in postprocessing. The output segmentation
map is resized to be equal to the lung ROI and then overlaid onto the original CXR image.
Therefore, we can observe the detected lesion region and recognize the lesion type by its
color in the resultant image. Note that the ground truth, denoted with a yellow contour, is
also displayed for comparison.
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3.5. Ensemble Methods

In addition to separately utilizing U-Net-based models for the semantic segmentation
of TB lesions, we also constructed a combinational ensemble model. These models have
shown promising results in image segmentation frameworks. For example, Shakeel et al.
proposed the use of ensemble classes to detect non-small-cell lung cancer in CT images [52],
and Sharma et al. proposed the use of ensemble methods to detect cancerous or non-
cancerous polyps in colonoscopy [53]. Rajaraman et. al. utilized several ensemble methods,
which also included U-Net-based networks, to segment TB lesions [12]. Compared to
the results obtained using only a single network, ensemble methods have shown obvious
advantages in terms of system performance.

As shown in Figure 10, we combined the top five best-performing models, M1–M5, to
construct four ensemble methods (AND, OR, logistic regression, and dense layer stacking)
for the same classification and segmentation tasks. Both the AND and OR ensemble
methods performed the bitwise interception and union operations, respectively, on the
predicted masks of the top five models. Obviously, the AND ensemble method would
reduce false positives, but produce more missing values in segmentation results, while OR
would have more false positives, but fewer missing values.

Figure 11 shows an ensemble method based on logistic regression with a learning rule
for weighting adjustment. The output segmentation maps of the five models are weighted
and then summed as the input of an activation function, which is a nonlinear sigmoid
function. The output of the activation function is compared with the desired output. We
calculated the MSE as their difference and applied the back-propagation learning algorithm
to adjusting the weighting factors w1, w2, w3, w4, and w5 for the five models. This ensemble
model was trained using the same training set images as the single-network model. The
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training process stopped when the MSE was below a threshold value or converges. Then,
the weighting factors w1, w2, w3, w4, and w5 were determined and fixed. In the test stage,
the final semantic segmentation result of a test image was the weighted combination of the
five single-network models.
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Figure 12 shows a block diagram of a stacking ensemble method based on a dense
layer architecture. We constructed an integrated model whose architecture is a combination
of fully connected layers with dropout functions to overcome the overfitting problem. The
input data were the probabilities of concatenating the top five models to predict three classes
for each pixel in the image. The number shown in the dropout function denotes the rate of
randomly dropped neurons during the training stage. In the proposed stacking ensemble,
three dropouts and the corresponding dense layers of various numbers of neurons with
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ReLU activation functions were utilized. Finally, a dense layer of three neurons with the
Softmax activation function was used to determine the final result.
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4. Experimental Results and Discussion

The experiments were performed using a Python 3.6 programming platform and a
Tensorflow 2.4 framework in a PC with a 64-bit Windows 10 operating system. The major
hardware specifications of the PC are Intel Core i7-10700F@2.90 GHz and GeForce RTX
3090 GPU with 24 GB DRAM. We collected 222 CXR images, all from NCKU Hospital, of
which 80 are of healthy patients and the other 142 contain lesions labeled by experienced
physicians. Among all the images, 110 and 14 were used for training and validation,
respectively, while the other 98 (18 with lesions and 80 healthy) images were used for
testing. In our study, the semantic segmentation results produced by the trained models
were read by two pulmonary radiologists and compared with the ground truth. Both
pulmonologists have more than 10 years of clinical experience in reading CXR images.
The consistency of TB lesions between the segmentation results and the interpretations
of the expert radiologists was assessed in terms of both locations and patterns in CXR
images. A misalignment in segmentation between the two physicians would be referred to
a radiological formal report as the final consensus.

In the training process, all five network models, U-Net, Attention U-Net, U-Net++,
Attention U-Net++, and PSP Attention U-Net++, used ResNet-50 and DenseNet121 as
their backbone networks, and all used transfer learning for pretraining. Using the Adam
optimizer [54], we found that the best network parameters were as follows: learning rate
10−4, training batch size 8, and maximum epoch number 50. These hyperparameters were
selected referring to the values in the literature. Regarding learning rate, we tested 10−3 and
10−4 and found that 10−4 can achieve better performance. Batch size 8 was used because of
the limited memory size available in our PC. As for epoch number, we cannot guarantee
the exact maximum number since the real epoch number depends on the convergence
criterion set in the training process. In our method, the training process stops when the
accuracy values of the validation data are not increased in 10 consecutive epochs. In fact,
the exact epoch number was always less than 50 because the convergence criterion could
be easily satisfied under 50 epochs in our experiments. The model that we saved at the
epoch number with the highest accuracy values was used for the testing data. Four loss
functions, namely categorical cross-entropy loss (CCL) [55], focal Tversky loss (FTL) [56],
first hybrid loss (Dice Loss + FTL, DFL) [57], and second hybrid loss (IoU Loss + FTL,
IFL) [58], were all tested to find the best result. CCL maximizes the likelihood of the true
class given the model’s predictions. It encourages the model to assign high probabilities
to the correct class. Minimizing CCL aligns with minimizing classification error. FTL is
designed for imbalanced binary segmentation tasks. Standard loss functions may favor the
majority class. FTL balances positive and negative samples, combines precision and recall,
and emphasizing false positives and false negatives differently. On the other hand, Dice
loss and IoU loss are used for image segmentation tasks. The former and latter measure
the overlap and ratio of intersection to union, respectively, between the predicted and
ground truth masks. Dice loss encourages precise segmentation boundaries, while IoU loss
promotes better localization and segmentation. When the convergence criterion in training
was satisfied, the network model weighting factors with the lowest loss for the validation
set were saved and the training process was stopped.
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There were two tasks in the proposed method: (1) the detection and classification of
TB lesion types; (2) the semantic segmentation of the detected lesion in the test image. To
evaluate the classification performance of the proposed method, accuracy, Acc, defined in
Equation (1), was used to represent the ratio of correctly classified cases in all test images.

