Predictive Modeling for Spinal Metastatic Disease
Abstract
:1. Introduction
2. NOMS Framework
3. Prognostic Scoring Systems
3.1. Modeling Approaches
3.2. Classical or Regression-Driven Scores
3.3. Machine Learning-Driven Scoring Systems
4. Assessing Machine Learning Algorithms
5. Future Directions and Limitations of Artificial Intelligence
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sciubba, D.M.; Petteys, R.J.; Dekutoski, M.B.; Fisher, C.G.; Fehlings, M.G.; Ondra, S.L.; Rhines, L.D.; Gokaslam, Z.L. Diagnosis and management of metastatic spine disease: A review. J. Neurosurg. Spine 2010, 13, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Barzilai, O.; Laufer, I.; Yamada, Y.; Higginson, D.S.; Schmitt, A.M.; Lis, E.; Bilsky, M.H. Integrating evidence-based medicine for treatment of spinal metastases into a decision framework: Neurologic, oncologic, mechanical stability, and systemic disease. J. Clin. Oncol. 2017, 35, 2419–2427. [Google Scholar] [CrossRef] [PubMed]
- Rades, D.; Fehlauer, F.; Stalphers, L.J.A.; Wildfang, I.; Zschenker, O.; Schild, S.E.; Schmoll, H.J.; Karstens, J.H.; Alberti, W. A prospective evaluation of two radiotherapy schedules with 10 versus 20 fractions for the treatment of metastatic spinal cord compression: Final results of a multicenter study. Cancer 2004, 101, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Mizumoto, M.; Harada, H.; Asakura, H.; Hashimoto, T.; Furatani, K.; Hashii, H.; Murata, H.; Takagi, T.; Katagiri, H.; Takahashi, M.; et al. Radiotherapy for patients with metastases to the spinal column: A review of 603 patients at Shizuoka Cancer Center Hospital. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Gerszten, P.C.; Mendel, E.; Yamada, Y. Radiotherapy and radiosurgery for metastatic spine disease: What are the options, indications, and outcomes? Spine 2009, 34 (22 Suppl), S78–S92. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Regine, W.F.; Payne, R.; Saris, S.; Kryscio, R.J.; Mohiuddin, M.; Young, B. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: A randomised trial. Lancet 2005, 366, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, H.; Yoneoka, D. Trends in the surgical treatment for spinal metastasis and the in-hospital patient outcomes in the United States from 2000 to 2009. Spine J. 2014, 14, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
- Fujibayashi, S.; Neo, M.; Miyaki, K.; Nakayama, T. The value of palliative surgery for metastatic spinal disease: Satisfaction of patients and their families. Spine J. 2010, 10, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.; Leach, M.R.; Than, K.D.; Ziewacz, J.; La Marca, F.; Park, P. Independent predictors of complication following surgery for spinal metastasis. Eur. Spine J. 2013, 22, 1402–1407. [Google Scholar] [CrossRef]
- Laufer, I.; Rubin, D.G.; Lis, E.; Cox, B.W.; Stubblefield, M.D.; Yamada, Y.; Bilsky, M.H. The NOMS framework: Approach to the treatment of spinal metastatic tumors. Oncologist 2013, 18, 744–751. [Google Scholar] [CrossRef]
- Bilsky, M.H.; Laufer, I.; Fourney, D.R.; Groff, M.; Schmidt, M.H.; Varga, P.P.; Vrionis, F.D.; Yamada, Y.; Gerszten, P.C.; Kuklo, T.R. Reliability analysis of the epidural spinal cord compression scale. J. Neurosurg. Spine 2010, 13, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.G.; DiPaola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D.; et al. A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine 2010, 35, E1221–E1229. [Google Scholar] [CrossRef] [PubMed]
