
Academic Editors: Marco Scarci and

Savvas Lampridis

Received: 11 November 2024

Revised: 16 December 2024

Accepted: 20 December 2024

Published: 7 January 2025

Citation: Andrijanova, A.;

Bugovecka, L.; Isajevs, S.; Erts, D.;

Malinovskis, U.; Liepins, A. Machine

Learning for Lung Cancer Subtype

Classification: Combining Clinical,

Histopathological, and Biophysical

Features. Diagnostics 2025, 15, 127.

https://doi.org/10.3390/

diagnostics15020127

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Machine Learning for Lung Cancer Subtype Classification:
Combining Clinical, Histopathological, and Biophysical Features
Aiga Andrijanova 1,∗ , Lasma Bugovecka 2 , Sergejs Isajevs 3 , Donats Erts 2 , Uldis Malinovskis 2

and Andis Liepins 1

1 SIA “APPLY”, Ieriku Street 5, LV-1084 Riga, Latvia; andis.liepins@applyit.lv
2 Institute of Chemical Physics, Faculty of Science and Technology, University of Latvia, Jelgavas Street 1,

LV-1004 Riga, Latvia; lasma.bugovecka@lu.lv (L.B.); donats.erts@lu.lv (D.E.); uldis.malinovskis@lu.lv (U.M.)
3 Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia;

sergejs.isajevs@lu.lv
* Correspondence: aiga.andrijanova@applyit.lv; Tel.: +371-29368339

Abstract: Background/Objectives: Despite advances in diagnostic techniques, accurate
classification of lung cancer subtypes remains crucial for treatment planning. Traditional
methods like genomic studies face limitations such as high cost and complexity. This
study investigates whether integrating atomic force microscopy (AFM) measurements
with conventional clinical and histopathological data can improve lung cancer subtype
classification. Methods: We developed and analyzed a novel dataset combining clinical,
histopathological, and AFM-derived biophysical characteristics from 37 lung cancer pa-
tients. Various machine learning techniques were evaluated, with a focus on Bayesian
Networks due to their ability to handle complex data with missing values. Leave-One-Out
Cross-Validation was employed to assess model performance. Results: The integration
of biophysical features improved classification accuracy from 86.49% to 89.19% using a
data-driven Bayesian Network model, though this improvement was not statistically sig-
nificant (p = 1.0). Four key features were identified as highly predictive: sex, vascular
invasion, perineural invasion, and ALK mutation. A simplified model using only these fea-
tures achieved identical performance with significantly reduced complexity (BIC 51.931 vs.
268.586). Conclusions: While AFM-derived measurements showed promise for enhancing
lung cancer subtype classification, larger datasets are needed to fully validate their impact.
Our findings demonstrate the feasibility of incorporating biophysical measurements into
cancer classification frameworks and identify the most predictive features for accurate
diagnosis. Further research with expanded datasets is needed to validate these findings.

Keywords: lung cancer; cancer subtype classification; atomic force microscopy; biophysical
properties; machine learning; Bayesian networks; personalized medicine; cancer biomark-
ers; cell mechanics; non-small cell lung cancer

1. Introduction
Lung cancer remains one of the most common cancers worldwide with high mortality

rates, posing significant challenges to public health and medical research. Lung cancer is
the most commonly diagnosed cancer worldwide (12.4% of the total cases). According to
GLOBOCAN in 2022 there were 2480301 new cases of lung cancer, and 1817172 mortality
deaths cases [1]. Accurate classification of lung cancer subtypes is crucial for effective
patient follow-up and treatment planning. While genomic studies have provided valuable
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insights into lung cancer biology, they often face limitations such as high cost, complex-
ity in data interpretation, and challenges in clinical implementation. Histopathological
examinations remain the gold standard for lung cancer diagnosis. However, the proper
classification of poorly differentiated lung cancer could be challenging, regardless of im-
munohistochemical and genetical testing.

Several studies have explored machine learning approaches for lung cancer subtype
classification, utilizing various data types and methodologies. Liu et al. analyzed a dataset
of 349 patients using 1029 CT radiomics features, achieving 86% accuracy with Support
Vector Machines (SVM) and feature selection [2]. Sha et al. combined radiomics features
from Positron Emission Tomography (PET) images with clinical features in a dataset of
100 patients, achieving an AUC of 0.781 when integrating both radiomics and clinical
features [3]. Shen et al. took a more comprehensive approach, incorporating clinical data,
PET Standardized Uptake Values, and 385 PET/CT radiomics features from 250 patients,
with SVM achieving an accuracy of 86.23% [4].

Recent advances in biophysical measurement techniques have enabled the quantifi-
cation of mechanical properties of individual cancer cells with high precision [5]. Atomic
Force Microscopy (AFM) has emerged as a powerful tool in this field, offering the ability to
measure cellular elasticity, surface roughness, and dimensions at the nanoscale [6]. These
biophysical properties have shown promise as potential biomarkers for cancer detection
and classification [7,8]. Cross et al. and Plodinec et al. demonstrated that cancer cells
generally exhibit lower stiffness compared to normal cells, though their studies focused
primarily on breast cancer.

More recent studies have continued to explore various approaches to lung cancer
classification. Wang et al. employed a combination of clinical, laboratory, and CT radiomics
features in a study of 138 patients, achieving an AUC of 0.995 with random forest models [9].
Zhao et al. integrated clinical, laboratory, and PET/CT radiomics features from 120 patients,
with their SVM model achieving 80% accuracy in distinguishing between lung cancer
subtypes [10].

