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Abstract: Background/Objectives: This study presents a comparative analysis of the
multistage diagnosis of Alzheimer’s disease (AD), including mild cognitive impairment
(MCI), utilizing two distinct types of biomarkers: blood gene expression and clinical
biomarker samples. Both of these samples, obtained from participants in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), were independently analyzed utilizing machine
learning (ML)-based multiclassifiers. This study applied novel machine learning-based data
augmentation techniques to gene expression profile data that are high-dimensional, low-
sample-size (HDLSS) and inherently highly imbalanced. The investigation obtained the
highest multiclassification performance to date in the multistage diagnosis of Alzheimer’s
disease utilizing the blood gene expression profiles of Alzheimer’s Disease Neuroimaging
Initiative (ADNI) participants. Based on the performance results obtained, and other
factors such as early prediction capabilities, this study compares the efficacies of the two
types of biomarkers for multistage diagnosis. This study presents the sole investigation in
which multiclassification-based AD stage diagnosis was conducted utilizing blood gene
expression data. We obtained the best multiclassification result in both modalities of
the ADNI data in terms of Fl-score and were able to identify new genetic biomarkers.
Methods: The combination of the XGBoost and SFBS (Sequential Floating Backward
Selection) methods was used to select the features. We were able to select the 95 most
effective gene probe sets out of 49,386. For the clinical study data, eight of the most
effective biomarkers were selected using SFBS. A deep learning (DL) classifier was used
to identify the stages—cognitive normal (CN), mild cognitive impairment (MCI), and
Alzheimer’s disease (AD)/dementia. DL, support vector machine (SVM), gradient boosting
(GB), and random forest (RF) classifiers were used for the AD stage detection from gene
expression profile data. Because of the high data imbalance in genomic data, borderline
oversampling /data augmentation was applied in the model training and original samples
for validation. Results: Utilizing clinical data, the highest ROC AUC scores attained
were 0.989, 0.927, and 0.907 for the identification of the CN, MCI, and dementia stages,
respectively. The highest F1 scores achieved were 0.971, 0.939, and 0.886. Employing gene
expression data, we obtained ROC AUC scores of 0.763, 0.761, and 0.706 for the CN, MCI,
and dementia stages, respectively, and F1 scores of 0.71, 0.77, and 0.53 for CN, MCI, and
dementia, respectively. Conclusions: This represents the best outcome to date for AD
stage diagnosis from ADNI blood gene expression profile data utilizing multiclassification
techniques. The results indicated that our multiclassification model effectively manages the
imbalanced data of a high-dimension, low-sample-size (HDLSS) nature to identify samples
of the minority class. MAPK14, PLG, FZD2, FXYD6, and TEP1 are among the novel genes
identified as being associated with AD risk.
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1. Introduction

An individual diagnosed with AD develops amyloid plaque, tau, and neurofibrillary
tangles in the brain. There is a loss of connectivity between the neurons in the brain. The
hippocampus is the likely place where the problem seems to originate. As the neurons
degenerate, other brain parts are also subsequently affected. This leads to cognitive impair-
ments such as short-term memory loss in the initial stages. Subsequently, the progressive
deterioration of short-term memory occurs. This is followed by a decline in other cognitive
faculties and the emergence of behavioral issues. Three broad stages are generally defined
for the progression of this disease: CN, MCI, and AD. “Mild Cognitive Impairment (MCI) is
attractive because it represents a transitional state between normal aging and dementia” [1].
Approximately 50-75% of individuals aged 65 years or above are generally susceptible to
AD. As life expectancy increases, the prevalence of AD is also rising globally.

No major cure for AD has been established to date [2]. In this situation, the early
diagnosis of the disease stage appears to be the only viable alternative. This would help
minimize progressive deterioration through preventive actions. This creates critical research
questions: What are the factors causing AD? Is it possible to utilize these factors for the
early detection of the disease? What are these early biomarkers of AD, and the challenges
associated with them? What is the potential of these early biomarkers for accurate AD
stage prediction? Our aim was to find answers to these questions in this study.

While PIB, MRI, MMSE, CSF, and some other biomarker data are efficiently used in
clinical AD diagnosis, omics data such as genomic biomarkers can help identify the AD
risk in an individual much earlier than clinical symptoms of AD appear. In Figure 1, the
“Systems Biology Approach” block has two parts—“molecular networks/pathways” and
“healthy vs. disordered brains”. These two parts are surrounded by blocks representing
multi-omics data (genomic, transcriptomic, epigenetic, environmental, metabolic, etc.).
Multi-omics data such as the genome and transcriptome potentially impact the “molecular
networks/pathways” that can lead to healthy or disordered brains, the second part of the
block. These multi-omics data are factors that cause AD. A study of these factors can help in
detecting the risk of AD much earlier [3]. We considered these datasets as early biomarkers.
Other multi-omics data such as connectome, structural, and functional brain imaging reflect
the brain structure, connectivity, and functionality of healthy and disordered brains, the
second part of the “Systems Biology Approach”. This second part is the impact of the first
part (molecular networks/pathways). The brain structure, connectivity, functionality, etc.,
ultimately impact the behavior of an individual. We used these data in AD diagnosis and
considered them as biomarkers at the clinical stage [3].
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Figure 1. AD diagnosis—a system biology approach; source (s)—Wikimedia Com (* http://upload.