Acc =
(TP + TN)

(TP + FN + FP + TN)
(1)

Here TP, TN, FP, and FN denote the numbers of true-positive, true-negative, false-
positive, and false-negative cases, respectively. The evaluation functions used in the semantic
segmentation results include precision rate (P), recall rate (R), F1-score (F1), and intersection
over Union (IoU), and the definitions are shown in Equations (2)–(5), respectively.

P =
C ∩ G

C
(2)

R =
C ∩ G

G
(3)

F1 =
2(C ∩ G)

C + G
(4)

IoU =
G ∩ C
G ∪ C

(5)

Note that C and G denote the predicted and ground truth regions, respectively. The F1-
score is used to balance the evaluation of precision and recall rates. IoU is the intersection-
over-union rate between the predicted result and the ground truth region. In medical
diagnosis, high precision is crucial. A false positive (misclassifying a healthy patient as
having a disease) can lead to unnecessary stress, additional tests, and costs. Achieving
high precision ensures that the majority of positive predictions are indeed true positives.
Recall is equally important. Missing a true positive (failing to detect a disease) can have
severe consequences for the patient. High recall ensures that fewer cases of the lesion go
undetected. The F1-score balances precision and recall. It is suitable for our TB lesion
classification because it considers both false positives and false negatives. A high F1-score
indicates a good trade-off between precision and recall. Finally, IoU is widely used in
semantic segmentation. It quantifies the overlap between predicted and ground truth
masks. A high IoU indicates accurate delineation of the detected lesion boundaries. It is
especially relevant when precise localization matters.

Table 5 shows the best performance after testing the eight preprocessing schemes and
the various loss functions for mean IoU (MIoU), mean F1 (MF1) score, Acc, and the number
of network parameters of the five network models with two different backbones. For each
network model, we found the best performance by using different preprocessing schemes
while using a fixed loss function. The maximum value in each column is shown in boldface.
For example, the preprocessing scheme that achieved the best performance for the U-Net
model with the ResNet50 backbone using the IFL loss function was lung ROI extraction
(R). As shown in Table 5, the best MioU, of 0.67, was obtained by using the U-Net++ model
with the DenseNet121 backbone, the DFL loss function, and the RS preprocessing scheme.
The best MF1 score, 0.79, was achieved using PSP Attention U-Net++ with the ResNet50
backone, the DFL loss function, and the RS preprocessing scheme. The best accuracy, 1.0,
was obtained using Attention U-Net++ with the ResNet50 backbone, the FTL loss function,
and the RB preprocessing scheme.
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Table 5. Best performance metric comparison between various loss functions and preprocessing
schemes for each model. The maximum value in each column is shown in boldface.

Model Backbone Loss
Function

Best
Preprocessing

Scheme
MIoU MF1 Acc Parameter

Count
Selected in

Ensemble Method?

U-Net ResNet50 IFL R 0.64 0.75 0.99 33 M No

Unet++ ResNet50 IFL RC 0.65 077 0.99 36 M No

Attention
U-Net ResNet50 DFL RC 0.66 0.78 0.98 38 M No

Attention
U-Net++ ResNet50 FTL RB 0.64 0.78 1.0 43 M M1

PSP Attention
U-Net++ ResNet50 DFL RS 0.65 0.79 0.99 48 M No

U-Net DenseNet121 DFL R 0.62 0.73 0.98 12 M No

U-Net++ DenseNet121
DFL RS 0.67 0.78 0.99 14 M M2

IFL RBS 0.67 0.78 0.98 14 M M3

Attention
U-Net DenseNet121 FTL RC 0.62 0.74 0.99 15 M M4

Attention
U-Net++ DenseNet121 DFL RBSC 0.61 0.73 0.99 18 M No

PSP Attention
U-Net++ DenseNet121 CCL R 0.63 0.75 0.99 21 M M5

To further improve performance, the test results for the four different ensemble meth-
ods mentioned in Section 3 were investigated as well. According to the results shown in
Table 5, we selected the top five single-network models with the corresponding backbones
and preprocessing schemes. The two most important criteria for choosing the five networks
were MioU and Acc, since they are the most useful in identifying the two types of TB
lesions. However, U-Net models had lower MIoU values (0.64 and 0.62) than the other
single models. According to our experimental results, we selected U-Net++ (DenseNet121,
IFL, RBS) to replace U-Net because it also has a high MIoU value (0.66) and can lead to
higher ensemble method performance than the latter. The final five single networks, with
their backbones, loss functions, and preprocessing schemes, are as follows: M1: Atten-
tion U-Net++ (ResNet50, FTL, RB); M2: U-Net++ (DenseNet121, DFL, RS); M3: U-Net++
(DenseNet121, IFL, RBS); M4: Attention U-Net (DenseNet121, FTL, RC); and M5: PSP
Attention U-Net++ (DenseNet121, CCL, R). Note that the numbers of network parameters
in the training stage when using the ResNet50 backbone are more than twice as high as
those achieved using DenseNet121.

