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Abstract: Background/Objectives: As an endocrine organ, adipose tissue produces
adipokines that influence coronary artery disease (CAD). The objective of this study was to
assess the potential value of CTRP5 and chemerin in differentiating coronary computed
tomography angiography (CCTA)-confirmed coronary artery disease (CAD) versus non-
CAD. Secondarily, within the CCTA-confirmed CAD group, the aim was to investigate the
relationship between the severity and extent of CAD, as determined by coronary artery
calcium score (CACS), and the levels of CTRP5 and chemerin. Methods: Consecutive
individuals with chest pain underwent CCTA to evaluate coronary artery anatomy and
were divided into two groups. The CCTA-confirmed CAD group included patients with
any atherosclerotic plaque (soft, mixed, or calcified) regardless of calcification, while the
non-CAD group consisted of individuals without plaques on CCTA, with zero CACS, and
without ischemia on stress ECG. Secondarily, in the CCTA-confirmed CAD group, the
severity and extent of CAD were evaluated using CACS. Blood samples were collected and
stored at −80 ◦C for analysis of CTRP5 and chemerin levels via ELISA. Results: Serum
CTRP5 and chemerin levels were significantly higher in the CAD group compared to the
non-CAD group (221.83 ± 103.81 vs. 149.35 ± 50.99 ng/mL, p = 0.003 and 105.02 ± 35.62 vs.
86.07 ± 19.47 ng/mL, p = 0.005, respectively). Receiver operating characteristic (ROC) anal-
ysis showed that a CTRP5 cutoff of 172.30 ng/mL had 70% sensitivity and 73% specificity
for identifying CAD, while a chemerin cutoff of 90.46 ng/mL had 61% sensitivity and 62%
specificity. A strong positive correlation was observed between CTRP5 and chemerin, but
neither adipokine showed a correlation with the Agatston score, a measure of CAD severity
and extent, nor with coronary artery stenosis as determined by CCTA. Conclusions: CTRP5
and chemerin were significantly elevated in the CCTA-confirmed CAD group compared
to the non-CAD group, with CTRP5 showing greater sensitivity and specificity. However,
neither adipokine was linked to CAD severity and extent, differing from findings based
on invasive coronary angiography (ICA). CTRP5 may serve as a promising “all-or-none
biomarker” for CAD presence.

Keywords: CTRP5; chemerin; coronary artery disease; coronary computed tomography
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1. Introduction
Cardiovascular disease (CVD) is the predominant cause of mortality and morbidity

worldwide [1]. CVD is responsible for over 39 million deaths annually in Europe, or
45% of total mortality. The most prevalent causes of these fatalities are coronary artery
disease (CAD) and stroke, with CAD continuing to be the primary cause of mortality
in Europe despite significant progress in treatment and prevention over the last thirty
years. The worldwide incidence of CAD is rising and is projected to reach 1845 cases per
100,000 individuals by 2030 [2,3]. Coronary computed tomography angiography (CCTA)
is now growing in its utility as it can detect both obstructive coronary artery disease and
high-risk features of atherosclerotic plaques that cause stenosis, leading to an increased risk
of ischemic events [4,5].

Biomarkers, such as adipokines, interleukins, and C-reactive proteins, have been
investigated in several investigations and demonstrate potential for the early detection of
CAD [6–10]. Early detection of CAD through biomarkers and CCTA is crucial for patient
management, as it can help prevent ischemic events by optimizing pharmacological therapy
or facilitating coronary interventional procedures [1,5].