- Fourney, D.R.; Frangou, E.M.; Ryken, T.C.; Dipaola, C.P.; Shaffrey, C.I.; Berven, S.H.; Bilsky, M.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; et al. Spinal instability neoplastic score: An analysis of reliability and validity from the Spine Oncology Study Group. J. Clin. Oncol. 2011, 29, 3072–3077. [Google Scholar] [CrossRef] [PubMed]
- Sebaaly, A.; Shehid, D.; Boubez, G.; Zairi, F.; Kanhonou, M.; Yuh, S.; Wang, Z. Surgical site infection in spinal metastasis: Incidence and risk factors. Spine J. 2018, 18, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Paulino Pereira, N.R.; Ogink, P.T.; Groot, O.Q.; Ferrone, M.L.; Hornicek, F.J.; van Dijk, C.N.; Bramer, J.A.M.; Schwab, J.H. Complications and reoperations after surgery for 647 patient with spine metastatic disease. Spine J. 2019, 19, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Groot, O.Q.; Ogink, P.T.; Paulino Pereira, N.R.; Ferrone, M.L.; Harris, M.B.; Lozano-Calderon, S.L.; Schoenfeld, A.J.; Schwab, J.H. High risk of symptomatic venous thromboembolism after surgery for spine metastatic bone lesions: A retrospective study. Clin. Orthop. Relat. Res. 2019, 477, 1674–1686. [Google Scholar] [CrossRef] [PubMed]
- Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus machine learning. Nat. Methods 2018, 15, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Vigano, A.; Dorgan, M.; Bruera, E.; Suarez-Almazor, M. The relative accuracy of the clinical estimation of the duration of life for patients with end of life cancer. Cancer 1999, 86, 170–176. [Google Scholar] [CrossRef]
- Chow, E.; Harth, T.; Hruby, G.; Finkelstein, J.; Wu, J.; Danjoux, C. How accurate are physicians’ clinical predictions of survival and the available prognostic tools in estimating survival times in terminally il cancer patients? A systematic review. Clin. Oncol. (R Coll Radiol). 2001, 13, 209–218. [Google Scholar]
- Chow, E.; Davis, L.; Panzarella, T.; Hayter, C.; Szumacher, E.; Loblaw, A.; Wong, R.; Danjoux, C. Accuracy of survival prediction by palliative radiation oncologists. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 870–873. [Google Scholar] [CrossRef]
- Razvi, Y.; Chang, S.; Zhang, L.; Tsao, M.; Barnes, E.; Danjoux, C.; Sousa, P.; Zaki, P.; McKenzie, E.; Lam, H.; et al. Are we better a decade later in the accuracy of survival prediction by palliative radiation oncologists? Ann. Palliat. Med. 2019, 8, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Thio, Q.C.B.S.; Paulino Pereira, N.R.; Palthe, O.V.W.; Sciubba, D.M.; Bramer, J.A.M.; Schwab, J.H. Estimating survival and choosing treatment for spinal metastases: Do spine surgeons agree with each other? J. Orthop. 2021, 28, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Tokuhashi, Y.; Matsuzaki, H.; Toriyama, S.; Kawano, H.; Ohsaka, S. Scoring system for the preoperative evaluation of metastatic spine tumor prognosis. Spine 1990, 15, 1110–1113. [Google Scholar] [CrossRef] [PubMed]
- Tokuhashi, Y.; Matsuzaki, H.; Oda, H.; Oshima, M.; Ryu, J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine 2005, 30, 2186–2191. [Google Scholar] [CrossRef] [PubMed]
- Bauer, H.C.F.; Wedin, R. Survival after surgery for spinal and extremity metastases. Prognostication in 241 patients. Acta Orthop. Scand. 1995, 66, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Leithner, A.; Radl, R.; Gruber, G.; Hochegger, M.; Leithner, K.; Welkerling, H.; Rehak, P.; Windhager, R. Predictive value of seven preoperative prognostic scoring systems for spinal metastases. Eur. Spine J. 2008, 17, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Tomita, K.; Kawahara, N.; Kobayashi, T.; Yoshida, A.; Murakami, H.; Akamaru, T. Surgical strategy for spinal metastases. Spine 2001, 26, 298–306. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, Y.M.; Dijkstra, S.P.D.S.; Vonk, E.J.A.; Marijnen, C.A.M.; Leer, J.W.H.; Dutch Bone Metastasis Study Group. Prediction of survival in patients with metastases in the spinal column: Results based on a randomized trial of radiotherapy. Cancer 2005, 103, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, H.; Takahashi, M.; Wakai, K.; Sugiura, H.; Kataoka, T.; Nakanishi, K. Prognostic factors and a scoring system for patients with skeletal metastasis. J. Bone Jt. Surg. Br. 2005, 87, 698–703. [Google Scholar] [CrossRef]
- Katagiri, H.; Okada, R.; Takagi, T.; Takahashi, M.; Murata, H.; Harada, H.; Nishimura, T.; Asakura, H.; Ogawa, H. New prognostic factors and scoring system for patients with skeletal metastasis. Cancer Med. 2014, 3, 1359–1367. [Google Scholar] [CrossRef]
- Goodwin, C.R.; Schoenfeld, A.J.; Abu-Bonsrah, N.A.; Garzon-Muvdi, T.; Sankey, E.W.; Harris, M.B.; Sciubba, D.M. Reliability of a spinal metastasis prognostic score to model 1-year survival. Spine J. 2016, 16, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.D.; Chen, Y.-H.; Lam, T.C.; Leonard, D.; Balboni, T.A.; Schoenfeld, A.; Skamene, S.; Cagney, D.N.; Chi, J.H.; Cho, C.H.; et al. Assessing the utility of a prognostication model to predict 1-year mortality in patients undergoing radiation therapy for spinal metastases. Spine J. 2018, 18, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Ferrone, M.L.; Blucher, J.A.; Agaronnik, N.; Nguyen, L.; Tobert, D.G.; Balboni, T.A.; Schwab, J.H.; Shin, J.H.; Sciubba, D.M.; et al. Prospective comparison of the accuracy of the New England Spinal Metastasis Score (NESMS) to legacy scoring systems in prognosticating outcomes following treatment of spinal metastases. Spine J. 2022, 22, 39–48. [Google Scholar] [CrossRef]
- Paulino Pereira, N.R.; Janssen, S.J.; van Dijk, E.; Harris, M.B.; Hornicek, F.J.; Ferrone, M.L.; Schwab, J.H. Development of a prognostic survival algorithm for patients with metastatic spine disease. J. Bone Jt. Surg. Am. 2016, 98, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Paulino Pereira, N.R.; Mclaughlin, L.; Janssen, S.J.; van Dijk, C.N.; Bramer, J.A.M.; Laufer, I.; Bilsky, M.H.; Schwab, J.H. The SORG nomogram accurately predicts 3- and 12-months survival for operable spine metastatic disease: External validation. J. Surg. Oncol. 2017, 115, 1019–1027. [Google Scholar] [CrossRef]
- Ahmed, A.K.; Goodwin, C.R.; Heravi, A.; Kim, R.; Abu-Bonsrah, N.; Sankey, E.; Kerekes, D.; De la Garza Ramos, R.; Schwab, J.; Sciubba, D.M. Predicting survival for metastatic spine disease: A comparison of nine scoring systems. Spine J. 2018, 18, 1804–1814. [Google Scholar] [CrossRef]
- Smeijers, S.; Depreitere, B. Prognostic scores for survival as decisional support for surgery in spinal metastases: A performance assessment systematic review. Eur. Spine J. 2021, 30, 2800–2824. [Google Scholar] [CrossRef] [PubMed]
- Ghori, A.K.; Leonard, D.A.; Schoenfeld, A.J.; Saadat, E.; Scott, N.; Ferrone, M.L.; Pearson, A.M.; Harris, M.B. Modeling 1-year survival after surgery on the metastatic spine. Spine J. 2015, 15, 2345–2350. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Asch, S. Machine learning and prediction in medicine—Beyond the peak of inflated expectations. N. Engl. J. Med. 2017, 376, 2507–2509. [Google Scholar] [CrossRef]