Figure 13a–e show the MIoU and loss function curves of the five selected network
models in the training process. The training processes all terminate at less than 30 epochs
due to the detected convergence.

Table 6 shows a performance comparison of the five ensemble methods in terms of
MIoU, mean precision rate, mean recall rate, MF1, and Acc. The maximum value in each
column is shown in boldface. The ensemble method using stacking dense layer achieved
the best results, except for the mean precision rate. This ensemble method achieved a MIoU
of 0.70, a mean precision rate of 0.88, a mean recall rate of 0.75, a MF1 of 0.81, and an Acc of
1.0, which are all better than the highest values achieved by all single models, as shown
in Table 5. During the training stage of this ensemble method, the Adam optimizer was
used. In addition, the batch size was one, the preset epoch number was 50, the learning rate
was 10−4, and the dropout rate in the final convolutional layer was 0.5. Figure 14a,b show
the MIoU scores and validation loss, respectively, of the training and validation curves in
the training stage of this ensemble method. The epoch number stops at 37 because the
convergence criterion is satisfied.
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Table 6. Performance metric comparison of the four ensemble methods. The highest value for the
performance metric in each column is shown in boldface.

Ensemble Method MIoU Mean Precision Rate Mean Recall Rate MF1 Acc

AND 0.53 0.94 0.54 0.64 0.99

OR 0.69 0.90 0.73 0.80 1.0

Logistic regression 0.69 0.85 0.75 0.79 1.0

Stacking using dense layer 0.70 0.88 0.75 0.81 1.0
Diagnostics 2024, 14, x FOR PEER REVIEW 16 of 27 
 

 

  
(a) 

  
(b) 

  
(c) 

Figure 13. Cont.



Diagnostics 2024, 14, 952 16 of 24Diagnostics 2024, 14, x FOR PEER REVIEW 17 of 27 
 

 

  
(d) 

  
(e) 

Figure 13. The training and validation curves of MIoU scores (left column) and training and valida-
tion losses (right column) achieved in the training process of the selected top five networks: (a) M1: 
Attention Unet++ network (ResNet50, FTL, RB); (b) M2: U-Net++ (DenseNet121, DFL, RS); (c) M3: 
(DenseNet121, IFL, RBS); (d) M4 (DenseNet121, FTL, RC); (e) M5 (DenseNet121, CCL, R). 

Table 6 shows a performance comparison of the five ensemble methods in terms of 
MIoU, mean precision rate, mean recall rate, MF1, and Acc. The maximum value in each 
column is shown in boldface. The ensemble method using stacking dense layer achieved 
the best results, except for the mean precision rate. This ensemble method achieved a 
MIoU of 0.70, a mean precision rate of 0.88, a mean recall rate of 0.75, a MF1 of 0.81, and 
an Acc of 1.0, which are all better than the highest values achieved by all single models, as 
shown in Table 5. During the training stage of this ensemble method, the Adam optimizer 
was used. In addition, the batch size was one, the preset epoch number was 50, the learn-
ing rate was 10−4, and the dropout rate in the final convolutional layer was 0.5. Figure 14a,b 
show the MIoU scores and validation loss, respectively, of the training and validation 
curves in the training stage of this ensemble method. The epoch number stops at 37 be-
cause the convergence criterion is satisfied. 
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(DenseNet121, IFL, RBS); (d) M4 (DenseNet121, FTL, RC); (e) M5 (DenseNet121, CCL, R).

To investigate the contributions of the different five models used in the ensemble
method, an ablation study was conducted. Table 7 shows a performance comparison of the
original ensemble method and of the others in which one of the five single models in the
original method is discarded. We can observe that the original ensemble method achieves
the best MIoU, MF1, and Acc, while its performance could be reduced by discarding any
one single model. Accuracy Acc is decreased if any model out of M1, M4, or M5 is discarded.
When model M1 is discarded, the MIoU, mean recall rate, MF1, and Acc are all decreased to
their corresponding minima. If we discard model M2, the MIoU is only 0.01 less than that
of the original method, while the others are the same. On the other hand, the contribution
of model M3 in the ensemble method is more significant than that of model M2 because the
values of MIoU, mean precision and recall rates, and MF1 after discarding the model M3
are all lower than those obtained after discarding model M2. The contribution of model M4
is also obvious, since four of the five metrics are decreased when it is discarded. Finally,
after discarding model M5, the mean precision and recall rates are increased but accuracy
is decreased. According to the results above, we can conclude that model M1 has the most
significant contribution to this ensemble method.
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Table 7. Ablation study on the top five single models (M1~M5) used in the best ensemble method
with the highest MIoU, MF1, and Acc values. The highest value for each performance metric is shown
in boldface.