Adipose tissue functions as an endocrine organ, producing various physiologically
active peptides known as adipokines. These adipokines exhibit autocrine, paracrine, and
endocrine roles, regulating critical processes such as adipose tissue metabolism, differentia-
tion, energy equilibrium, and overall physiological homeostasis. Adipokines are crucial
for sustaining metabolic balance and have been demonstrated to affect various biolog-
ical processes, including immunological response, lipid metabolism, insulin sensitivity,
vascular homeostasis, and angiogenesis. Consequently, adipokines may contribute to the
pathophysiology of CVD in both direct and indirect pathways [11,12]. By influencing
atherosclerosis through adipokine production, epicardial adipose tissue (EAT) close to
coronary arteries raises the risk of cardiometabolic diseases [13–15]. The development of
CAD is linked to the C1q/TNF-related protein (CTRP) family, particularly CTRP5, as well
as other adipokines, such as chemerin. CTRP5 is a recently identified pro-atherogenic cy-
tokine that promotes the transcytosis and oxidation of LDL within endothelial cells [16,17].
Despite research indicating a correlation between CTRP5 and atherosclerosis development,
some investigations have documented reduced serum levels of CTRP5 in patients with
CAD [18].

Chemerin is an adipokine that plays a significant role in the progression of metabolic
diseases and inflammation-related disorders affecting the cardiovascular system. Chemerin
modulates energy metabolism, adipogenesis, and angiogenesis. A positive link exists
between CAD and serum chemerin levels, with chemerin levels also correlating with the
severity of coronary lesions [19–21]. Another study revealed higher chemerin levels as
an independent predictor of CAD. Additionally, plasma chemerin levels were reported to
increase in patients with CAD and were related to an elevated risk of substantial unfavor-
able cardiac events in this group [22]. The release of chemerin in perivascular tissue has
been shown to positively correlate with the progression of aortic and coronary atheroscle-
rosis [23]. There is a correlation between chemerin and peripheral arterial stiffness [24].

This study sought to assess the possible significance of the adipokine CTRP5, which
has been inadequately explored in relation to CAD and the adipokine chemerin in differen-
tiating between individuals with CCTA-confirmed normal coronary arteries and patients
with CCTA-confirmed CAD. The secondary purpose was to examine the correlation be-
tween the severity and extent of CAD, as assessed by the coronary artery calcium score
(CACS), and serum levels of CTRP5 and chemerin in the CCTA-confirmed CAD group.
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2. Materials and Methods
A total of 106 consecutive individuals who presented with chest pain were enrolled

for this pilot trial between February 2024 and June 2024. These individuals were then
prospectively evaluated utilizing CCTA. Atrial fibrillation, being younger than 35 years
old, having a history of using lipid-lowering medications such as fibrates and statins,
having chronic renal disease of stage 3 or greater, having a chronic liver disease, having an
autoimmune disease, having been previously diagnosed with CAD or peripheral artery
disease were all criteria that were used to exclude participants from the study.

In total, there were 106 individuals, and out of those, 89 were determined to be suitable
for participation in the study. The CCTA-confirmed CAD group was defined as participants
who had any soft, mixed, or calcific atherosclerotic plaque in their coronary arteries, whether
or not coronary artery calcification (CAC) was present on anatomical examination by CCTA.
The CACS, assessed by the Agatston score, was used as an objective measure of the extent
and severity of CAD and was used to quantify the extent and severity of CAD in the CCTA-
confirmed CAD group. Patients with zero CACS but any atherosclerotic plaque detected
by CCTA were also included in the CCTA-confirmed CAD group. Participants without
atherosclerotic plaque in their coronary arteries, as assessed by CCTA, and exhibiting zero
CACS along with no signs of myocardial ischemia on treadmill/stress electrocardiogram
or myocardial perfusion scintigraphy—conducted to rule out microvascular disease—were
defined as the CCTA-confirmed non-CAD group (true normal coronary artery group). An
illustration of the flow chart for the study can be observed in Figure 1.
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Figure 1. The study’s flowchart.

A 128-slice single-source scanner (Somatom Go Top; Siemens Healthcare, Forchheim,
Germany) was used for the procedure, and an independent expert was responsible for
the evaluation of the results. Using the same CT scanner, the Agatston score was used to
determine the degree of CACS.