To provide context for our study’s methodology and results, Tables 1 and 2 present a com-
prehensive overview of recent machine learning approaches to NSCLC subtype classification.

Table 1. Overview of recent NSCLC classification studies—Part 1.

Study Dataset Size Features Preprocessing

Liu et al. (2019) [2] 349 patients 1029 CT radiomics features ℓ2,1-norm minimization

Sha et al. (2019) [3] 100 patients 857 PET radiomics features Multi-step: variance filtering, LASSO

Shen et al. (2021) [4] 250 patients Clinical data, 385 PET/CT radiomics Boruta algorithm

Wang et al. (2022) [9] 138 patients Clinical, laboratory, CT radiomics LASSO with CV

Zhao et al. (2022) [10] 120 patients 95 mixed features Boruta algorithm

Current Study 37 patients Clinical, histopathological, AFM RFE, percentile discretization

Our study differs from previous work in several key aspects:

1. Integration of AFM measurements: We introduce novel biophysical features derived
from atomic force microscopy, providing direct mechanical characterization of can-
cer cells.

2. Probabilistic approach: While previous studies primarily used deterministic classifiers,
we employ Bayesian Networks to handle uncertainty and missing data inherent in
clinical settings.
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3. Feature interpretability: Our approach identifies a minimal set of highly predictive
features (sex, vascular invasion, perineural invasion, and ALK mutation) while main-
taining classification performance.

4. Comprehensive validation: We validate our methods using both the novel LCPP
dataset and the well-established WDBC dataset, demonstrating the robustness of
our approach.

Table 2. Overview of recent NSCLC classification studies—Part 2.

Study ML Method Results

Liu et al. [2] SVM Acc: 86.00%

Sha et al. [3] Logistic Regression AUC: 0.781

Shen et al. [4] SVM-RBF Acc: 86.23%, AUC: 0.899

Wang et al. [9] Random Forest AUC: 0.995

Zhao et al. [10] SVM SVM: Acc 80.00%, AUC: 0.876

Current Study Bayesian Networks Acc: 89.19%, AUC: 0.847

While these studies demonstrate the potential of machine learning in lung cancer
classification, the integration of AFM-derived biophysical measurements with conven-
tional clinical and histopathological data remains largely unexplored. This gap presents an
opportunity for novel research combining these diverse data types. Furthermore, while
most previous studies have used traditional machine learning methods, the potential of
probabilistic approaches like Bayesian Networks, which can handle complex, multidimen-
sional data while providing interpretable results, has not been fully investigated in this
context [11].

This study aims to investigate whether the integration of AFM-derived biophysical
measurements with conventional clinical and histopathological data can enhance the
accuracy of lung cancer subtype classification using machine learning techniques. We
utilize a novel dataset, the Lung Cancer Physical Properties (LCPP) dataset, which combines
the clinical, histopathological, and biophysical characteristics of 37 lung cancer patients.
Our research focuses on distinguishing between two major subtypes of non-small cell lung
cancer: adenocarcinoma (ADC) and squamous cell carcinoma (SCC) [12].

We employ various machine learning techniques, with a particular focus on Bayesian
Networks due to their ability to handle complex, multidimensional data and their inter-
pretability in clinical contexts. Our study not only explores the potential of biophysical
features in improving classification accuracy but also investigates the relationships between
these novel measurements and conventional clinical indicators.

The findings of this study contribute to the growing field of biophysical oncology
by demonstrating the feasibility of incorporating AFM measurements into lung cancer
subtype classification. By combining conventional clinical data with novel biophysical
measurements and employing advanced machine learning techniques, we aim to contribute
to the improvement of lung cancer subtype classification and explore the potential of cell
mechanical properties in enhancing cancer diagnostics [13].

The primary objectives of this study were:

1. To evaluate whether integrating AFM-derived biophysical measurements with con-
ventional clinical and histopathological data can improve lung cancer subtype classifi-
cation accuracy

2. To identify the most predictive features for lung cancer subtype classification through
systematic feature selection
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3. To assess the effectiveness of probabilistic models, particularly Bayesian Networks, in
handling complex, multidimensional medical data with missing values

4. To develop an interpretable classification framework suitable for clinical decision support

These objectives address current gaps in lung cancer diagnostics by:

• Exploring novel biophysical biomarkers that could complement existing diagnos-
tic methods

• Developing methods to handle the practical challenges of incomplete clinical data
• Creating interpretable models that can support clinical decision-making
• Identifying minimal sets of predictive features to optimize diagnostic efficiency

2. Materials and Methods
The methodology was specifically designed to address each research objective:

• To evaluate biophysical measurements’ impact:

– Systematic comparison of models with and without AFM features
– Statistical significance testing of performance differences
– Analysis of feature interactions through Bayesian Networks

• To identify predictive features:

– Implementation of multiple feature selection methods
– Cross-validation to ensure robustness
– Comparison with domain expert knowledge

• To assess probabilistic models:

– Comparison of learned vs. expert-defined structures
– Evaluation using multiple performance metrics
– Analysis of model uncertainty and confidence

• To ensure clinical interpretability:

– Focus on transparent model architectures
– Validation against clinical knowledge
– Feature importance analysis

2.1. Dataset Description

The Lung Cancer Physical Properties (LCPP) dataset comprises clinical, histopatho-
logical, and biophysical characteristics of 37 lung cancer patients. The dataset encompasses
23 features for each patient: 3 demographic and clinical features, 10 histopathological
features, 4 genetic biomarkers, and 6 biophysical measurements.