Selected Models in the Ensemble Method Performance Metrics

M1 M2 M3 M4 M5 MIoU Mean Precision Rate Mean Recall Rate MF1 Acc
√ √ √ √ √

0.70 0.88 0.75 0.81 1.0

×
√ √ √ √

0.68 0.88 0.73 0.79 0.98
√

×
√ √ √

0.69 0.88 0.75 0.81 1.0
√ √

×
√ √

0.68 0.87 0.74 0.79 1.0
√ √ √

×
√

0.69 0.88 0.74 0.79 0.99
√ √ √ √

× 0.70 0.89 0.76 0.81 0.99

Figure 15a–d show the experimental results of the eighteen test CXR images containing
at least one type of TB lesions (six test images contain both types simultaneously). Figure 15a
shows the original CXR images. The ground truth masks of the two types of TB lesion
are shown in Figure 15b, while the masks of detected semantic segmentation results are
shown in Figure 15c. Finally, we overlaid the segmentation results in Figure 15c onto the
original images in Figure 15a and obtained the postprocessed images shown in Figure 15d.
Consistency is defined as compatibility of locations and patterns of TB lesions in CXR
images between the segmentation results and the interpretations of expert radiologists. All
of the TB lesions detected by the trained model in the 18 test CXR images meet the criteria
of consistency. Two pulmonary radiologists confirmed the results by performing a visual
comparison of all the test images with an acceptable MIoU (0.7 in our study results) between
the segmentation results and ground truth data. As illustrated in Figure 15, by using the
stacking ensemble method, both types of TB lesions are efficiently distinguished in all
images (opacity/consolidation pattern in red and infiltrations/bronchiectasis pattern in
yellow) and semantically segmented at their corresponding positions in ground truth data.
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Figure 15. Experimental results of 18 test images: (a) original CXR images; (b) masks of lesion 
ground truth (red: opacity/consolidation; yellow: infiltration/bronchiectasis); (c) masks of semantic 
segmentation results; (d) detected lesions overlaid on the original CXR images. 

Figure 15. Experimental results of 18 test images: (a) original CXR images; (b) masks of lesion
ground truth (red: opacity/consolidation; yellow: infiltration/bronchiectasis); (c) masks of semantic
segmentation results; (d) detected lesions overlaid on the original CXR images.
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Table 8 shows a comparison between our study and three related studies, specifically
in terms of TB lesion detection, classification, and visualization methods. In Refs. [12,21],
TB-consistent lesions are detected and segmented without classification information.
Multicategory TB lesion detection and classification are performed in Ref. [39]. However,
lesions are labeled by a rectangular bounding box rather than semantical segmentation.
Our approach efficiently identifies the two major types of TB lesions with their sizes
and positions so that the physician can obtain more detailed information. Note that the
Shenzhen TB CXR dataset is used in all the other three studies. Therefore, we will also
apply our approach to this dataset so that the robustness of the proposed method can
be verified.

Table 8. Comparisons to other similar studies on TB lesion segmentation.

Reference Target Lesion and Classification Lesion Visualization Method Dataset

[12] TB-consistent lesions
w/o classification Semantic mask Shenzhen TB CXR

[21] TB-consistent lesions
w/o classification

GT 1: Rectangular bounding box
Predicted: ROI mask

TBX11K CXR
Shenzhen TB CXR

Montgomery TB CXR

[39] Multicategory TB lesion
w/classification Rectangular bounding box

Shenzhen TB CXR
Montgomery TB CXR

Local (First Affiliated Hospital of
Xi’an Jiao Tong University)

Ours
Infiltration/bronchiectasis and

opacity/consolidation
w/classification

Semantic mask Local (National Cheng Kung
University Hospital Douliu Branch)

1 GT: Ground truth.

5. Conclusions

This paper presents an approach to the semantic segmentation of TB lesion regions
and types (currently opacity/consolidation and infiltrations/bronchiectasis) in CXR images
based on U-Net-based network models. We first selected 110 images from the original
CXR image dataset and used the data augmentation method to obtain 880 training images.
Several image preprocessing methods were used to enhance and extract more lesion
features. In the proposed method, the network models used for the semantic segmentation
of TB lesions include U-Net, Attention U-Net, U-Net++, Attention U-Net++, and PSP
Attention U-Net++. We experimentally investigated the performance of the various U-Net-
based networks under different backbones, preprocessing schemes, loss functions, and
training parameters. The experimental results showed that the best MIoU, MF1, and Acc
are obtained using different U-Net-based network models. Moreover, the deep learning
network was enhanced by applying four ensemble methods to the top five single models.
Stacking ensemble using dense layer architecture for the top five models achieved the
best segmentation performance. The experimental results showed that we can achieve a
promising performance (1.0 Acc, 0.70 MIoU, 0.88 mean precision rate, 0.75 mean recall rate,
and 0.81 MF1) in TB lesion classification and semantic segmentation.