Obtaining the patient’s consent allowed for the collection of clinical and laboratory
data, which included information about the patient’s gender, age, height, weight, blood
pressure measures, blood cholesterol levels, smoking history, and familial history of CAD.
Blood samples were collected from the antecubital vein in the early morning hours of
the morning, only after the patient had been fasting for at least eight hours. Following
that, a biochemical analyzer was utilized in order to quantify serum lipids in addition to
a number of other biochemical parameters. A fasting period of one night was followed
by the collection of blood samples for CTRP5 and chemerin, which were then preserved
at a temperature of −80 degrees Celsius. Quantification of serum levels of CTRP5 and
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chemerin was performed with the use of commercially available ELISA kits (Invitrogen
ELISA Human C1qTNF5 ELISA Kit and Invitrogen Human RARRES2/TIG2 ELISA Kit) at
appropriate dilutions in accordance with the directions provided by the manufacturer.

The protocol for the study was approved by the Bakircay University Non-Interventional
Clinical Research Ethics Committee (Approved 24 August 2023; Decision number: 1154;
Research number: 1155). All individuals who took part in the study provided written
informed consent.

Statistical Analysis

Continuous variables were presented as the mean ± standard deviation (SD), and the
independent samples t-test was used to examine the data. The most relevant chi-squared
test was utilized in order to perform the analysis on the categorical variables, which were
represented as frequencies and percentages. When calculating the correlations between
CTRP5, chemerin, and other variables, the Pearson correlation analysis was utilized as the
method of evaluation. In order to diagnose CAD that was confirmed by CCTA, receiver
operating characteristic (ROC) curves were established for CTRP5 and chemerin. The
Statistical Package for the Social Sciences (SPSS), version 29.0 (SPSS Inc., Chicago, IL, USA)
was utilized for each and every statistical analysis that was carried out. A two-tailed t-test
was utilised, with a p value < 0.05 considered statistically significant.

3. Results
Demographic and clinical characteristics of the participants in both study groups are

given in Table 1. No statistically significant difference was observed between the two
groups regarding demographic risk factors related to the etiology of CAD (including age
and gender), anthropometric measurements (such as height, weight, and body mass index),
or biochemical and clinical parameters associated with CAD risk (including hypertension,
diabetes, lipid profiles, and blood glucose levels).

The serum levels of the adipokines CTRP5 and chemerin exhibited significant differ-
ences between the study groups (Table 1). Both adipokines were significantly increased
in the group with CCTA-confirmed CAD compared to the group with CCTA-confirmed
non-CAD (p < 0.05).

The results of the ROC analysis presented in Figure 2 show that a cut-off value of
172.30 ng/mL was determined for CTRP5, which had a sensitivity of 70% and a specificity
of 73% when it came to diagnosing CAD that was confirmed by CCTA. According to the
results of our ROC analysis for chemerin, the sensitivity and specificity for identifying
CCTA-confirmed CAD at a cut-off value of 90.46 ng/mL were found to be 61% and 62%,
respectively (Figure 3).

According to the findings of our research, there is an important positive correlation
between the levels of CTRP5 in plasma and the levels of chemerin in plasma. On the other
hand, there was no correlation found between the plasma concentrations of either adipokine
and the Agatston score (CACS), which is a measurement of the atherosclerotic burden
and the severity of CAD (Table 2, Figure 4). Additionally, there was no association found
between the amount of coronary artery stenosis that was indicated by CCTA and the levels
of CTRP5 and chemerin that were found in the plasma. There was no correlation found
between the levels of CTRP5 and chemerin in the plasma and any of the demographic,
clinical, or biochemical data that were taken in the investigation.
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Table 1. Baseline demographic and clinical characteristics of participants.

