CD3 and CD20 Expressions and Infiltrating Patterns in Salivary Gland Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Methods
2.3. Assessments
2.4. Statistics
3. Results
3.1. Demographic Features
3.2. Microscopical Evaluation
3.3. Immunohistochemical Evaluation of TILs
3.4. Clinic pathological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EI-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takashi, T.; Slootweg, P.J. WHO Classification of Head and Neck Tumors, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2017; pp. 150–202. [Google Scholar]
- Skálová, A.; Stenman, G.; Simpson, R.H.; Hellquist, H.; Slouka, D.; Svoboda, T.; Bishop, J.A.; Hunt, J.L.; Nibu, K.-I.; Rinaldo, A.; et al. The role of molecular testing in the differential diagnosis of salivary gland carcinomas. Am. J. Surg. Pathol. 2018, 42, e11–e27. [Google Scholar] [CrossRef] [PubMed]
- Pouloudi, D.; Manou, M.; Sarantis, P.; Tsoukalas, N.; Tsourouflis, G.; Dana, E.; Karamouzis, M.V.; Klijanienko, J.; Theocharis, S. Clinical significance of Histone Deacetylase (HDAC)-1, -2, -4 and -6 expression in salivary gland tumors. Diagnostics 2021, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, B.R.; Domingos, C.; Stefanini, A.C.B.; Henrique, T.; Polachini, G.M.; Castelo-Branco, P.; Tajara, E.H. Cellular interactions in the tumor microenvironment: The role of secretome. J. Cancer 2019, 10, 4574–4587. [Google Scholar] [CrossRef]
- Yanwei, L.; He, F.; Liu, S.; Pan, Z. Systematic analysis of molecular subtypes and immune prediction based on CD8 T cell pattern genes based on head and neck cancer. J. Oncol. 2022, 2022, 1500493. [Google Scholar] [CrossRef] [PubMed]
- Silvia, S.; Gansbacher, B.; Pizzimenti, A.M.; Zier, K.S. Abnormal signal transduction by T cells of mice with parental tumors is not seen in mice bearing IL-2-secreting tumors. J. Immunlogy 1994, 153, 5176–5182. [Google Scholar]
- Vernau, W.; Moore, V. An immunophenotypic study of canine leukemias and preliminary assessment of clonality by polymerase chain reaction. Vet. Immunol. Immunopathol. 1999, 69, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Yuen, G.J.; Demissie, E.; Pillai, S. B lymphocytes and cancer: A love-hate relationship. Trends Cancer 2016, 2, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Leong AS, Y.; Cooper, K.; Leong, F.J.W. Manual of Diagnostic Antibodies for Immunohistology, 2nd, ed.; Greenwich Medical Media: London, UK, 2003. [Google Scholar]
- Largeot, A.; Pagano, G.; Gonder, S.; Moussay, E.; Paggetti, J. The B-side of cancer immunity: The underrated tune. Cells 2019, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Galli, F.; Aguilera, J.V.; Palermo, B.; Markovic, S.N.; Nisticò, P.; Signore, A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J. Exp. Clin. Cancer Res. 2020, 39, 89. [Google Scholar] [CrossRef]
- Sharonov, G.V.; Serebrovskaya, E.O.; Yuzhakova, D.V.; Britanova, O.V.; Chudakov, D.M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. 2020, 20, 294–307. [Google Scholar] [CrossRef]
- Wouters, M.C.A.; Nelson, B.H. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin. Cancer Res. 2018, 24, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Lu, L.; Xia, Y.; Dai, F.; Wang, Y.; Bao, Y.; Lundy, S.K.; Ito, F.; Pan, Q.; Zhang, X.; et al. Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL-10. Eur. J. Immunol. 2015, 45, 999–1009. [Google Scholar] [CrossRef]