Although our approach has shown promising results, there are certain limitations.
First, only two types of TB lesions were considered in this study. If more lesion types
could be detected, physicians would be able to make better diagnoses. Second, changes
in image quality, e.g., resolution and format, in the training stage may have affected the
performance of the proposed method. Third, the dataset size and diversity, i.e., the number
of the collected CXR images and patients, are not big enough considering the deep learning
perspective. Therefore, the overfitting problem may exist in the current network models,
and the robustness of the proposed method may be limited. Finally, classification accuracy
and semantic segmentation results could be degraded when the lesion types and the
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number of test CXR images with lesions are increased. The utilization of more complicated
deep learning networks and longer training processes will be unavoidable.

This approach can be used to assist physicians in examining the two specific TB
lesion types in CXR images. Because pulmonary TB is an infectious airway disease and
is a substantial burden to public health, it is important to facilitate the detection of new
cases in developing countries with a higher incidence of TB but limited medical resources.
Without experienced pulmonologists or radiologists, diagnostic tools used for TB detection
should be extremely well designed to allow for disease control. However, for physicians,
the identification of TB images is quite challenging because the lesions are complex and
comprise several subtypes. Combined with clinical symptoms indicative of TB, artificial
intelligence-assisted TB detection methods can aid general physicians in cases of early
suspicion of TB, allowing for immediate referral to pulmonologists without delaying
diagnosis and treatment. Although not all subtypes of TB lesions were included in our
dataset analysis, infiltrations/bronchiectasis and opacity/consolidation lesions are the
most frequently encountered subtypes and are very difficult to detect in clinical practice.
Therefore, our study results highlight the potential impact of deep learning methods as an
assistant tool in the radiologic diagnosis of TB.

In our future work, we will continuously collect more CXR images for both the training
and test stages from National Cheng Kung University Hospital, Douliu Branch, so that the
proposed method can be more robust. By searching the public datasets available on the
Internet, we may collect more useful CXR images as well, and we can verify the robustness
of the proposed method on different datasets. In addition, we will extend the proposed
method to be able to detect and segment more TB lesion types, such as miliary, fibrosis,
and cavitation lesions, when sufficient numbers of their corresponding CXR images can
be collected.

Author Contributions: Conceptualization, C.-Y.O. and I.-Y.C.; methodology, H.-T.C. and C.-Y.W.;
software, C.-Y.W., D.-Y.L. and Y.-K.C.; data curation, C.-Y.O. and I.-Y.C.; writing—original draft
preparation, H.-T.C., C.-Y.W. and Y.-K.C.; writing—review and editing, C.-Y.O., I.-Y.C. and H.-T.C.;
supervision, C.-Y.C.; project administration, H.-T.C. and C.-Y.C.; funding acquisition, C.-Y.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Cheng Kung University Hospital, Douliu Branch; the
National Science and Technology Council; and the “Intelligent Recognition Industry Service Center”
from The Featured Areas Research Center Program within the framework of the Higher Education
Sprout Project by the Ministry of Education (MOE), Taiwan.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and was approved by the Institutional Review Board of National Cheng Kung University
Hospital, Douliu Branch (IRB No: A-ER-112-247, date of approval: 16 August 2023) for studies
involving humans.

Informed Consent Statement: Patient consent was waived due to IRB approval.

Data Availability Statement: Our source codes for implementing the proposed methods are available
on GitHub: https://github.com/Chen-Yen-Kai/Chest and https://github.com/Chen-Yen-Kai/
Chest-X-ray-Images-Using-Stacked-Ensemble-Learning.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021.
2. Global Tuberculosis Report 2019; World Health Organization: Geneva, Switzerland, 2019.
3. Chest Radiography in Tuberculosis Detection; World Health Organization: Geneva, Switzerland, 2016.
4. Chandra, T.B.; Verma, K.; Singh, B.K.; Jain, D.; Netam, S.S. Automatic detection of tuberculosis related abnormalities in Chest

X-ray images using hierarchical feature extraction scheme. Expert Syst. Appl. 2020, 158, 113514. [CrossRef]
5. Jaeger, S.; Karargyris, A.; Candemir, S.; Siegelman, J.; Folio, L.; Antani, S.; Thoma, G.; McDonald, C.J. Automatic screening for

tuberculosis in chest radiographs a survey. Quant. Imaging Med. Surg. 2013, 3, 89–99. [CrossRef]

https://github.com/Chen-Yen-Kai/Chest
https://github.com/Chen-Yen-Kai/Chest-X-ray-Images-Using-Stacked-Ensemble-Learning
https://github.com/Chen-Yen-Kai/Chest-X-ray-Images-Using-Stacked-Ensemble-Learning
https://doi.org/10.1016/j.eswa.2020.113514
https://doi.org/10.3978/j.issn.2223-4292.2013.04.03


Diagnostics 2024, 14, 952 23 of 24

6. Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.; Siegelman, J.; Callaghan, F.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, S.; et al.
Automatic Tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 2014, 33, 233–245. [CrossRef]