Characteristics
CCTA-Confirmed
Non-CAD Group
n = 35

CCTA-Confirmed
CAD Group
n = 54

p

Age (years) 58.9 ± 7.7 56.7 ± 7.2 0.231

Gender (female %) 40 38.9 0.861

Smoking % 34 37 0.756

DM % 20 22.2 0.843

HT % 28.6 31.4 0.703

BMI (kg/m2) 28.1 ± 3.4 27.6 ± 3.1 0.535

Metabolic Syndrome % 25.7 27.7 0.756

Agatston score 0 224.0 ± 342.3 <0.001

Systolic Blood
Pressure (mmHg) 135 ± 13 132 ± 25 0.623

Diastolic Blood
Pressure (mmHg) 80 ± 10 79 ± 12 0.938

Fasting Blood Glucose
(mg/dL) 100.9 ± 42.7 107.1 ± 35.0 0.514

Total Cholesterol (mg/dL) 225.7 ± 53.4 223.3 ± 52.3 0.858

Triglyceride (mg/dL) 153.4 ± 72.5 192.0 ± 116.0 0.083

LDL Cholesterol (mg/dL) 149.3 ± 38.1 140.0 ± 48.5 0.417

HDL Cholesterol (mg/dL) 50.0 ± 10.6 48.5 ± 11.9 0.592

Creatinine (mg/dL) 0.91 ± 0.04 0.93 ± 0.03 0.875

CTRP5 (ng/mL) 149.4 ± 51.0 221.8 ± 103.8 0.003

Chemerin
(ng/mL) 86.1 ± 19.5 105.0 ± 35.6 0.005

Table 2. Correlations of CTRP5, chemerin, and Agatston score.

Chemerin CTRP5 Agatson

Chemerin
r 0.725 * 0.059
p 0.000 0.613

CTRP5
r 0.725 * 0.061
p 0.000 0.601

Agatson r 0.059 0.061
p 0.613 0.601

* p < 0.05.
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4. Discussion
This study sought to assess differences in plasma levels of the adipokines CTRP5

and chemerin between individuals with CAD, characterized by mixed, calcific, or soft
plaques across different stages of CCTA-confirmed atherosclerosis, and those without CAD,
confirmed by CCTA. Additionally, the study aimed to investigate the correlation between
chemerin and CTRP5 with the CACS (Agatston score), which allows for the objective
detection of the severity and extent of CAD in the CCTA-confirmed CAD group [4,25–29].
The findings of our research revealed that the levels of CTRP5 and chemerin were sig-
nificantly higher in the CCTA-confirmed CAD group compared to the CCTA-confirmed
non-CAD group. Our findings indicate that serum CTRP5 levels show better sensitivity
and specificity for the diagnosis of CAD compared to serum chemerin levels. A significant
positive correlation was observed between serum CTRP5 and chemerin levels. In the
CCTA-confirmed CAD group, there was no correlation between the severity and extent of
CAD, measured by the CACS (Agatston score), and the serum levels of either adipokine.
No statistically significant association was found between serum CTRP5 or chemerin levels
and the degree of coronary artery stenosis in the CCTA-confirmed CAD group.

The formation of atherosclerosis involves various lipids, immune cells, vascular
smooth muscle cells (VSMCs), and adipokines. CTRP5, an adipokine released from adi-
pose tissue, particularly from EAT, may affect the formation of atherosclerotic plaques by
multiple mechanisms [12–17,30]. Li et al. observed that serum CTRP5 levels were signifi-
cantly higher in patients with CAD compared to individuals with normal coronary arteries,
showing a correlation with the number of affected arteries. The study demonstrated el-
evated CTRP5 expression in the endothelium of early-stage atherosclerotic lesions [17].
Another investigation demonstrated that CTRP5 increased the expression of MMP2, cyclin
D1, and TNF-alpha in a dose-dependent manner in aortic smooth muscle cells (ASMCs),
thereby activating the Notch1, TGF-beta, and hedgehog pathways. This facilitated VSMC
proliferation, inflammation, and migration during the early stages of atherosclerosis [31].
Macrophages within the arterial wall uptake modified LDL, resulting in foam cell formation
and increased inflammation. Li et al. proposed that CTRP5 regulates 12/15-LOX through
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STAT6 signaling, thereby increasing LDL absorption and oxidation in macrophages and
endothelial cells [17,30,32–34].