- Hashimoto, D.; Rosman, G.; Rus, D.; Meireles, O. Artificial intelligence in surgery: Promises and perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Menden, M.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE 2013, 8, e61318. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Shin, J.H.; Schwab, J.H. Prognostic models for spinal metastatic disease: Evolution of methodologies, limitations, and future opportunities. Ann. Transl. Med. 2019, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T.; Shah, A.A.; Bono, C.M.; Oh, K.S.; Saylor, P.J.; Schoenfeld, A.J.; Shin, J.H.; Harris, M.B.; et al. Development of machine learning algorithms for prediction of 30-day mortality after surgery for spinal metastasis. Neurosurgery 2019, 85, E83–E91. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T.; Bono, C.M.; Ferrone, M.L.; Oh, K.S.; Saylor, P.J.; Schoenfeld, A.J.; Shin, J.H.; Harris, M.B.; et al. Predicting 90-day and 1-year mortality in spinal metastatic disease: Development and internal validation. Neurosurgery 2019, 85, E671–E681. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Ahmed, A.K.; Pennington, Z.; Chara, A.; Schilling, A.; Thio, Q.C.B.S.; Ogink, P.T.; Sciubba, D.M.; Schwab, J.H. External validation of the SORG 90-day and 1-year machine learning algorithms for survival in spinal metastatic disease. Spine J. 2020, 20, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Bongers, M.E.R.; Karhade, A.V.; Villavieja, J.; Groot, O.Q.; Bilsky, M.H.; Laufer, I.; Schwab, J.H. Does the SORG algorithm generalize to a contemporary cohort of patients with spinal metastases on external validation. Spine J. 2020, 20, 1646–1652. [Google Scholar] [CrossRef]
- Shah, A.A.; Karhade, A.V.; Park, H.Y.; Sheppard, W.L.; Macyszyn, L.J.; Everson, R.G.; Shamie, A.N.; Park, D.Y.; Schwab, J.H.; Hornicek, F.J. Updated external validation of the SORG machine learning algorithms for prediction of ninety-day and one-year mortality after surgery for spinal metastasis. Spine J. 2021, 21, 1679–1686. [Google Scholar] [CrossRef]
- Yang, J.; Chen, C.; Fourman, M.S.; Bongers, M.E.R.; Karhade, A.V.; Groot, O.Q.; Lin, W.; Yen, H.; Huang, P.; Yang, S.; et al. International external validation of the SORG machine learning algorithms for predicting 90-day and one-year survival of patients with spine metastases using a Taiwanese cohort. Spine J. 2021, 21, 1670–1678. [Google Scholar] [CrossRef]
- Zhong, G.; Cheng, S.; Zhou, M.; Xie, J.; Xu, Z.; Lai, H.; Yan, Y.; Xie, Z.; Zhou, J.; Xie, X.; et al. External validation of the SORG machine learning algorithms for predicting 90-day and 1-year survival of patients with lung cancer-derived spine metastases: A recent bi-center cohort from China. Spine J. 2023, 23, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Nater, A.; Tetreault, L.; Kopjar, B.; Arnold, P.; Dekutoski, M.; Finkelstein, J.; Fisher, C.; France, J.; Gokaslan, Z.; et al. Survival and clinical outcomes in surgically treated patients with metastatic epidural spinal cord compression: Results of the prospective multicenter AOSpine study. J. Clin. Oncol. 2016, 34, 268–276. [Google Scholar] [CrossRef]
- Karhade, A.V.; Fenn, B.; Groot, O.Q.; Shah, A.A.; Yen, H.; Bilsky, M.H.; Hu, M.; Laufer, I.; Park, D.Y.; Sciubba, D.M.; et al. Development and external validation of predictive algorithms for six-week mortality in spinal metastasis using 4,304 patients from five institutions. Spine J. 2022, 22, 2033–2041. [Google Scholar] [CrossRef]