7. Murphy, K.; Habib, S.S.; Zaidi, S.M.A.; Khowaja, S.; Khan, A.; Melendez, J.; Scholten, E.T.; Amad, F.; Schalekamp, S.; Verhagen,
M.; et al. Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Sci. Rep.
2020, 10, 5492. [CrossRef]

8. Khan, F.A.; Pande, T.; Tessema, B.; Song, R.; Benedetti, A.; Pai, M.; Lönnroth, K.; Denkinger, C.M. Computer-aided reading of
tuberculosis chest radiography—Moving the research agenda forward to inform policy. Eur. Respir. J. 2017, 50, 1700953. [CrossRef]

9. Maduskar, P.; Muyoyeta, M.; Ayles, H.; Hogeweg, L.; Peters-Bax, L.; Ginneken, B.V. Detection of tuberculosis using digital chest
radiography automated reading vs. interpretation by clinical officers. Int. J. Tuberc. Lung Dis. 2013, 17, 1613–1620. [CrossRef]

10. Santosh, K.; Allu, S.; Rajaraman, S.; Antani, S. Advances in deep learning for Tuberculosis screening using chest X-rays: The last
5 years review. J. Med. Syst. 2022, 46, 82. [CrossRef]

11. Zaidi, S.Y.; Akram, M.U.; Jameel, A.; Alghamdi, N.S. A deep learning approach for the classification of TB from NIH CXR dataset.
IET Image Process. 2021, 16, 787–796. [CrossRef]

12. Rajaraman, S.; Yang, F.; Zamzmi, G.; Xue, Z.; Antani, S.K. A systematic evaluation of ensemble learning methods for fine-grained
semantic segmentation of Tuberculosis-consistent lesions in chest radiographs. Bioengineering 2022, 9, 413. [CrossRef]

13. Islam, M.T.; Aowal, M.A.; Minhaz, A.T.; Ashraf, K. Abnormality detection and localization in chest X-Rays using deep convolu-
tional neural networks. arXiv 2017, arXiv:1705.09850. [CrossRef]

14. Nijiati, M.; Ma, J.; Hu, C.; Tuersun, A.; Abulizi, A.; Kelimu, A.; Zhang, D.; Li, G.; Zou, X. Artificial intelligence assisting the early
detection of active pulmonary Tuberculosis from chest X-Rays: A population-based study. Front. Mol. Biosci. 2022, 9, 874475.
[CrossRef]

15. Tang, Y.-X.; Tang, Y.-B.; Peng, Y.; Yan, K.; Bagheri, M.; Redd, B.A.; Brandon, C.J.; Lu, Z.; Han, M.; Xiao, J.; et al. Automated
abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digit. Med. 2020, 3, 70. [CrossRef]

16. Qin, C.; Yao, D.; Shi, Y.; Song, Z. Computer-aided detection in chest radiography based on artificial intelligence: A survey. Biomed.
Eng. OnLine 2018, 17, 113. [CrossRef]

17. Lakhani, P.; Sundaram, B. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using
convolutional neural networks. Radiology 2017, 284, 574–582. [CrossRef]

18. Puttagunta, M.K.; Ravi, S. Detection of Tuberculosis based on deep learning based methods. J. Phys. Conf. Ser. 2021, 1767, 012004.
[CrossRef]

19. Koide, Y.; Aoyama, T.; Shimizu, H.; Kitagawa, T.; Miyauchi, R.; Tachibana, H.; Kodaira, T. Development of a deep learning model
for chest X-ray model for cardiac dose prediction in left-sided breast cancer radiotherapy. Sci. Rep. 2022, 12, 13706. [CrossRef]

20. Pasa, F.; Golkov, V.; Pfeiffer, F.; Cremers, D.; Pfeiffer, D. Efficient deep network architectures for fast chest X-ray Tuberculosis
screening and visualization. Sci. Rep. 2019, 9, 6268. [CrossRef]

21. Rajaraman, S.; Folio, L.R.; Dimperio, J.; Alderson, P.O.; Antani, S.K. Improved semantic segmentation of Tuberculosis—Consistent
findings in chest X-rays using augmented training of modality-specific U-Net models with weak localizations. Diagnostics
2021, 11, 616. [CrossRef]

22. Alcantara, M.F.; Caoa, Y.; Liu, C.; Liu, B.; Brunette, M.; Zhang, N.; Sun, T.; Zhang, P.; Chen, Q.; Li, Y.; et al. Improving tuberculosis
diagnostics using deep learning and mobile health technologies among resource-poor communities in Perú. Smart Health
2017, 1–2, 66–76. [CrossRef]

23. Rajaraman, S.; Antani, S.K. Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs.
IEEE Access 2020, 8, 27318–27326. [CrossRef]

24. Rahman, T.; Khandakar, A.; Kadir, M.A.; Islam, K.R.; Islam, K.F.; Mazhar, R.; Hamid, T.; Islam, M.T.; Mahbub, Z.B.; Ayari,
M.A.; et al. Reliable Tuberculosis detection using chest X-ray with deep learning segmentation and visualization. IEEE Access
2020, 8, 191586–191601. [CrossRef]

25. Nafisah, S.I.; Muhammad, G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and
explainable artificial intelligence. Neural Comput. Appl. 2022, 19, 111–131. [CrossRef] [PubMed]

26. Guo, R.; Passi, K.; Jain, C.K. Tuberculosis diagnostics and localization in chest X-rays via deep learning models. Front. Artif. Intell.
2020, 3, 583427. [CrossRef] [PubMed]

27. Abideen, Z.U.; Ghafoor, M.; Munir, K.; Saqib, M. Uncertainty assisted robust Tuberculosis identification with Bayesian convolu-
tional neural networks. IEEE Access 2020, 8, 22812–22825. [CrossRef] [PubMed]

28. Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-Ray8: Hospital-scale chest X-ray database and benchmarks
on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3462–3471. Available online:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.369 (accessed on 23 April 2024).