Liu et al. conducted a study comparing a normal coronary artery group with CAD
patients experiencing acute coronary syndrome (ACS). Their findings indicated that, in
agreement with our study, CTRP5 levels were significantly elevated in the CAD group
compared to the normal coronary artery group, and there was no correlation between the
severity and extent of CAD, as assessed by the Gensini Score, and CTRP5 levels [35]. This
study significantly contrasts with ours, which utilized the CCTA method, as it utilized
invasive coronary angiography (ICA) for diagnosis, established CAD patients with ACS in
the CAD cohort, and classified individuals with less than 50% coronary stenosis as part of
the normal coronary artery group.

In vitro studies indicate that chemerin increases the formation of reactive oxygen
species (ROS) and inflammation in human endothelial cells and VSMCs, explaining its
contribution to vascular dysfunction. Chemerin promotes the pro-inflammatory NF-κB
pathway and enhances endothelial inflammation by promoting monocyte-endothelial adhe-
sion [19,34]. Chemerin’s role in atherosclerosis is related to its interaction with macrophages
through the chemerin chemokine-like receptor 1 (CMKLR-1) [36]. Immunohistochemical
data show a relationship between the expression of chemerin and CMKLR-1 in human ar-
teries and periadventitial adipose tissue, as well as the severity of atherosclerosis [19,37,38].
Chemerin contributes to the early stages of atherosclerosis by decreasing cGMP synthe-
sis and nitric oxide-induced vasodilation, enhancing endothelial cell proliferation and
migration, and further stimulating angiogenesis [19,39–42].

This study found that plasma chemerin levels were elevated in patients with CAD
compared to those without CAD. This observation is consistent with prior research that
has demonstrated a connection between chemerin concentrations and cardiovascular dis-
eases [19–22,43,44]. Conversely, our data indicated that there is no link between the severity
and extent of CAD and plasma chemerin levels. This finding sharply contrasts with prior
research that demonstrated a correlation between chemerin levels and the extent and sever-
ity of CAD, as assessed by the Gensini Score derived from ICA results or the number of
stenosed coronary arteries [20,43,44]. The lack of correlation between CAD severity and
chemerin plasma levels in our study may be related to the more accurate effectiveness
of CCTA in illustrating the comprehensive burden of atherosclerosis and the existence of
atherosclerotic plaques at different stages of the disease relative to the ICA employed for
CAD classification in previous investigations [25,26]. There is evidence that chemerin is
implicated in the pathogenesis of atherosclerosis, particularly in the early stages of the
disease [19,34,36–41].

Invasive coronary angiography was employed to evaluate the existence, severity, or
stent restenosis of CAD in the majority of academic studies investigating the correlation
between atherosclerosis and CTRP5, chemerin, and other adipokines in the past. The
cohort referred to as the CAD group in prior research employing the ICA methodology
typically comprised individuals with coronary artery stenosis exceeding 50%. Conversely,
patients with stenosis less than 50% were arbitrarily designated as the control group or
included in the cohort that had no restenosis following stent placement [17,31,35,43,44].
However, patients exhibiting lower than 50% stenosis or lacking intraluminal stenosis due
to atherosclerotic eccentric plaques may not adequately reflect a truly normal cohort free
of coronary artery atherosclerosis, particularly in studies employing ICA lumenographic
criteria. These earlier studies’ control groups contained CAD patients, which adds a level of
difficulty to the interpretation of the CAD prediction. The use of ICA to assess the severity
of CAD is also problematic because it ignores the existence of eccentric plaques that do not
contribute to the load of intraluminal plaque [25,26,31,35,43,44].
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The present study preferred CCTA, which offers superior accuracy compared to ICA
in diagnosing and excluding CAD. Eccentric plaques that do not induce intraluminal
narrowing, which is undetectable by ICA, together with minor plaques in the initial stages
of atherosclerosis, can be identified by CCTA [4,25,26]. Consequently, in the study, the
CCTA-confirmed CAD group, indicative of coronary artery disease, was established with
improved precision, while the CCTA-confirmed non-CAD group, representing the true
normal coronary artery cohort, was constructed as optimally as possible.