- Alsoof, D.; McDonald, C.; Kuris, E.; Daniels, A. Machine learning for the orthopaedic surgeon: Uses and limitations. J. Bone Jt. Surg. Am. 2022, 104, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, Y.; Tang, X.; Liu, C.; Liu, R. Deep learning-based magnetic resonance imaging of the spine in the diagnosis and physiological evaluation of spinal metastases. J. Bone Oncol. 2023, 40, 100483. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, M.; Funauchi, Y.; Adachi, T.; Fujioka, T.; Otaka, N.; Kamiko, Y.; Okada, T.; Tateishi, U.; Okawa, A.; Yoshii, T.; et al. A new deep learning algorithm for detecting spinal metastases on computed tomography images. Spine 2024, 49, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.; Vergouwe, Y. Towards better clinical prediction models: Seven steps for development and an ABCD for validation. Eur. Heart J. 2014, 35, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.; Vickers, A.; Cook, N.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the performance of prediction models: A framework for some traditional and novel measures. Epidemiology 2010, 21, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.; Elkin, E. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef]
- Piovani, D.; Sokou, R.; Tsantes, A.G.; Vitello, A.S.; Bonovas, S. Optimizing clinical decision making with decision curve analysis: Insights for clinical investigators. Healthcare 2023, 11, 2244. [Google Scholar] [CrossRef]
- Katsos, K.; Johnson, S.E.; Ibrahim, S.; Bydon, M. Current applications of machine learning for spinal cord tumors. Life 2023, 13, 520. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Yamanouchi, K.; Fujita, N.; Funao, H.; Ebata, S. Revolutionizing spinal care: Current applications and future directions of artificial intelligence and machine learning. J. Clin. Med. 2023, 12, 4188. [Google Scholar] [CrossRef] [PubMed]
- Kuijten, R.H.; Zijlstra, H.; Groot, O.Q.; Schwab, J.H. Artificial intelligence and predictive modeling in spinal oncology: A narrative review. Int. J. Spine Surg. 2023, 17, S45–S56. [Google Scholar] [CrossRef] [PubMed]
- Gianfrancesco, M.; Tamang, S.; Yazdany, J.; Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 2018, 178, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
Study | Number | Treatment | Location | Features | Points | Model |
---|---|---|---|---|---|---|
Tokuhashi et al., 1990 [23] | 64 | Operative | Spine | Performance status, the number of bony lesions, the number of spinal lesions, visceral lesions, primary histology, and neurologic deficit | 12 | None |
Tokuhashi et al., 2005 [24] | 264 | Operative and non-operative | Spine | Performance status, the number of bony lesions, the number of spinal lesions, visceral lesions, primary histology, and neurologic deficit | 15 | None |
Bauer and Wedin, 1995 [25] | 241 | Operative | Spine and extraspinal region | The number of spinal lesions, visceral lesions, primary histology, and pathologic fracture | 5 | Multivariate logistic regression |
Leithner et al., 2008 [26] | 69 | Operative | Spine | The number of spinal lesions, visceral lesions, and primary histology | 4 | Multivariate logistic regression |
Tomita et al., 2001 [27] | 67 | Operative and non-operative | Spine | The number of bony lesions, visceral lesions, and primary histology | 10 | None |
van der Linden et al., 2005 [28] | 342 | Non-operative | Spine | Performance status, visceral lesions, and primary histology | 6 | Cox proportional hazards |
Katagiri et al., 2005 [29] | 350 | Operative and non-operative | Spine and extraspinal region | Performance status, the number of bony lesions, visceral lesions, primary histology, and prior systemic therapy | 8 | Cox proportional hazards |
Katagiri et al., 2014 [30] | 808 | Operative and non-operative | Spine and extraspinal region | Performance status, the number of bony lesions, visceral lesions, primary histology, prior systemic therapy, and laboratory data (C-reactive protein, lactate dehydrogenase, albumin, calcium, and bilirubin levels, and platelet count) | 10 | Cox proportional hazards |