The dataset includes patients with two NSCLC subtypes—squamous cell carcinoma
(SCC) and adenocarcinoma (ADC), which together account for approximately 85% of
all lung cancer cases. The tumour classification and grading was performed according
to new WHO Classification of Thoracic tumours [14]. Cancer staging follows the TNM
classification system, with stages IA1, IA2, IA3, IB, IIA, and IIB classified as early-stage
cancers, and stages IIIA, IIIB, and IIIC as late-stage cancers.

The histopathological slides stained with hematozylins eosin and immunohistochemical
were analyzed. The tumour grade, lymphovascular invasion (LVI), perineural invasion (Pn)
was assessed. Immunohistochemically PD-L1, ALK and ROS-1 expression was assessed.

PD-L1 IHC 22C3 pharmDx (Agilent) test was used to evaluate PD-L1 expression,
which is a qualitative immunohistochemical assay using monoclonal Mouse Anti-PD-L1,
Clone 22C3 for use in the detection of PD-L1 protein in formalin-fixed, paraffin-embedded
(FFPE) non-small cell lung cancer (NSCLC). PD-L1 protein expression was determined by
using Tumor Proportion Score (TPS), which is the percentage of viable tumor cells showing
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partial or complete membrane staining at any intensity. The specimen was defined as
positive if TPS ≥ 1.0%.

For ROS-1 assessment, VENTANA ROS1 (clone SP384) rabbit monoclonal antibody
was used. ROS1 immunohistochemistry staining results were interpreted by using four
previously described criteria: (1) an H-score with a threshold for ROS1 positivity defined
as at least 100; (2) an H-score cutoff of at least 150; (3) an intensity criterion with the cutoff
of positivity defined as 2+ or higher in any tumor cells; (4) a positive status based on an
intensity of 2+ or higher in at least 30% of the total tumor cells [15].

For ALK assessment, VENTANA ALK (D5F3) CDx Assay was used. The tumour was
defined ALK positive if immunohistochemical strong granular cytoplasmic staining in
tumor cells (any percentage of positive tumor cells) was observed.

NTRK expression was assessed by VENTANA pan-TRK (clone EPR17341) immunohis-
tochemical assay. Pan-TRK expression was considered positive if the following subcellular
staining patterns of any intensity were observed in ≥1% of tumor cells. Cytoplasmic and
nuclear reactivity was considered positive for expression. Punctate staining alone was
considered non-specific or equivocal.

For EGFR testing, the Biocartis IdyllaTM EGFR Mutation Test was performed on the
Biocartis IdyllaTM system.

Biophysical measurements have varying levels of completeness:

• 51.4% of patients have tumor cell height and width measurements
• 40.5% have elasticity measurements
• 64.9% have surface roughness measurements

Only 27.0% of patients have a complete set of biophysical measurements. Analysis of
missing data patterns indicates that data is not Missing Completely at Random (MCAR), as
significant relationships were found between the missingness of certain variables and the
values of other variables in the dataset.

The missingness in elasticity measurements was found to be significantly related to
lymphatic vessel invasion, vascular invasion, and cancer stage. Additionally, the missing-
ness in surface roughness measurements was significantly associated with NTRK mutation
status and cell dimension measurements. These relationships suggest that the data is either
Missing at Random (MAR) or Missing Not at Random (MNAR) (Table 3).

Table 3. Demographic, clinical, histopathological, and genetic characteristics in the dataset.

Feature Name Data Type Encoding

Sex categorical 1—female
2—male

Age, years continuous numerical
Pack years smoked continuous numerical
Cancer type categorical 1—lung SCC

2—lung ADC
Cancer stage categorical 0—early stage

1—late stage

Cancer Grade categorical
1—well differentiated
2—moderately differentiated
3—poorly differentiated

Cancer size, cm continuous numerical
PD-L1, % continuous numerical
LVI categorical 0—no lymphatic vessel invasion

1—lymphatic vessel invasion present
VI categorical 0—no vascular invasion

1—vascular invasion present
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Table 3. Cont.

Feature Name Data Type Encoding

PNI categorical 0—no perineural invasion
1—perineural invasion present

PII categorical
0—no peritumoral inflammation
1—mild inflammation
2—moderate inflammation
3—severe inflammation

FOXP3, cell count/mm2 continuous numerical

EGFR gene mutation (NM_005228.3) categorical 0—wild type
1—mutant

ROS1 expression categorical 0—negative ROS-1 expression
1—positive ROS-1 expression

ALK expression categorical 0—negative for ALK
1—positive for ALK

Pan-TRK expression categorical 0—negative pan-TRK expression
1—positive pan-TRK expression

2.2. Data Collection

Patient recruitment and clinical data collection were conducted by the Department
of Pathology, Faculty of Medicine and Life Sciences at the University of Latvia. The
study protocol was approved by the Faculty of Medicine and Life Sciences, University of
Latvia Ethics Committee (Number. 19-25/164). The study was conducted according to the
declaration of the Helsinki and Oviedo conventions. All patients signed informed consent
to participate in the study.

Lung biopsy section samples were examined using light microscopy analysis according
to the current World Health Organization Classification of Thoracic Tumors and College
of American Pathologists (CAP) guidelines. PD-L1, ALK, ROS, and NTRK biomarkers
expression was assessed by immunohistochemistry. The EGFR gene mutation was assessed
by polymerase chain reaction.

