Loop-Mediated Isothermal Amplification and Lateral Flow Immunochromatography Technology for Rapid Diagnosis of Influenza A/B
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples and RNA Extraction
2.2. LAMP-LFA Primer Design
2.3. The Influenza A/B Multiplex LAMP-LFA
2.4. The Allplex™ Respiratory Panel 1 Assay
2.5. Limit of Detection (LOD) Tests of the Influenza A/B Multiplex LAMP-LFA
3. Results
3.1. Optimization of the Influenza A/B Multiplex LAMP-LFA Primer Sets
3.2. Limit of Detection of the Influenza A/B Multiplex LAMP-LFA
3.3. Comparison of Performance between the Influenza A/B Multiplex LAMP-LFA and Commercial Allplex™ Respiratory Panel 1
3.4. Cross-Reactivity Test of the Influenza A/B Multiplex LAMP-LFA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Javanian, M.; Barary, M.; Ghebrehewet, S.; Koppolu, V.; Vasigala, V.; Ebrahimpour, S. A Brief Review of Influenza Virus Infection. J. Med. Virol. 2021, 93, 4638–4646. [Google Scholar] [CrossRef]
- Gostin, L.O. Pandemic Influenza: Public Health Preparedness for the Next Global Health Emergency. J. Law Med. Ethics 2004, 32, 565–573. [Google Scholar] [CrossRef]
- Chaves, S.S.; Nealon, J.; Burkart, K.G.; Modin, D.; Biering-Sørensen, T.; Ortiz, J.R.; Vilchis-Tella, V.M.; Wallace, L.E.; Roth, G.; Mahe, C.; et al. Global, Regional and National Estimates of Influenza-Attributable Ischemic Heart Disease Mortality. eClinicalMedicine 2023, 55, 101740. [Google Scholar] [CrossRef]
- Petrova, V.N.; Russell, C.A. The Evolution of Seasonal Influenza Viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef]
- Morse, S.S. Public Health Surveillance and Infectious Disease Detection. Biosecur. Bioterror. 2012, 10, 6–16. [Google Scholar] [CrossRef]
- Vemula, S.; Zhao, J.; Liu, J.; Wang, X.; Biswas, S.; Hewlett, I. Current Approaches for Diagnosis of Influenza Virus Infections in Humans. Viruses 2016, 8, 96. [Google Scholar] [CrossRef]
- Merckx, J.; Wali, R.; Schiller, I.; Caya, C.; Gore, G.C.; Chartrand, C.; Dendukuri, N.; Papenburg, J. Diagnostic Accuracy of Novel and Traditional Rapid Tests for Influenza Infection Compared with Reverse Transcriptase Polymerase Chain Reaction. Ann. Intern. Med. 2017, 167, 394. [Google Scholar] [CrossRef]
- Alimardani, V.; Abolmaali, S.S.; Tamaddon, A.M. Recent Advances on Nanotechnology-Based Strategies for Prevention, Diagnosis, and Treatment of Coronavirus Infections. J. Nanomater. 2021, 2021, 9495126. [Google Scholar] [CrossRef]
- Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-Care Diagnostics for Global Health. Annu. Rev. Biomed. Eng. 2008, 10, 107–144. [Google Scholar] [CrossRef]
- Islam, M.M.; Koirala, D. Toward a Next-Generation Diagnostic Tool: A Review on Emerging Isothermal Nucleic Acid Amplification Techniques for the Detection of SARS-CoV-2 and Other Infectious Viruses. Anal. Chim. Acta 2022, 1209, 339338. [Google Scholar] [CrossRef]
- Wang, Y.; Fei, Y.; Yang, T.; Luo, Z.; Xu, Y.; Su, B.; Lin, X. Nanotechnology for Ultrafast Nucleic Acid Amplification. Nano Today 2023, 48, 101749. [Google Scholar] [CrossRef]
- Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-Mediated Isothermal Amplification (LAMP)—Review and Classification of Methods for Sequence-Specific Detection. Anal. Methods 2020, 12, 717–746. [Google Scholar] [CrossRef]
- Parida, M.; Sannarangaiah, S.; Dash, P.K.; Rao, P.V.L.; Morita, K. Loop Mediated Isothermal Amplification (LAMP): A New Generation of Innovative Gene Amplification Technique; Perspectives in Clinical Diagnosis of Infectious Diseases. Rev. Med. Virol. 2008, 18, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Pumford, E.A.; Lu, J.; Spaczai, I.; Prasetyo, M.E.; Zheng, E.M.; Zhang, H.; Kamei, D.T. Developments in Integrating Nucleic Acid Isothermal Amplification and Detection Systems for Point-of-Care Diagnostics. Biosens. Bioelectron. 2020, 170, 112674. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Majidi, M.R.; Khaki, P.; Jahanban-Esfahlan, A.; de la Guardia, M.; Mokhtarzadeh, A. State of the Art: Lateral Flow Assays toward the Point-of-care Foodborne Pathogenic Bacteria Detection in Food Samples. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1868–1912. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Majidi, M.R.; Fakhraei, M.; Jahanban-Esfahlan, A.; Hejazi, M.; Oroojalian, F.; Baradaran, B.; Tohidast, M.; de la Guardia, M.; Mokhtarzadeh, A. Lateral Flow Assays (LFA) for Detection of Pathogenic Bacteria: A Small Point-of-Care Platform for Diagnosis of Human Infectious Diseases. Talanta 2022, 243, 123330. [Google Scholar] [CrossRef] [PubMed]
- Dey, M.K.; Iftesum, M.; Devireddy, R.; Gartia, M.R. New Technologies and Reagents in Lateral Flow Assay (LFA) Designs for Enhancing Accuracy and Sensitivity. Anal. Methods 2023, 15, 4351–4376. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.; Yoon, D.S.; Park, J.S.; Woo, H.; Lee, D.; Cho, S.-Y.; Park, C.; Yoo, Y.K.; Lee, K.-B.; et al. Sample-to-Answer Platform for the Clinical Evaluation of COVID-19 Using a Deep Learning-Assisted Smartphone-Based Assay. Nat. Commun. 2023, 14, 2361. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.S.; Lim, D.H.; Nam, J.; Mihn, D.-C.; Sung, H.W.; Lim, C.S.; Kim, J. Development of a Multiplex Isothermal Amplification Molecular Diagnosis Method for On-Site Diagnosis of Influenza. PLoS ONE 2020, 15, e0238615. [Google Scholar] [CrossRef]
- Jee, H.; Park, S.; Lee, J.; Lim, C.S.; Jang, W.S. Comparative Clinical Evaluation of a Novel FluA/FluB/SARS-CoV-2 Multiplex LAMP and Commercial FluA/FluB/SARS-CoV-2/RSV RT-QPCR Assays. Diagnostics 2023, 13, 1432. [Google Scholar] [CrossRef]
- El Ramahi, R.; Freifeld, A. Epidemiology, Diagnosis, Treatment, and Prevention of Influenza Infection in Oncology Patients. J. Oncol. Pract. 2019, 15, 177–184. [Google Scholar] [CrossRef]
- Grätz, C.; Bui, M.L.U.; Thaqi, G.; Kirchner, B.; Loewe, R.P.; Pfaffl, M.W. Obtaining Reliable RT-QPCR Results in Molecular Diagnostics—MIQE Goals and Pitfalls for Transcriptional Biomarker Discovery. Life 2022, 12, 386. [Google Scholar] [CrossRef]