29. Liu, J.; Lian, J.; Yu, Y. ChestX-Det10: Chest x-ray dataset on detection of thoracic abnormalities. arXiv 2020, arXiv:2006.10550.
[CrossRef]

30. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. arXiv 2015, arXiv:1505.04597.
[CrossRef]

31. Abedalla, A.; Abdullah, M.; Al-Ayyoub, M.; Benkhelifa, E. Chest X-ray pneumothorax segmentation using U-Net with EfficientNet
and ResNet architectures. PeerJ Comput. Sci. 2021, 7, e607. [CrossRef] [PubMed]

https://doi.org/10.1109/tmi.2013.2284099
https://doi.org/10.1038/s41598-020-62148-y
https://doi.org/10.1183/13993003.00953-2017
https://doi.org/10.5588/ijtld.13.0325
https://doi.org/10.1007/s10916-022-01870-8
https://doi.org/10.1049/ipr2.12385
https://doi.org/10.3390/bioengineering9090413
https://doi.org/10.48550/arXiv.1705.09850
https://doi.org/10.3389/fmolb.2022.874475
https://doi.org/10.1038/s41746-020-0273-z
https://doi.org/10.1186/s12938-018-0544-y
https://doi.org/10.1148/radiol.2017162326
https://doi.org/10.1088/1742-6596/1767/1/012004
https://doi.org/10.1038/s41598-022-16583-8
https://doi.org/10.1038/s41598-019-42557-4
https://doi.org/10.3390/diagnostics11040616
https://doi.org/10.1016/j.smhl.2017.04.003
https://doi.org/10.1109/ACCESS.2020.2971257
https://doi.org/10.1109/ACCESS.2020.3031384
https://doi.org/10.1007/s00521-022-07258-6
https://www.ncbi.nlm.nih.gov/pubmed/35462630
https://doi.org/10.3389/frai.2020.583427
https://www.ncbi.nlm.nih.gov/pubmed/33733221
https://doi.org/10.1109/ACCESS.2020.2970023
https://www.ncbi.nlm.nih.gov/pubmed/32391238
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.369
https://doi.org/10.48550/arXiv.2006.10550
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.7717/peerj-cs.607
https://www.ncbi.nlm.nih.gov/pubmed/34307860


Diagnostics 2024, 14, 952 24 of 24

32. Su, R.; Zhang, D.; Liu, J.; Cheng, C. MSU-Net: Multi-scale U-Net for 2D medical image segmentation. Frontiers 2021, 12, 639930.
[CrossRef]

33. Gaál, G.; Maga, B.; Lukács, A. Attention U-Net based adversarial architectures for chest X-ray lung segmentation. arXiv 2003,
arXiv:2003.10304. [CrossRef]

34. Kamil, M.; Hashem, S. Segmentation of Chest X-Ray Images Using U-Net Model. MENDEL 2022, 28, 49–53. [CrossRef]
35. Wen, S.; Liu, J.; Xu, W. A novel lesion segmentation algorithm based on U-Net network for Tuberculosis CT image. In Proceedings

of the 2021 International Conference on Control, Automation and Information Sciences (ICCAIS), Xi’an, China, 14–17 October 2021;
pp. 909–914. [CrossRef]

36. Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K. CheXNet:
Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225. [CrossRef]

37. Jaeger, S.; Candemir, S.; Antani, S.; Wáng, Y.X.; Lu, P.X.; Thoma, G. Two public chest x-ray datasets for computer-aided screening
of pulmonary diseases. Quant. Imaging Med. Surg. 2014, 4, 475–477. [CrossRef] [PubMed]

38. Liu, Y.; Wu, Y.H.; Ban, Y.; Wang, H.; Cheng, M.M. Rethinking computer-aided tuberculosis diagnosis. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2643–2652. [CrossRef]

39. Xie, Y.; Wu, Z.; Han, X.; Wang, H.; Wu, Y.; Cui, L.; Feng, J.; Zhu, Z.; Chen, Z. Computer-aided system for the detection of
multicategory pulmonary tuberculosis in radiographs. J. Healthc. Eng. 2020, 2020, 9205082. [CrossRef] [PubMed]

40. Raoof, S.; Feigin, D.; Sung, A.; Raoof, S.; Irugulpati, L.; Rosenow, E.C. Interpretation of plain chest roentgenogram. Chest
2012, 141, 545–558. [CrossRef] [PubMed]