2.3. AFM Instrumentation

AFM measurements were performed using:

• Atomic force microscope MFP-3D (Asylum Research, Goleta, CA, USA) with maxi-
mum scanning area 90 × 90 µm2, X and Y sensor sensitivity < 0.5 nm, Z range > 15 µm,
Z sensor sensitivity < 0.25 nm

• Three types of AFM probes:

– AC160TS (Olympus, Tokyo, Japan): cantilever size 160 × 40 × 3.7 µm, spring
constant 26 N/m, resonance frequency 300 kHz

– AC240TS (Olympus): cantilever size 240 × 40 × 2.3 µm, spring constant 2 N/m,
resonance frequency 70 kHz

– MSCT-AUHW (Park Scientific Instruments, Sunnyvale, CA, USA): cantilever size
310 × 20 µm, spring constant 0.01 N/m, resonance frequency 7 kHz

• Video monitoring system CV-S3200 (JAI Corporation, Mumbai, India) with 752 × 582 pixel
resolution

• Fiber-Lite MI-150R illumination source
• TS-140 vibration isolation table (Table Stable LTD, HERZAN, Laguna Hills, CA, USA)

2.4. AFM Measurement Protocols

Figure 1 demonstrates the AFM measurement methodology used for tissue section
analysis. AFM height images of lung adenocarcinoma (Figure 1a–c) and squamous cell
carcinoma (Figure 1d–f) tissue sections are shown at different magnifications. The initial
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40 × 40 µm2 scans (Figure 1a,d) provide an overview of the tissue architecture, while higher
resolution 5 × 5 µm2 scans (Figure 1b,e) reveal detailed surface features.

(a) (b) (c)

(d) (e) (f)
Figure 1. AFM measurement methodology. (a) AFM height image (40 × 40 µm2) of lung adeno-
carcinoma tissue section; (b) Higher resolution AFM height image (5 × 5 µm2); (c) Corresponding
AFM phase image. Similar sequence of images (d–f) shows lung squamous cell carcinoma tissue
section measurements.

AFM measurements were conducted on both liquid-based cytology and biopsy section
samples to obtain three main categories of biophysical data:

2.4.1. Cell Elasticity Measurements

• Quantified as Young’s modulus using liquid-based cytology samples
• Force-displacement curves generated through AFM nanoindentation experiments
• Analysis performed using the Hertz contact mechanics model
• Measurements taken separately for cytoplasm and nucleus regions
• 1–4 distinct cells analyzed per patient with 1–10 measurement points per region
• Parameters used for Hertz model:

– Spherical tip geometry (60 nm radius)
– Sample Poisson’s ratio = 0.5
– Silicon nitride tip properties: Poisson’s ratio = 0.25, E = 290 GPa

Figure 2 illustrates the process of force measurements on individual cancer cells. The
AFM height image (Figure 2a) shows an individual cell with marked measurement points
(P0–P7) where force curves were obtained. The optical image (Figure 2b) demonstrates
the positioning of the AFM probe relative to the cells. The resulting force-displacement
curves (Figure 2c) from both cytoplasm and nucleus regions, along with the calibration
curve, show distinct mechanical responses from different cellular regions.
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(a)

(b)

(c)
Figure 2. Example of force measurements on individual cancer cell. (a) AFM height image of
individual cell with marked measurement points (P0–P7); (b) Optical image showing AFM probe
and cells; (c) Force-displacement curves from cytoplasm and nucleus regions with calibration curve.

2.4.2. Surface Roughness Analysis

• Performed on biopsy section samples
• Initial scan of 60 × 60 µm2 area followed by detailed scans down to 2 × 2 µm2

• 1–3 samples analyzed per patient
• 3–27 measurement lines per sample
• RMS roughness calculated from vertical cantilever deflections

2.4.3. Cell Dimension Measurements

• Performed on cytology smears through topographical data analysis
• Measurements included cell width, cytoplasmic region height, and nuclear region height
• 1–5 cells measured per patient
• Three measurements taken for each dimension per cell
• Analysis focused on maximum vertical distance between substrate and cell’s

highest point

2.5. Data Analysis

All AFM data were processed using Igor Pro software (versions 6.37 and 6.38B01) with
MFP 3D extensions (versions 16.26.227 and 16.52.236). For elasticity calculations, the Hertz
model was applied to force-displacement curves. Surface roughness was quantified as
root mean square (RMS) of height deviations. For cell dimensions, measurements were
averaged at both the cellular and patient levels.
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2.6. Data Preprocessing

For AFM measurements, which contained multiple observations per patient, the
following aggregation strategy was employed:

• Surface roughness: mean RMS value calculated from 3–27 measurement lines per
sample, then averaged across 1–3 samples per patient

• Cell dimensions: three measurements per dimension (height, width) averaged for
each cell, then averaged across 1–5 cells per patient

• Elasticity: mean values calculated from 1–10 measurement points per region (cyto-
plasm/nucleus), then averaged across 1–4 cells per patient

All continuous variables were tested for normality using the Shapiro-Wilk test. Pack-
years smoked was the only variable potentially showing normal distribution (p < 0.05),
though visual inspection did not confirm this.

For traditional machine model training, continuous features were standardized, and
categorical features were transformed using one-hot encoding. Binary features remained un-
altered. Due to the presence of missing values in biophysical features, these were excluded
from traditional machine learning models but included in Bayesian Network analyses.

For Bayesian Network models, continuous variables were discretized into four cate-
gories (Low, Medium-Low, Medium-High, and High) using percentile-based binning.