- Klein, S.; Müller, T.G.; Khalid, D.; Sonntag-Buck, V.; Heuser, A.-M.; Glass, B.; Meurer, M.; Morales, I.; Schillak, A.; Freistaedter, A.; et al. SARS-CoV-2 RNA Extraction Using Magnetic Beads for Rapid Large-Scale Testing by RT-QPCR and RT-LAMP. Viruses 2020, 12, 863. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Tansukawat, N.D.; Gonzalez-Macia, L.; Ates, H.C.; Dincer, C.; Güder, F.; Tasoglu, S.; Yetisen, A.K. Low-Cost Optical Assays for Point-of-Care Diagnosis in Resource-Limited Settings. ACS Sens. 2021, 6, 2108–2124. [Google Scholar] [CrossRef]
- Ahn, S.J.; Baek, Y.H.; Lloren, K.K.S.; Choi, W.-S.; Jeong, J.H.; Antigua, K.J.C.; Kwon, H.; Park, S.-J.; Kim, E.-H.; Kim, Y.; et al. Rapid and Simple Colorimetric Detection of Multiple Influenza Viruses Infecting Humans Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform. BMC Infect. Dis. 2019, 19, 676. [Google Scholar] [CrossRef]
- Mahony, J.; Chong, S.; Bulir, D.; Ruyter, A.; Mwawasi, K.; Waltho, D. Multiplex Loop-Mediated Isothermal Amplification (M-LAMP) Assay for the Detection of Influenza A/H1, A/H3 and Influenza B Can Provide a Specimen-to-Result Diagnosis in 40min with Single Genome Copy Sensitivity. J. Clin. Virol. 2013, 58, 127–131. [Google Scholar] [CrossRef]
- Liang, L.; Zhu, M.; He, R.; Shi, D.; Luo, R.; Ji, J.; Cheng, L.; Lu, X.; Lu, W.; Liu, F.; et al. Development of a Multi-recombinase Polymerase Amplification Assay for Rapid Identification of COVID-19, Influenza A and B. J. Med. Virol. 2023, 95, e28139. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Ameen, F.; Sealy, J.E.; Sadeyen, J.-R.; Bhat, S.; Li, Y.; Iqbal, M. Application of HDR-CRISPR/Cas9 and Erythrocyte Binding for Rapid Generation of Recombinant Turkey Herpesvirus-Vectored Avian Influenza Virus Vaccines. Vaccines 2019, 7, 192. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Ahmad, F.J.; Kar, S. Recent Advances in Loop-Mediated Isothermal Amplification (LAMP) for Rapid and Efficient Detection of Pathogens. Curr. Res. Microb. Sci. 2022, 3, 100120. [Google Scholar] [CrossRef]
- da Silva, S.J.R.; Pardee, K.; Pena, L. Loop-Mediated Isothermal Amplification (LAMP) for the Diagnosis of Zika Virus: A Review. Viruses 2019, 12, 19. [Google Scholar] [CrossRef]
- Talap, J.; Shen, M.; Yu, L.; Zeng, S.; Cai, S. RT-LAMP Assay Combining Multi-Fluorescent Probes for SARS-CoV-2 RNA Detection and Variant Differentiation. Talanta 2022, 248, 123644. [Google Scholar] [CrossRef]
- Shirato, K.; Semba, S.; El-Kafrawy, S.A.; Hassan, A.M.; Tolah, A.M.; Takayama, I.; Kageyama, T.; Notomi, T.; Kamitani, W.; Matsuyama, S.; et al. Development of Fluorescent Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Using Quenching Probes for the Detection of the Middle East Respiratory Syndrome Coronavirus. J. Virol. Methods 2018, 258, 41–48. [Google Scholar] [CrossRef]
- Parsons, L.M.; Somoskövi, Á.; Gutierrez, C.; Lee, E.; Paramasivan, C.N.; Abimiku, A.; Spector, S.; Roscigno, G.; Nkengasong, J. Laboratory Diagnosis of Tuberculosis in Resource-Poor Countries: Challenges and Opportunities. Clin. Microbiol. Rev. 2011, 24, 314–350. [Google Scholar] [CrossRef]