Ghori et al., 2015 [38] | 307 | Operative | Spine | Modified Bauer score, performance status, and albumin level | 3 | Multivariate logistic regression |
Paulino Pereira et al., 2016 [30] | 649 | Operative | Spine | Performance status, the number of spinal lesions, visceral lesions, primary histology, prior systemic therapy, age, white blood cell count, and hemoglobin level | 12 | Cox proportional hazards |
Feature | Frequency | References |
---|---|---|
Primary tumor histology and the presence of visceral metastases | 8 | [23,24,25,26,27,28,29,30,34] |
Performance status | 6 | [23,24,28,29,30,34] |
The number of spinal metastases | 5 | [23,24,25,26,34] |
The number of bony metastases | 5 | [23,24,27,29,30] |
Prior systemic therapy | 3 | [29,30,34] |
Serum albumin level | 2 | [30,38] |
Neurologic deficit | 2 | [23,24] |
Pathologic fracture | 1 | [25] |
Age, WBC count, and hemoglobin level | 1 | [34] |
Abnormal C-reactive protein, lactate dehydrogenase, calcium, and bilirubin levels and platelet count | 1 | [30] |
Study | Number | Treatment | Features | Model |
---|---|---|---|---|
Paulino Pereira et al., 2016 [34] | 649 | Operative | Performance status, the number of spinal lesions, visceral lesions, primary histology, prior systemic therapy, age, WBC count, and hemoglobin level | Boosting regression |
Karhade et al., 2019 [45] | 1790 | Operative | Performance status, ASA class, albumin level, WBC count, hematocrit, alkaline phosphatase level, and spinal location | Bayes Point Machine |
Karhade et al., 2019 [46] | 732 | Operative | Performance status, visceral lesions, primary histology, BMI, creatinine level, alkaline phosphatase level, albumin level, platelet count, absolute lymphocyte count, hemoglobin level, INR, neutrophil–lymphocyte ratio, and platelet–lymphocyte ratio | Stochastic gradient boosting |
Karhade et al., 2022 [53] | 3001 | Operative and non-operative | Performance status, the number of spinal lesions, visceral lesions, brain lesions, primary histology, albumin level, absolute lymphocyte count, WBC count, and alkaline phosphatase level | Elastic net penalized logistic regression |
Feature | Frequency | References |
---|---|---|
Performance status | 4 | [34,45,46,52] |
Primary tumor histology and the presence of visceral metastases | 3 | [34,46,52] |
Serum albumin and alkaline phosphatase level | 3 | [45,46,53] |
WBC count | 3 | [34,45,53] |
The number of spinal metastases | 2 | [34,53] |
Absolute lymphocyte count | 2 | [46,53] |
Hemoglobin level | 2 | [34,46] |
Hematocrit, spinal region, and ASA class | 1 | [45] |
Creatinine level, platelet count, neutrophil–lymphocyte ratio, platelet–lymphocyte ratio, and body mass index | 1 | [46] |
Prior systemic therapy and age | 1 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, A.A.; Schwab, J.H. Predictive Modeling for Spinal Metastatic Disease. Diagnostics 2024, 14, 962. https://doi.org/10.3390/diagnostics14090962
Shah AA, Schwab JH. Predictive Modeling for Spinal Metastatic Disease. Diagnostics. 2024; 14(9):962. https://doi.org/10.3390/diagnostics14090962
Chicago/Turabian StyleShah, Akash A., and Joseph H. Schwab. 2024. "Predictive Modeling for Spinal Metastatic Disease" Diagnostics 14, no. 9: 962. https://doi.org/10.3390/diagnostics14090962
APA StyleShah, A. A., & Schwab, J. H. (2024). Predictive Modeling for Spinal Metastatic Disease. Diagnostics, 14(9), 962. https://doi.org/10.3390/diagnostics14090962