41. Milliron, B.; Henry, T.S.; Veeraraghavan, S.; Little, B.P. Bronchiectasis: Mechanisms and imaging clues of associated common and
uncommon diseases. RadioGraphics 2015, 35, 1011–1030. [CrossRef] [PubMed]

42. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: Redesigning skip connections to exploit multiscale features in
image segmentation. arXiv 2019, arXiv:1912.05074. [CrossRef]

43. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention U-Net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [CrossRef]

44. Li, C.; Tan, Y.; Chen, W.; Luo, X.; Gao, Y.; Jia, X.; Wang, Z. Attention Unet++: A nested attention-aware u-net for liver ct image
segmentation. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab
Emirates, 25–28 October 2020; pp. 345–349. [CrossRef]

45. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [CrossRef]

46. Selvan, R.; Dam, E.B.; Detlefsen, N.S.; Rischel, S.; Sheng, K.; Nielsen, M.; Pai, A. Lung segmentation from chest x-rays using
variational data imputation. arXiv 2005, arXiv:2005.10052. [CrossRef]

47. Rajaraman, S.; Zamzmi, G.; Folio, L.; Alderson, P.; Antani, S. Chest x-ray bone suppression for improving classification of
tuberculosis-consistent findings. Diagnostics 2021, 11, 840. [CrossRef]

48. Gündel, S.; Setio, A.A.A.; Grbic, S.; Maier, A.; Comaniciu, D. Extracting and leveraging nodule features with lung inpainting
for local feature augmentation. In Machine Learning in Medical Imaging; Liu, C.M., Yan, P., Lian, C., Cao, X., Eds.; Springer
International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 504–512. [CrossRef]

49. Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Academic Press Professional, Inc.:
Cambridge, MA, USA, 1994; pp. 474–485. [CrossRef]

50. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. Available
online: https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.243 (accessed on 23 April 2024).

51. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.
[CrossRef]

52. Sharif, M.S.; Abbod, M.; Al-Bayatti, A.; Amira, A.; Alfakeeh, A.S.; Sanghera, B. An accurate ensemble classifier for medical
volume analysis: Phantom and clinical pet study. IEEE Access 2020, 8, 37482–37494. [CrossRef]

53. Sharma, P.; Balabantaray, B.K.; Bora, K.; Mallik, S.; Kasugai, K.; Zhao, Z. An ensemble-based deep convolutional neural network
for computer-aided polyps identification from colonoscopy. Front. Genet. 2022, 13, 844391. [CrossRef]

54. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2017, arXiv:1412.6980v9. [CrossRef]
55. Murphy, K. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; ISBN 978-0262018029.
56. Abraham, N.; Khan, N.M. A novel focal tversky loss function with improved attention u-net for lesion segmentation. arXiv

2018, arXiv:1810.07842. [CrossRef]
57. Zhu, W.; Huang, Y.; Zeng, L.; Chen, X.; Liu, Y.; Qian, Z.; Du, N.; Fan, W.; Xie, X. AnatomyNet: Deep learning for fast and fully

automated whole-volume segmentation of head and neck anatomy. Med. Phys. 2018, 46, 576–589. [CrossRef]
58. Huang, H.; Lin, L.; Tong, R. UNet 3+: A full-scale connected UNet for medical image segmentation. arXiv 2020, arXiv:2004.08790.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fgene.2021.639930
https://doi.org/10.48550/arXiv.2003.10304
https://doi.org/10.13164/mendel.2022.2.049
https://doi.org/10.1109/ICCAIS52680.2021.9624633
https://doi.org/10.48550/arXiv.1711.05225
https://doi.org/10.3978/j.issn.2223-4292.2014.11.20
https://www.ncbi.nlm.nih.gov/pubmed/25525580
https://doi.org/10.1109/CVPR42600.2020.00272
https://doi.org/10.1155/2020/9205082
https://www.ncbi.nlm.nih.gov/pubmed/32908660
https://doi.org/10.1378/chest.10-1302
https://www.ncbi.nlm.nih.gov/pubmed/22315122
https://doi.org/10.1148/rg.2015140214
https://www.ncbi.nlm.nih.gov/pubmed/26024063
https://doi.org/10.48550/arXiv.1912.05074
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1109/ICIP40778.2020.9190761
https://doi.org/10.48550/arXiv.1612.01105
https://doi.org/10.48550/arXiv.2005.10052
https://doi.org/10.3390/diagnostics11050840
https://doi.org/10.1007/978-3-030-59861-7_51
https://doi.org/10.1016/B978-0-12-336156-1.50061-6
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.243
https://doi.org/10.48550/arXiv.1411.1792
https://doi.org/10.1109/ACCESS.2020.2975135
https://doi.org/10.3389/fgene.2022.844391
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1810.07842
https://doi.org/10.1002/mp.13300
https://doi.org/10.48550/arXiv.2004.08790

	Introduction 
	Backgrounds and Related Techniques 
	Methodology 
	System Architecture Overview 
	Image Dataset Collection 
	Image Preprocessing and Data Augmentation 
	U-Net-Based Lesion Detection and Semantic Segmentation 
	Ensemble Methods 

	Experimental Results and Discussion 
	Conclusions 
	References