- Jang, M.; Kim, S.; Song, J.; Kim, S. Rapid and Simple Detection of Influenza Virus via Isothermal Amplification Lateral Flow Assay. Anal. Bioanal. Chem. 2022, 414, 4685–4696. [Google Scholar] [CrossRef]
- Ge, Y.; Wu, B.; Qi, X.; Zhao, K.; Guo, X.; Zhu, Y.; Qi, Y.; Shi, Z.; Zhou, M.; Wang, H.; et al. Rapid and Sensitive Detection of Novel Avian-Origin Influenza A (H7N9) Virus by Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Lateral-Flow Device. PLoS ONE 2013, 8, e69941. [Google Scholar] [CrossRef]
- Park, B.J.; Park, M.S.; Lee, J.M.; Song, Y.J. Specific Detection of Influenza A and B Viruses by CRISPR-Cas12a-Based Assay. Biosensors 2021, 11, 88. [Google Scholar] [CrossRef]
- Akalın, P.; Yazgan-Karataş, A. Development of a Nucleic Acid-Based Lateral Flow Device as a Reliable Diagnostic Tool for Respiratory Viral Infections. MethodsX 2023, 11, 102372. [Google Scholar] [CrossRef]
- Wong, Y.-P.; Othman, S.; Lau, Y.-L.; Radu, S.; Chee, H.-Y. Loop-Mediated Isothermal Amplification (LAMP): A Versatile Technique for Detection of Micro-Organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef]
- Wang, D.-G.; Brewster, J.; Paul, M.; Tomasula, P. Two Methods for Increased Specificity and Sensitivity in Loop-Mediated Isothermal Amplification. Molecules 2015, 20, 6048–6059. [Google Scholar] [CrossRef]
- Courtney, S.J.; Stromberg, Z.R.; Kubicek-Sutherland, J.Z. Nucleic Acid-Based Sensing Techniques for Diagnostics and Surveillance of Influenza. Biosensors 2021, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Jee, H.; Choi, M.; Park, I.S.; Lee, J.; Jang, W.S.; Lim, C.S. Simple Point-of-Care Nucleic Acid Amplification Test for Rapid SARS-CoV-2 Infection Diagnosis. Diagnostics 2023, 13, 3001. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, T.; Wang, H.; Chen, W.; Huang, X.; Liang, J.; Qiu, L.; Han, D.; Tan, W. Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Anal. Chem. 2021, 93, 3325–3330. [Google Scholar] [CrossRef]
- Lu, X.; Lin, H.; Feng, X.; Lui, G.C.Y.; Hsing, I.-M. Disposable and Low-Cost Pen-like Sensor Incorporating Nucleic-Acid Amplification Based Lateral-Flow Assay for at-Home Tests of Communicable Pathogens. Biosens. Bioelectron. 2022, 12, 100248. [Google Scholar] [CrossRef]
Target | Oligo | Sequence (5’-3’) | µM |
---|---|---|---|
Influenza A | Flu A_F3 | GAC TKG AAR RTG TCT TTG C | 2 |
Flu A_B3 | TGT TRT TYG GGT CYC CAT T | 2 | |
Flu A_FIP-BIO | BIO-TTA GTC AGA GGT GAC ARR ATT GCA GAT CTT GAG GCT CTC | 32 | |
Flu A_BIP-FAM | FAM-TTG TKT TCA CGC TCA CCG TGT TTG GAC AAA GCG TCT ACG | 32 | |
Flu A_FLP | GTC TTG TCT TTA GCC A | 8 | |
Influenza B | Flu B_F3 | GAG CTG CCT ATG AAG ACC | 2 |
Flu B_B3 | CGT CTC CAC CTA CTT CGT | 2 | |
Flu B_FIP-BIO | BIO-GAA CAT GGA AAC CCT TGC ATT TTA AGT TTT GTC TGC ATT AAC AGG C | 32 | |
Flu B_BIP | GAA CAG RTR GAA GGA ATG GGR GCG ATC TGG TCA TTG GAG CC | 32 | |
Flu B_FLP-DIG | DIG-TGC TGA TCT AGG CTT GAA TTC TGT | 10 | |
Flu B_BLP | CGA GCT CTG ATG TCC ATC AAG CTC C | 5 |