- Linxweiler, M.; Kuo, F.; Katabi, N.; Lee, M.; Nadeem, Z.; Dalin, M.G.; Makarov, V.; Chowell, D.; Dogan, S.; Ganly, U.; et al. The immune microenvironment and neoantigen landscape of aggressive salivary gland carcinomas differ by subtype. Clin. Cancer Res. 2020, 26, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Doescher, J.; Meyer, M.; Arolt, C.; Quaas, A.; Klußmann, J.P.; Wolber, P.; Bankfalvi, A.; Schildhaus, H.-U.; Bastian, T.; Lang, S.; et al. Patterns of tumor infiltrating lymphocytes in adenoid cystic carcinoma of the head and neck. Cancers 2022, 14, 1383. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T. “Dedifferentiation”and high-grade transformation in salivary gland carcinomas. Head Neck Pathol. 2013, 7, S37–S47. [Google Scholar] [CrossRef]
- Mosconi, C.; de Arruda, J.A.A.; de Farias, A.C.R.; Oliveira, G.A.Q.; de Paula, H.M.; Fonseca, F.P.; Mesquita, R.A.; Silva, T.A.; Mendonça, E.F.; Batista, A.C. Immune microenvironment and evasion mechanisms in adenoid cystic carcinomas of salivary glands. Oral Oncol. 2019, 88, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kesar, N.; Winkelmann, R.; Oppermann, J.; Ghanaati, S.; Martin, D.; Neumayer, T.; Balster, S.; Rödel, C.; Rödel, F.; von der Grün, J.; et al. Prognostic impact of CD8-positive tumour-infiltrating lymphocytes and PD-L1 expression in salivary gland cancere. Oral Oncol. 2020, 111, 104931. [Google Scholar] [CrossRef] [PubMed]
- De Virgilio, A.; Veneroni, M.V.; Costantino, A.; Festa, B.M.; Fiamengo, B.; Sebastiani, D.; Spriano, G.; Di Tommaso, L. Tumor-infiltrating lymphocytes and tumor-associated macrophages as potential predictors of lymph node metastases in major salivary gland cancers. Front. Med. 2023, 10, 1163565. [Google Scholar] [CrossRef]
- Kang, H.; Seo, M.K.; Park, B.; Yoon, S.O.; Koh, Y.W.; Kim, D.; Kim, S. Characterizing intrinsic molecular features of the immune subtypes of salivary mucoepidermoid carcinoma. Transl. Oncol. 2022, 24, 101496. [Google Scholar] [CrossRef]
- Szanto, P.A.; Luna, M.A.; Tortoledo, M.E.; White, R.A. Histologic grading of Adenoid Cystic Carcinoma of the salivary glands. Cancer 1984, 54, 1062–1069. [Google Scholar] [CrossRef]
- Van Weert, S.; van der Waal, I.; Witte, B.I.; Leemans, C.R.; Bloemena, E. Histopathological grading of adenoid cystic carcinoma of the head and neck: Analysis of currently used grading systems and proposal for a simplified grading scheme. Oral Oncol. 2015, 51, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Goode, R.K.; Auclair, P.L.; Ellis, G.L. Mucoepidermoid carcinoma of the major salivary glands clinical and histopathologic analysis of 234 cases with evaluation of grading criteria. Int. J. Am. Cancer Soc. 1998, 82, 1217–1224. [Google Scholar] [CrossRef]
- Guo, X.; Fan, Y.; Lang, R.; Gu, F.; Chen, L.; Cui, L. Tumor infiltrating lymphocytes differ in invasive micropapillary carcinoma and medullary carcinoma of breast. Mod. Pathol. 2008, 21, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.S.; Kumar, S.; Konwar, R.; Makker, A.; Negi, M.P.S.; Goel, M.M. CD3+, CD4+ & CD8+ tumour infiltrating lymphocytes (TILs) are predictors of favourable survival outcome in infiltrating ductal carcinoma of breast. Indian J. Med. Res. 2014, 140, 361–369. [Google Scholar] [PubMed]