Coronary artery calcification is a defining characteristic of atherosclerosis and a signif-
icant contributor to the onset and advancement of CAD. CACS reflects the overall burden
of coronary atherosclerosis. Sangiorgi et al. found that coronary calcium measurement ef-
fectively assesses atherosclerotic plaque presence and burden, though no strong predictive
link was found between luminal narrowing and calcification, possibly due to remodel-
ing [27–29]. The Denmark Heart Registry, using CCTA, showed that total plaque burden
“CACS” is a key factor in cardiovascular risk, regardless of stenosis, with similar CACS
levels indicating similar event risk, whether CAD is obstructive or not [45].

Contrary to previous studies that identified a correlation between CAD severity and
extent, as measured by the Gensini Score, SYNTAX score, or the number of coronary arteries
with critical stenosis, and serum levels of CTRP5 or chemerin derived from ICA method
data [17,31,43,44], our research did not find a relationship between CACS, a marker of CAD
severity and extent [27–29], and serum concentrations of CTRP5 and chemerin. Consistent
with our findings, Szpakowicz et al. observed no statistically significant link between the
SYNTAX Score, which reflects the extent and severity of the disease, and chemerin serum
levels in stable CAD patients having percutaneous coronary intervention [46].

The contrasting results may be explained by the advantages of the CCTA method
used for defining CAD, which is more effective in detecting early-stage minor and eccentri-
cally located atherosclerotic plaques [25,26] with elevated levels of CTRP5 and chemerin,
compared to the ICA method employed in previous studies for CAD diagnosis. The
CCTA method employed in this study effectively identifies early-stage plaques in cases
of low CAD extent and the absence of intraluminal stenosis. However, CACS, used for
assessing disease extent and severity, shows limited effectiveness in detecting early-stage
plaques [28,29]. Consequently, patients with CAD exhibiting varying disease severities
and different levels of intraluminal stenosis may present comparable early-stage plaque
loads and similar serum levels of CTRP5 and chemerin. The CCTA method allows the
identification of patients exhibiting advanced atherosclerosis, as evidenced by increased
CACS, significant calcific plaque burden, and lowered early-stage atherosclerotic plaque
presence, resulting in reduced levels of CTRP5 and chemerin expression. Conversely, pa-
tients with CAD who display elevated levels of CTRP5 and chemerin, minimal CAD extent,
low CACS, and significant early-stage atherosclerotic plaque burden (without intraluminal
stenosis) may also be identified by CCTA. This may clarify why plasma levels of CTRP5
and chemerin do not correlate with the severity, extent, or CACS of CAD. The absence of a
correlation between the severity and extent of CAD, as assessed by CACS, and the levels of
CTRP and chemerin in our study may be attributed to the limitations of the CACS method
in detecting non-calcified atherosclerotic plaques during the early stages of atherosclerosis,
where elevated levels of adipokines are anticipated [17,25,26,31,43,44].

Limitations

We acknowledge that there are certain limitations, such as the relatively small number
of the cohort, and the findings are based on results from a single center. In the CCTA-
confirmed CAD group, the CACS methodology employed to evaluate the severity and
extent of CAD is incapable of identifying early-stage atherosclerotic plaques that lack
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calcification. Because of this, additional validation is needed. This preliminary investigation
has the potential to pave the way for far more extensive research in the future.

5. Conclusions
CTRP5 and chemerin levels were significantly elevated in the CCTA-confirmed CAD

group compared to the CCTA-confirmed non-CAD group. CTRP5 was more sensitive and
specific than chemerin in identifying CAD. The plasma levels of CTRP5 and chemerin were
not found to be associated with CAD severity and extent in the CCTA-confirmed CAD
group, in contrast to the results of previous studies utilizing ICA. Adipokine CTRP5 may
serve as a promising “all-or-none” biomarker for CAD presence.
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44. Aksan, G.; İnci, S.; Nar, G.; Soylu, K.; Gedikli, Ö.; Yüksel, S.; Özdemir, M.; Nar, R.; Meriç, M.; Şahin, M. Association of serum
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