Virus | TCID50/mL | Allplex™ Respiratory Panel 1 | Influenza A/B Multiplex LAMP-LFA | ||||
---|---|---|---|---|---|---|---|
Flu A | Flu B | RSV A/B | IC | Flu A | Flu B | ||
Cycle Threshold Values (Ct Values) | P/N | P/N | |||||
Influenza A H1N1 | 2 × 106 | 19.76 | N/A | N/A | 26.98 | P | N |
2 × 105 | 24.19 | N/A | N/A | 26.12 | P | N | |
2 × 104 | 27.92 | N/A | N/A | 25.92 | P | N | |
2 × 103 | 32.53 | N/A | N/A | 25.32 | P | N | |
2 × 102 | 36.66 | N/A | N/A | 25.65 | P | N | |
2 × 101 | 39.83 | N/A | N/A | 25.48 | N | N | |
2 × 100 | N/A | N/A | N/A | 25.35 | N | N | |
Influenza B | 7 × 106 | N/A | 24.26 | N/A | 25.65 | N | P |
7 × 105 | N/A | 27.40 | N/A | 25.65 | N | P | |
7 × 104 | N/A | 31.59 | N/A | 25.68 | N | P | |
7 × 103 | N/A | 36.45 | N/A | 25.44 | N | P | |
7 × 102 | N/A | 41.37 | N/A | 25.45 | N | N | |
7 × 101 | N/A | N/A | N/A | 25.48 | N | N | |
7 × 100 | N/A | N/A | N/A | 25.41 | N | N |
Clinical Samples | Assay | P/N | Sensitivity (95% CI) | Specificity (95% CI) |
---|---|---|---|---|
Influenza A (n = 85) | Allplex™ Respiratory Panel 1 | 84/1 | 98.82 (93.63–99.79) | 100 (95.68–100) |
Influenza A/B multiplex LAMP-LFA | 80/5 | 94.12 (86.96–97.46) | 100 (95.68–100) | |
Influenza B (n = 58) | Allplex™ Respiratory Panel 1 | 58/0 | 100 (93.79–100) | 100 (93.79–100) |
Influenza A/B multiplex LAMP-LFA | 56/2 | 96.55 (88.27–99.05) | 98.28 (90.77–99.96) | |
Normal NP (n = 100) | Allplex™ Respiratory Panel 1 | 0/100 | - | 100 (96.3–100) |
Influenza A/B multiplex LAMP-LFA | 2/98 | - | 98 (93–99.45) |
Tested Clinical Samples | Influenza A/B Multiplex LAMP-LFA (Positive No./Test No.) | |
---|---|---|
Influenza A | Influenza B | |
SARS CoV 229E | 0/3 | 0/3 |
SARS CoV NL63 | 0/3 | 0/3 |
SARS CoV OC43 | 0/3 | 0/3 |
SARS CoV-2 | 0/3 | 0/3 |
HEV | 0/3 | 0/3 |
AdV | 0/3 | 0/3 |
PIV1 | 0/3 | 0/3 |
PIV2 | 0/3 | 0/3 |
PIV3 | 0/3 | 0/3 |
PIV4 | 0/3 | 0/3 |
MPV | 0/3 | 0/3 |
HboV | 0/3 | 0/3 |
HRV | 0/3 | 0/3 |
RSV A | 0/3 | 0/3 |
RSV B | 0/3 | 0/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, W.S.; Lee, J.M.; Lee, E.; Park, S.; Lim, C.S. Loop-Mediated Isothermal Amplification and Lateral Flow Immunochromatography Technology for Rapid Diagnosis of Influenza A/B. Diagnostics 2024, 14, 967. https://doi.org/10.3390/diagnostics14090967
Jang WS, Lee JM, Lee E, Park S, Lim CS. Loop-Mediated Isothermal Amplification and Lateral Flow Immunochromatography Technology for Rapid Diagnosis of Influenza A/B. Diagnostics. 2024; 14(9):967. https://doi.org/10.3390/diagnostics14090967
Chicago/Turabian StyleJang, Woong Sik, Jun Min Lee, Eunji Lee, Seoyeon Park, and Chae Seung Lim. 2024. "Loop-Mediated Isothermal Amplification and Lateral Flow Immunochromatography Technology for Rapid Diagnosis of Influenza A/B" Diagnostics 14, no. 9: 967. https://doi.org/10.3390/diagnostics14090967
APA StyleJang, W. S., Lee, J. M., Lee, E., Park, S., & Lim, C. S. (2024). Loop-Mediated Isothermal Amplification and Lateral Flow Immunochromatography Technology for Rapid Diagnosis of Influenza A/B. Diagnostics, 14(9), 967. https://doi.org/10.3390/diagnostics14090967