- Muhammad, L.; Mousa, C.; Abdulqadir, H. Proliferative potential in benign mixed salivary gland tumors, using Ki67 marker in relation to different clinicopathological parameters. Zanco J. Med. Sci. 2016, 20, 1241–1248. [Google Scholar] [CrossRef]
- Regezi, J.A.; Sciubba, J.J.; Jordan, R.C.K. Oral Pathology: Clinical Pathologic Correlations, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 58, pp. 185–221. [Google Scholar]
- Al-Khiro, F.I. Salivary gland tumors: A review of 171 cases, with particular reference to histological types, site, age and gender distribution. J. Baghdad Coll. Dent. 2014, 26, 88–91. [Google Scholar] [CrossRef]
- Albsoul, N.M.; Mismar, A.; Obeidat, F. Parotid tumors in Jordan: A demographic and clinicopathological analysis. Rev. Kasmera 2015, 10, 1–12. [Google Scholar]
- Alsanie, I.; Rajab, S.; Cottom, H.; Al, E. Distribution and frequency of salivary gland tumours: An international multicenter study. Head Neck Pathol. 2022, 16, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Homem de Carvalho, A.L.S.; Koth, V.S.; Campos, M.M. Salivary gland tumors: A ten-year retrospective analysis in a brazilian teaching hospital. Rev. Bras. De Cancerol. 2021, 67, e041452. [Google Scholar] [CrossRef]
- Mohammad, D.N.; Ibraheem, B.F. Expression of syndecan-1 and cyclin D1 in salivary gland tumors in relation to clinicopathological parameters. Int. J. Gen. Med. 2023, 16, 823–835. [Google Scholar] [CrossRef]
- Nachtsheim, L.; Meyer, M.M.M.F.; Kajueter, F.O.H.; Quaas, C.A.A. Incidence and clinical outcome of primary carcinomas of the major salivary glands: 10-year data from a population—Based state cancer registry in Germany. J. Cancer Res. Clin. Oncol. 2023, 149, 3811–3821. [Google Scholar] [CrossRef] [PubMed]
- Neville, B.W.; Damm, D.D.; Allen, C.M.; Chi, A.C. Oral and Maxillofacial Pathology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Perzin, K.H.; Gullane, P.; Clairmont, A.C. Adenoid cystic carcinomas arising in salivary glands. Cancer 1978, 42, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, N.A.; Lusardi, J.J.; McElherne, J.; Pearson, A.T.; Olivas, A.D.; Fitzpatrick, C.; Lingen, M.W.; Blair, E.A. Mucoepidermoid Carcinoma: A comparison of histologic grading systems and relationship to MAML2 rearrangement and prognosis. Am. J. Surg. Pathol. 2020, 43, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Qannam, A.; Bello, I. O.Comparison of histological grading methods in mucoepidermoid carcinoma of minor salivary glands. Indian J. Pathol. Microbiol. 2016, 59, 457–462. [Google Scholar] [CrossRef] [PubMed]
- DiLillo, D.J.; Yanaba, K.; Tedder, T.F. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: Therapeutic B cell depletion enhances B16 melanoma growth in mice. J. Immunol. 2010, 184, 4006–4016. [Google Scholar] [CrossRef] [PubMed]
- Foschini, M.P.; Marucci, G. Low-grade mucoepidermoid carcinoma of salivary glands: Characteristic immunohistochemical profile and evidence of striated duct differentiation. Virchows Arch. 2002, 440, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.; Tinker, A.V.; Lee, C.H.; Subramanian, S.; Van De Rijn, M.; Turbin, D.; Kalloger, S.; Han, G.; Ceballos, K.; Cadungog, M.G.; et al. Intraepithelial T cells and prognosis in ovarian carcinoma: Novel associations with stage, tumor type, and BRCA1 loss. Mod. Pathol. 2009, 22, 393–402. [Google Scholar] [CrossRef]