2.7. Machine Learning Models

Our model selection process was guided by three key considerations:

• Small sample size: Given our limited dataset (n = 37), we prioritized models known to
perform well with small datasets.

• Missing data handling: Models needed to effectively handle missing values in bio-
physical measurements.

• Interpretability: Selected models needed to provide interpretable results for clinical
applications.

Several machine learning models were implemented and compared:

• Logistic Regression
• Support Vector Machines (SVM) with linear, RBF, and polynomial kernels
• Decision Trees
• K-Nearest Neighbors (KNN)
• Naive Bayes
• Gaussian Process Classifier
• Linear Discriminant Analysis (LDA)

For the traditional machine learning models, we employed a systematic grid search
approach for hyperparameter optimization.

2.8. Bayesian Networks

Two Bayesian Network structures were evaluated: an inferred structure based on
domain knowledge and a learned structure derived from the data. The hill-climbing search
algorithm with the K2 score was employed for structure learning. Maximum Likelihood
Estimation was used for parameter learning, and the variable elimination algorithm was
employed for probabilistic inference.

2.9. Model Evaluation

Due to the small sample size of the LCPP dataset, Leave-One-Out Cross-Validation
(LOOCV) was used for all experiments. Performance metrics included accuracy, precision,
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sensitivity, specificity, F1-score, and Area Under the Receiver Operating Characteristic
curve (AUC-ROC).

Additionally, we calculated Cohen’s Kappa (κ) and Matthews Correlation Coefficient
(MCC) to assess model reliability and account for class imbalance:

κ =
po − pe

1 − pe
(1)

where po is the observed agreement and pe is the expected agreement by chance, and

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

where TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and
False Negatives respectively.

2.10. Statistical Analysis

Statistical analysis was performed using Python (version 3.10.12) with pandas (version
2.2.2) for data manipulation and SciPy (version 1.13.1) for statistical tests. Mann-Whitney U
test was used to compare continuous variables between groups. Chi-square test was used
for categorical variables. Correlations were assessed using Spearman’s rank correlation
coefficient. p-values < 0.05 were considered statistically significant.

McNemar’s test was employed to assess the statistical significance of differences in
accuracy between models. DeLong’s test was used to evaluate the statistical significance of
differences in AUC-ROC between models.

Power analysis was conducted to assess the statistical validity of our findings. For
elasticity measurements between early and late stage samples, we found a large effect size
(Cohen’s d = 6.63) with 100% statistical power at our current sample size (n = 37), well
exceeding the required sample size of 20 for achieving 80% power. However, for detecting
differences in classification accuracy with and without biophysical features (89.19% vs.
86.49%), the analysis revealed low statistical power (6%), suggesting that a larger sample
size would be needed to conclusively demonstrate the impact of biophysical features on
classification performance.

3. Results
3.1. Patient Demographics and Clinical Characteristics

The dataset comprises 37 patients, with 17 diagnosed with adenocarcinoma (ADC)
and 20 with squamous cell carcinoma (SCC). 17 patients with invasive nonmucinous ade-
nocarcinoma were enrolled in the study. 3 patients had Grade 1 lepidic adenocarcinoma,
5 patients had Grade 2 acinar adenocarcinoma, 4 patients had Grade 2 papilary adenocarci-
noma, 2 patients had Grade 3 solid adenocarcinoma, 1 patients had Grade 3 micropapillary
adenocarcinoma, 2 patients had Grade 3 acinar adenocarcinoma. The ADC cohort showed
a relatively balanced distribution across both cancer stage and sex. Specifically, 7 patients
presented with early-stage disease while 10 exhibited late-stage progression. The sex dis-
tribution was nearly equal, with 8 male and 9 female patients. Figure 3 illustrates the key
demographic and clinical characteristics of our study cohort.

In contrast, the SCC group demonstrated notable demographic skews. There was a
pronounced sex imbalance, with 19 male patients (95%) and only 1 female patient (5%).
This observation aligns with previous findings indicating higher SCC prevalence in males.
A chi-square test revealed a significant association between cancer subtype and gender
(χ2 = 8.416, p = 0.004). The stage distribution in the SCC group favored early-stage disease,
with 12 patients (60%) classified as early-stage compared to 8 late-stage cases (40%).
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The patient cohort spanned an age range of 55 to 75 years. ADC patients had a signifi-
cantly lower mean age (65.24 ± 4.56 years) compared to SCC patients (68.45 ± 4.61 years)
(Mann-Whitney U test, p < 0.01). This age distribution aligns with previous studies
showing that ADC tends to occur in younger patients.

Smoking history, quantified in pack-years, also showed significant differences between
cancer subtypes. SCC patients reported a higher mean smoking history (26.5 ± 6.61 pack-
years) compared to ADC patients (21.35± 7.00 pack-years) (Mann-Whitney U test, p < 0.01).
This observation supports previous findings of stronger associations between smoking
behavior and SCC development.

Cancer grade distribution varied between subtypes. ADC cases showed heterogeneous
grade distribution across both early and late stages. In contrast, SCC cases were predom-
inantly moderately or poorly differentiated, with no well-differentiated (grade 1) cases
observed. Late-stage cancers had larger mean size (4.9 ± 1.6 cm) compared to early-stage
cancers (3.4 ± 1.6 cm), though this difference was not statistically significant.

Figure 3. Demographic and clinical characteristics of the study cohort. Distribution of age by cancer
subtype; Sex distribution; Smoking history in pack-years; Stage distribution by cancer subtype.

3.2. Histopathological Features Analysis

Analysis of tumor invasion pathways revealed clear associations with disease stage.
Vascular invasion (VI) was observed in 88.9% of late-stage patients compared to 15.8% of
early-stage patients. Similarly, lymphatic vessel invasion (LVI) was present in all late-stage
patients and 73.7% of early-stage patients. Perineural invasion (PNI) was observed in only
3 patients (8.1%), all of whom had SCC and late-stage cancer.

PD-L1 expression levels showed considerable variation within each subgroup. Late-
stage ADC patients demonstrated the highest mean PD-L1 expression (37.40% ± 27.41%),
while early-stage ADC patients showed the lowest (24.86% ± 25.48%). SCC patients exhib-
ited an inverse pattern, with higher PD-L1 expression in early-stage (35.75%± 36.73%) com-
pared to late-stage (25.75%± 32.33%) disease. The substantial variability within each group,
indicated by large standard deviations, suggests caution in drawing definitive conclusions.
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FOXP3 expression patterns varied significantly between cancer subtypes and stages.
In ADC cases, FOXP3 expression increased markedly from early to late stages (early-
stage: 19.29 ± 10.37 cells/mm2; late-stage: 37.70 ± 32.91 cells/mm2). SCC cases showed a
different pattern, with higher expression in early-stage (33.00± 36.03 cells/mm2) compared
to late-stage (30.50 ± 27.20 cells/mm2) disease.

Genetic biomarker analysis revealed several notable patterns. EGFR mutations were
present in 16 patients (43.2%), with higher prevalence in ADC (10 patients, 58.8%) compared
to SCC (6 patients, 30%). 18 patients had EGFR mutations. 10 patients had EFGR exon
19 deletion 9 (NM_005228.3:c.2239_2247del9), 2 patients had EFGR exon 19 deletion 15
(NM_005228.3:c.2235_2249del15 and c.2236_2250del15 - p.Glu746_Ala750del); 3 patients
had EGFR exon 18 pont mutations (NM_005228.3 p.Gly719Ser, p.Gly719Cys, p.Gly719Ala,
p.Gly719Asp) and 3 patients had EGFR somatic mutation c.2369C&gt;T (p.T790M) in exon
20 (NM_005228.5(EGFR):c.2369C&gt;T (p.Thr790Met)).

ALK rearrangements (positive ALK expression) were detected in 11 patients (29.7%),
showing higher frequency in SCC (8 patients, 72.7%) than in ADC (3 patients, 27.3%).

ROS1 rearrangements (positive ROS-1 expression) were found in 12 patients (32.4%),
equally distributed between ADC and SCC.

NTRK gene fusions (positive pan-TRK expression) were present in 3 patients (8.1%),
with 2 cases in ADC and 1 in SCC, all in late-stage disease. The distribution of genetic
biomarkers across cancer subtypes is shown in Figure 4.

Peritumoral inflammatory infiltration (PII) showed distinct patterns between cancer
subtypes. ADC cases, particularly in late stages, demonstrated a higher tendency for
inflammatory infiltration, with 90% showing some degree of infiltration (PII ≥ 1). In
contrast, SCC cases exhibited more variable PII patterns, with 62.5% of late-stage cases
showing no inflammatory infiltration (PII = 0) compared to 33.3% in early-stage cases.

A strong positive correlation was observed between FOXP3 and PD-L1 expression
(r = 0.76), consistent with previous findings in other cancer types. This relationship
suggests potential interactions between these immune regulatory pathways in lung can-
cer progression.

Figure 4. Distribution of genetic biomarkers by cancer subtype. Bar plot showing prevalence of EGFR,
ALK, ROS1, and NTRK mutations in adenocarcinoma versus squamous cell carcinoma patients.
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3.3. Biophysical Properties Analysis

Biophysical measurements provided insights into the mechanical properties of lung
cancer cells. Elasticity, quantified as Young’s modulus, exhibited distinct patterns across
cancer stages and grades. Both nucleus and cytoplasm elasticity were found to have
moderate positive correlations with cancer stage, with significantly stiffer cells observed in
late-stage samples compared to early-stage. Additionally, cytoplasm elasticity showed a
moderate negative correlation with tumor grade, suggesting that more poorly differentiated
tumors may have more compliant cytoplasm.

Cell dimension measurements revealed distinct patterns between invasive and non-
invasive samples, as illustrated in Figure 5. Comparison of cell heights and widths between
invasive and non-invasive samples showed notable differences.

Figure 5. Cell dimension analysis by cancer invasiveness. Cell height measurements comparing
invasive versus non-invasive samples; Cell width measurements comparing invasive versus non-
invasive samples.

Surface roughness, measured as RMS roughness, demonstrated moderate positive
correlations with cell dimensions, including nucleus height and cell width. This indicates
that larger cells may exhibit rougher surfaces. A weak positive correlation was also found
between surface roughness and cancer stage, hinting that more advanced cancers may have
slightly rougher cell surfaces.

A representative example of surface roughness analysis is shown in Figure 6. The
AFM height image (Figure 6a) shows a 20 × 20 µm2 scan area with selected 5 × 5 µm2

regions used for detailed roughness analysis. The corresponding measurements (Figure 6b)
demonstrate how RMS roughness values were calculated from these selected regions,
providing quantitative assessment of surface texture variations in cancer tissue samples.