- Čermáková, P.; Melichar, B.; Tomšová, M.; Zoul, Z.; Kalábová, H.; Spaček, J.; Doležel, M. Prognostic significance of CD3 + tumor-infiltrating lymphocytes in patients with endometrial carcinoma. Anticancer. Res. 2014, 34, 5555–5561. [Google Scholar]
- Sinicrope, F.A.; Rego, R.L.; Ansell, S.M.; Knutson, K.L.; Foster, N.R.; Sargent, D.J. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-Cell ratio predicts a clinical outcome of human colon carcinoma. Gastroentrology 2009, 137, 1270–1279. [Google Scholar] [CrossRef]
- Sato, F.; Ono, T.; Kawahara, A.; Matsuo, K.; Kondo, R.; Sato, K.; Akiba, J.; Kawaguchi, T.; Kakuma, T.; Chitose, S.; et al. Prognostic value of tumor proportion score in salivary gland carcinoma. Larngoscope 2020, 131, E1481–E1488. [Google Scholar] [CrossRef]
- Nielsen, J.S.; Sahota, R.A.; Milne, K.; Kost, S.E.; Nesslinger, N.J.; Watson, P.H.; Nelson, B.H. CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res. 2012, 18, 3281–3292. [Google Scholar] [CrossRef] [PubMed]
- Svensson, M.C.; Warfvinge, C.F.; Fristedt, R.; Hedner, C.; Borg, D.; Eberhard, J.; Micke, P.; Nodin, B.; Leandersson, K.J.K. The integrative clinical impact of tumor-infiltrating T lymphocytes and NK cells in relation to B lymphocyte and plasma cell density in esophageal and gastric adenocarcinoma. Oncotarget 2017, 8, 72108–72126. [Google Scholar] [CrossRef] [PubMed]
- Bożyk, A.; Wojas-krawczyk, K.; Krawczyk, P.; Milanowski, J. Tumor microenvironment—A short review of cellular and interaction diversity. Biology 2022, 11, 929. [Google Scholar] [CrossRef] [PubMed]
- De Visser, K.E.; Korets, L.V.; Coussens, L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005, 7, 411–423. [Google Scholar] [CrossRef]
- Ammirante, M.; Luo, J.L.; Grivennikov, S.; Nedospasov, S.; Karin, M. B cell–derived lymphotoxin promotes castration-resistant prostate cancer. Am. Cancer Soc. 2017, 464, 302–305. [Google Scholar]
Variables | Total | PA | AdCC | MEC | p-Value | |||
---|---|---|---|---|---|---|---|---|
No. (%) | No. (%) | No. (%) | No. (%) | Among 3 Tumors | Between Malignant | |||
Age * | 41.27 ± 15 | 46.5 ± 15.1 | 48 ± 13.5 | 0.439 | 0.784 | |||
Sex | Male | 17 (38.6) | 6 (40) | 5 (53.7) | 6 (40) | 0.927 | 0.812 | |
Female | 27 (61.3) | 9 (60) | 9 (46.3) | 9 (60) | ||||
Site * | Parotid | 16 (32) | 10 (66.6) | 3 (21.4) | 3 (20) | 0.016 | 0.336 | |
Submandibular | 6 (12) | 2 (13.3) | 3 (21.4) | 1 (6.6) | ||||
Minor | 20 (40) | 3 (20) | 8 (57.1) | 9 (60) | ||||
Size | Tx | 9 (20.5) | 0 | 3 (21,4) | 6 (40) | 0.018 | 0.122 | |
T1 | 14 (31.8) | 5 (33.3) | 5 (35.7) | 4 (26.7) | ||||
T2 | 9 (20.5) | 6 (40) | 3 (21.4) | 0 | ||||
T3 | 9 (20.5) | 4 (26.7) | 3 (21.4) | 2 (13.3) | ||||
T4 | 3 (6.8) | 0 | 0 | 3 (20) | ||||
Lymph node | Nx | 19 (43.2) | 0 | 8 (57.1) | 11 (73.3) | 0.000 | 0.166 | |
N0 | 22 (50) | 15 (100) | 3 (21.4) | 4 (26.7) | ||||
N1 | 3 (6.8) | 0 | 3 (21.4) | 0 (0) | ||||
Outcome ** | Alive | >5 years | 16 (59.2) | 11 (73.3) | 3 (42.8) | 2 (40) | 0.000 | 0.287 |
<5 years | 9 (33.3) | 4 (26.6) | 2 (28.5) | 3 (60) | ||||
Dead | 2 (7.4) | 0 | 2 (28.6) | 0 (0) |
Variables | AdCC | MEC | ||
---|---|---|---|---|
No. (%) | No. (%) | |||
Border | Circumscribed | 1 (7.1) | 0 | |
Infiltrated | 13 (92.9) | 15 (100) | ||
* PNI (p = 0.035) | 11 (78.6) | 6 (40) | ||
High mitosis | 6 (42.9) | 3 (20) | ||
* LVI | 10 (71.4) | 7 (46.7) | ||