Further details on the relationships between biophysical properties and clinical and
histopathological parameters are provided in the subsequent section.
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(a) (b)
Figure 6. Surface roughness analysis. (a) Example of 20 × 20 µm2 AFM height image with selected
5 × 5 µm2 analysis regions; (b) Corresponding roughness measurements.

3.4. Correlations Between Biophysical and Clinical Parameters

Correlation analysis revealed several significant relationships between the biophysical
measurements and conventional clinical indicators.

Both nucleus and cytoplasm elasticity exhibited moderate positive correlations with
cancer stage (r = 0.621 and r = 0.444 respectively), suggesting that more advanced cancers
tend to have stiffer cells. This trend was statistically significant, with early-stage sam-
ples showing significantly lower mean nucleus elasticity (1.98 ± 1.99 MPa) compared to
late-stage samples (12.72 ± 7.26 MPa) (Mann-Whitney U test, p < 0.05). A similar pat-
tern was observed for cytoplasm elasticity, with early-stage samples having a mean of
3.89 ± 4.30 MPa compared to 15.50 ± 12.46 MPa in late-stage samples (Mann-Whitney U
test, p < 0.05). Figure 7 demonstrates the significant differences in cell elasticity between
early and late stage samples.

Additionally, cytoplasm elasticity demonstrated a moderate negative correlation with
tumor grade (r = −0.533), indicating that more poorly differentiated tumors may have more
compliant cytoplasm.

Interestingly, nucleus elasticity was found to have a moderate positive correlation
with vascular invasion (r = 0.475), while cytoplasm elasticity showed a moderate positive
correlation with perineural invasion (r = 0.321). However, the lack of non-invasive samples
in this study prevents a comparative analysis to fully evaluate the hypothesis that cell
elasticity can serve as an indicator of cancer invasiveness.

Surface roughness measurements also exhibited interesting relationships. RMS rough-
ness demonstrated moderate positive correlations with cell nucleus height (r = 0.343) and
cell width (r = 0.321), suggesting that larger cells may have rougher surfaces. A weak
positive correlation between RMS roughness and cancer stage (r = 0.258) was also observed,
indicating that more advanced cancers may have slightly rougher cell surfaces.
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Figure 7. Cell elasticity measurements by cancer stage. Nucleus region elasticity comparison between
early and late stage samples; Cytoplasm region elasticity comparison between early and late stage
samples. Early stage samples show significantly lower elasticity in both regions (Mann-Whitney U
test, p < 0.05).

3.5. Performance of Machine Learning Models

We applied various machine learning models to the LCPP dataset using Leave-One-
Out Cross-Validation (LOOCV). Table 4 presents the performance metrics of the traditional
machine learning models.

Table 4. Performance of Traditional Machine Learning Models.

Model Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Specificity
(%) AUC

DT 89.19 88.24 88.24 90.00 0.871
SVM (RBF) 89.19 88.24 88.24 90.00 0.859
SVM (Poly-

nomial) 89.19 88.24 88.24 90.00 0.847

LR 86.49 87.50 82.35 90.00 0.776
LDA 83.78 86.67 76.47 90.00 0.853
KNN 83.78 86.67 76.47 90.00 0.834

Table 4 demonstrated that Decision Trees and SVM models achieved the highest accu-
racy of 89.19%. Furthermore, Recursive Feature Elimination (RFE) consistently improved
model performance, identifying four key features: sex, vascular invasion (VI), perineural
invasion (PNI), and ALK mutation.

3.6. Bayesian Network Performance

We developed Bayesian Network (BN) models using two feature sets (with and
without biophysical measurements) and two network structures (learned and inferred).
Table 5 summarizes the performance of these models.

Table 5. Performance of Bayesian Network Models.

Features Structure Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) AUC

Without Biophysical Learned 86.49 86.53 82.35 90.00 0.903
All Learned 89.19 89.19 88.24 90.00 0.847

Top 4 Learned 89.19 89.19 88.24 90.00 0.847
Without Biophysical Inferred 72.97 72.97 70.59 75.00 0.744

All Inferred 72.97 72.97 70.59 75.00 0.750
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For our best performing Bayesian Network model with learned structure, from the
confusion matrix we calculate:

• Cohen’s Kappa = 0.783, indicating substantial agreement beyond chance
• Matthews Correlation Coefficient = 0.784, suggesting strong correlation between

predicted and actual classes

The inclusion of biophysical features in the BN model with learned structure resulted
in a slight improvement in accuracy from 86.49% to 89.19%. However, McNemar’s test
yielded a p-value of 1.0, indicating no statistically significant difference in accuracy between
the models with and without biophysical features. DeLong’s test for AUC comparison
resulted in a p-value of 0.0, suggesting a significant difference in AUC, albeit with a slight
decrease when biophysical features were added.

The ROC curves for the Bayesian Network models with learned and inferred structures
are presented in Figure 8, illustrating the trade-off between true positive rate and false
positive rate across various classification thresholds.

Figure 8. Receiver Operating Characteristic (ROC) curves for Bayesian Network models using
all features. The blue curve represents the model with learned structure, while the orange curve
represents the model with inferred structure. The area under each curve (AUC) provides a measure
of the model’s overall performance.

The performance of the Bayesian Network models with learned and inferred structures
is visually represented in Figure 9, which shows the confusion matrices for both models.
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Figure 9. Confusion matrices for the Bayesian Network models using all features. (a) Model
without biophysical features. (b) Model with biophysical features. The matrices illustrate the
classification performance of each model in terms of true positives, true negatives, false positives,
and false negatives.

3.7. Feature Importance and Model Interpretability

The BN model using only the four features identified by RFE achieved performance
identical to the full-feature model, with a much lower Bayesian Information Criterion
(BIC) of 51.931, compared to 268.586 for the full-feature model. This indicates a better
trade-off between model fit and complexity. The learned BN structures provided insights
into variable relationships:

• Without biophysical features: strong connections between cancer type, sex, and smok-
ing history.

• With biophysical features: potential relationships between cell elasticity and cancer
stage, and between surface roughness and cell dimensions.

These structures offer interpretable representations of the probabilistic relationships in the
data, potentially informing future research directions.

4. Discussion
This study investigated the potential of integrating biophysical measurements with

conventional clinical and histopathological tumour characteristics (tumour type, grade,
invasiveness, stage) to enhance lung cancer subtype classification. Our findings provide
several insights into the utility of this approach and its implications for future research in
cancer diagnostics.

4.1. Integration of Biophysical Features

The inclusion of AFM-derived features improved classification accuracy from 86.49%
to 89.19% when using a data-driven Bayesian Network model. While this improvement
was not statistically significant (McNemar’s test, p = 1.0), the high Cohen’s Kappa (0.783)
and Matthews Correlation Coefficient (0.784) suggest robust model performance. The
decrease in AUC-ROC from 0.903 to 0.847 with biophysical features indicates a potential
trade-off between accuracy and ranking performance that warrants further investigation
with larger datasets.
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These results suggest that biophysical properties of cancer cells may contain relevant
information for subtype classification, aligning with previous studies that have demon-
strated the potential of cell mechanical properties as biomarkers for cancer detection and
characterization [7,8]. However, the limited improvement in our study indicates that the
relationship between biophysical properties and cancer subtypes may be more complex
than initially hypothesized.

4.2. Performance of Machine Learning Models

Our comparison of various machine learning techniques revealed that relatively simple
models, such as Decision Trees and Support Vector Machines, performed well on our
dataset. This finding is consistent with previous studies on lung cancer classification [4,9],
suggesting that with appropriate feature selection, these models can effectively capture
relevant patterns for subtype classification.

The strong performance of Bayesian Networks, particularly with learned structures,
highlights their potential in handling complex, multidimensional medical data. The inter-
pretability of Bayesian Networks, allowing for visualization of probabilistic relationships
between variables, offers an advantage in clinical settings where understanding model
decisions is crucial.

4.3. Feature Importance and Selection

The identification of four key features (sex, vascular invasion, perineural invasion, and
ALK positive expression) through Recursive Feature Elimination is a significant finding.
The fact that a model using only these features achieved performance comparable to the
full-feature model suggests that a small set of carefully selected variables may be sufficient
for accurate lung cancer subtype classification. This aligns with the principle of parsimony
in model selection and could have practical implications for clinical applications, potentially
reducing the need for extensive and costly tests.

The importance of sex and ALK mutation in our model is consistent with previous
research highlighting gender differences in lung cancer incidence and the role of genetic
alterations in cancer development [16,17]. The significance of vascular and perineural
invasion in our model confirmed previous findings and extent by the monstration of the
significant value of such histopathological features in cancer characterization [18,19].

4.4. Limitations and Future Directions

The primary limitation of this study is the small sample size (n = 37), which may have
affected the statistical power of our analyses and the generalizability of our findings. Future
studies with larger cohorts are needed to validate these results and potentially discover
more significant associations between biophysical properties and cancer subtypes.

While our elasticity measurements showed strong statistical power, the comparison
of classification accuracies with and without biophysical features was limited by low
statistical power due to the small effect size (0.08) and sample size. This suggests that future
studies with larger cohorts are needed to definitively establish the impact of biophysical
measurements on classification accuracy. Despite this limitation, the strong statistical power
of our elasticity measurements provides confidence in the biological significance of the
observed mechanical differences between cancer stages.

The presence of missing data in the biophysical measurements is another limitation.
While Bayesian Networks allowed us to handle this issue without imputation, developing
more robust methods for dealing with missing data in small medical datasets remains an
important area for future research.

Future studies could explore more advanced feature engineering techniques to po-
tentially extract more informative representations of cellular characteristics from AFM
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data. Additionally, investigating the integration of other novel biomarkers or imaging
modalities with biophysical measurements could provide a more comprehensive approach
to cancer classification.

4.5. Implications for Cancer Research and Clinical Practice

Our study demonstrates the feasibility of incorporating AFM-derived biophysical
measurements into lung cancer subtype classification. While the improvement in classi-
fication accuracy was modest, the approach opens up new directions for cancer research,
potentially leading to a more comprehensive understanding of the relationship between
cellular physical properties and cancer biology.

The interpretability of Bayesian Network models, as demonstrated in this study, could
be particularly valuable in clinical settings. These models not only provide predictions
but also offer insights into the relationships between different clinical, histopathological,
and biophysical features, which could inform clinical decision-making and guide further
diagnostic or therapeutic strategies.

5. Conclusions
To conclude, this study provides evidence for the potential utility of integrating

biophysical measurements with conventional clinical and histopathological characteristics
in lung cancer subtype classification. While the improvements in classification accuracy
were modest, our findings highlight the complexity of this integration and suggest several
promising directions for future research. Furthermore, by integrated of machine learning
and AFM data with conventional clinical and histopathological characteristics could opened
new vistas in the diagnostics, prognosis and personalized treatment of malignant tumours.
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