Necrosis | 6 (42.9) | 3 (20) | ||
Grade | I | 2 (14.3) | 12 (80) | |
II | 6 (42.9) | 0 | ||
III | 6 (42.9) | 3 (20) | ||
Epithelial component | Solid | 6 (42.9) | 11 (73.3) | |
Nonsolid or cyst | 8 (57.1) | 4 (26.7) |
Parameter | * Epithelial Composition | Median (IQR) | p Value |
---|---|---|---|
CD3 Intra-tumor | Epithelia < 25% | 34.8 (20.7) | 0.779 |
Epithelia > 75% | 37.8 (42.5) | ||
Nonsolid | 11.6 (13.8) | 0.662 | |
solid | 13.3 (19) | ||
Cystic | 55.2 (37.3) | 0.753 | |
Solid | 34 (51) | ||
CD20 Intra-tumor | Epithelia < 25% | 0.6 (1) | 0.04 |
Epithelia > 75% | 1.9 (16) | ||
Nonsolid | 1.8 (2) | 0.345 | |
solid | 2.4 (2) | ||
Cystic | 1.9 (23.5) | 0.949 | |
Solid | 0 (9.8) | ||
CD3 Peripheral | Epithelia < 25% | 45.7 (94.5) | 0.613 |
Epithelia > 75% | 34.6 (75.6) | ||
Nonsolid | 13.9 (45.8) | 1.00 | |
solid | 16.6 (101.6) | ||
Cystic | 62.9 (67.3) | 0.489 | |
Solid | 94.8 (62.3) | ||
CD20 peripheral | Epithelia < 25% | 71.4 (160.5) | 0.397 |
Epithelia < 75% | 37.1 (46.9) | ||
Nonsolid | 12.6 (30.9) | 0.755 | |
solid | 8.5 (31.1) | ||
Cystic | 67.9 (100.4) | 1.00 | |
solid | 82 (79) |
Variables | Intra-Tumoral | Peripheral Tumoral | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CD3% | CD20% | CD3% | CD20% | |||||||
Low | High | Low | High | Low | High | Low | High | |||
All sample | Sex | Male | 47.1 | 52.9 | 100 | 0 | 21.4 | 78.6 | 38.5 | 61.5 |
Female | 42.3 | 57.7 | 85.7 | 14.3 | 17.4 | 82.6 | 37.5 | 62.5 | ||
Site * | Major | 50 | 50 | 92.9 | 7.1 | 33.3 | 66.7 | 35.3 | 67.4 | |
Minor | 38.1 | 61.9 | 84.6 | 15.4 | 5.9 | 94.1 | 44.4 | 55.6 | ||
Size * | T1 | 57.1 | 42.9 | 100 | 0 | 5 | 8 | 58.3 | 41.7 | |
T2 | 22.2 | 77.8 | 100 | 0 | 1 | 6 | 14.3 | 85.7 | ||
T3 | 62.5 | 37.5 | 100 | 0 | 1 | 5 | 33.3 | 66.7 | ||
T4 | 33.3 | 66.7 | 50 | 50 | 0 | 3 | 33.3 | 66.7 | ||
LN | N0 | 42.9 | 57.1 | 100 | 0 | 31.6 | 68.4 | 36.8 | 63.2 | |
N1 | 66.7 | 33.3 | 100 | 0 | 0 | 100 | 50 | 50 | ||
Local recurrence | No | 47.4 | 52.6 | 100 | 0 | 29.4 | 70.6 | 6 | 10 | |
Yes | 42.9 | 57.1 | 100 | 0 | 33.3 | 66.7 | 2 | 2 | ||
Outcome * | Alive | 50 | 50 | 100 | 0 | 30 | 70 | 36.8 | 63.2 | |
Dead | 0 | 100 | 100 | 0 | 0 | 0 | 100 | 0 | ||
Malignant | Alive | 80 | 20 | 100 | 0 | 100 | 0 | 50 | 50 | |
Dead | 0 | 100 | 100 | 0 | 0 | 0 | 100 | 0 | ||
Grades | Perzi–Szanto | G1 | 50 | 50 | 100 | 0 | 50 | 50 | 50 | 50 |
G2 | 83.3 | 16.7 | 100 | 0 | 50 | 50 | 80 | 20 | ||
G3 | 66.7 | 33.3 | 100 | 0 | 0 | 100 | 75 | 25 | ||
AFIP | G1 | 33.3 | 66.7 | 50 | 50 | 0 | 100 | 10 | 90 | |
G3 | 33.3 | 66.7 | 50 | 50 | 0 | 100 | 33.3 | 66.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, R.R.; Garib, B.T. CD3 and CD20 Expressions and Infiltrating Patterns in Salivary Gland Tumors. Diagnostics 2024, 14, 959. https://doi.org/10.3390/diagnostics14090959
Hussein RR, Garib BT. CD3 and CD20 Expressions and Infiltrating Patterns in Salivary Gland Tumors. Diagnostics. 2024; 14(9):959. https://doi.org/10.3390/diagnostics14090959
Chicago/Turabian StyleHussein, Rukhsar R., and Balkees T. Garib. 2024. "CD3 and CD20 Expressions and Infiltrating Patterns in Salivary Gland Tumors" Diagnostics 14, no. 9: 959. https://doi.org/10.3390/diagnostics14090959
APA StyleHussein, R. R., & Garib, B. T. (2024). CD3 and CD20 Expressions and Infiltrating Patterns in Salivary Gland Tumors. Diagnostics, 14(9), 959. https://doi.org/10.3390/diagnostics14090959