Systems Biology Approach

wikimedia.org/, ¥ http:/ /www.uphs.upenn.edu/) and review paper [4]. Reprinted/adapted with
permission from Ref. [4].

Genomic factors play a major role in 80% of AD cases [5]. Genome Wide Association
Studies (GWAS) can discover some AD candidate genes. However, GWAS have majorly
failed to reliably produce AD candidate genes with reliability. Thousands of genes are
considered as potential AD risk factors [6,7]. However, GWAS only discover genes that
are associated with some phenotypes and fail to address the genes’ functionality causing
AD [8]. Gene expression provides the opportunity for biochemical pathway analysis,
regulatory mechanisms, and cellular functions to find the key AD and MCI genes. Some
research utilized gene expression values from brain tissues from biopsy- or autopsy-based
samples [9,10]. However, various difficulties are involved with such autopsy samples for
analysis. Alongside brain dynamics, changes are also expressed in blood and a large portion
of gene expression in the body is also found in PBMCs (Peripheral Blood Mononuclear
Cells) [11]. Amyloid precursor protein expression and oxidative damage in the RNA
and DNA of AD brain tissue are also reflected in peripheral blood [12]. So, blood gene
expression is gaining recognition as a viable approach for diagnosing Alzheimer’s disease
and mild cognitive impairment [13].

The clinical biomarker AD dataset encompasses measurements of brain structural
integrity via MRI regions of interest (ROI), primary cognitive evaluations, the measurement
of cell metabolism with FDG PET ROI averages, amyloid-beta load quantification through
AV45 PET ROI averages, biomarkers for measuring tau load in the brain, axon-related
microstructural parameters assessed with DTI ROI, CSF biomarkers for measuring tau and
amyloid levels in cerebrospinal fluid, and additional data such as demographic information
and APOE status including the number of APOE4 alleles. The APOE4 allele increases
the risk of late-onset Alzheimer’s disease [5]. Clinical biomarker data and demographic
variables such as age, gender, ethnicity, education, and marital status are frequently utilized
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in the clinical diagnosis of AD. With the increasing accessibility of biomarker datasets in
the public domain, machine learning (ML) serves as a crucial aid in disease diagnosis and
staging. ML is now widely used in disease diagnosis with the increasing availability of
AD datasets.

Figure 2 illustrates the research steps involved in the comparative investigation of
clinical and preclinical aspects of diagnosis. A literature review is conducted to assess the
potential of clinical and preclinical biomarkers in Alzheimer’s disease (AD) prediction,
the inherent challenges associated with each biomarker type, and the research gaps in
addressing these challenges. Based on these findings, methodologies are implemented to
elucidate the potential of each individual biomarker type for the stage diagnosis of AD. We
design strategies to enhance performance in AD stage identification, evaluate the outcomes,
and subsequently draw conclusions.

Study Alzheimer’s disease research on clinical and preclinical biomarker-

!

Identify research gaps and challenges of each biomarker type

!

Identify effective clinical and preclinical biomarkers

based diagnosis approaches

Construct individual AD diagnostic multiclassifiers from both biomarkers

!

Evaluate AD diagnosis performance, biomarker efficay

Figure 2. Research steps in comparative analysis of AD diagnosis.

Because of the aforementioned limitation of GWAS, our study does not employ SNP-
based genomic biomarkers as early biomarkers of AD diagnosis. Instead, this investigation
utilizes blood gene expression profiles of ADNI participants as early biomarkers indicative
of potential AD risk factors. Participants providing gene expression profile samples are
included among those contributing clinical study samples. This approach would enhance
the opportunity to comprehend and evaluate the inherent challenges and advantages of
each type of biomarker, as well as applying appropriate machine learning techniques for
predicting stages of Alzheimer’s disease. Additionally, the prediction performances of both
approaches are compared and analyzed. Through this approach, it is anticipated that the
previously mentioned research questions will be resolved.

1.1. Related Work

A substantial amount of research has already been conducted on AD diagnosis using
ML techniques from diverse biomarker data including demographic and socioeconomic, to
clinical and cognitive, imagery, genetic, and linguistic performance indicators. Numerous
research articles have been published on this subject. To achieve the intended outcome of
our study, with a focus on the clinical and preclinical aspects of diagnosis, we restricted our
AD literature review to clinical and gene expression profile-based AD diagnosis. Among
these, six research papers pertain to machine learning-based AD diagnosis from the imagery
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category of MRI and PET scan images. Three studies pertain to diagnosis based on gene
expression profiles. One publication addresses multimodal analysis of gene expression,
clinical, and SNP data. Another work focuses on diagnosis based on clinical, demographic,
and non-imagery biomarker data. Table 1 presents a selection of research papers on AD
diagnosis using machine learning methods, followed by a detailed exposition.

Table 1. AD literature review highlights.

Biomarker . "
Study Dataset(s) Feature Selection Classifier Results
81.6% for CSF and
Westman et al. (2012) Clinical CSF and Orthogonal partial 87;2 /Oaizléel\l/lm
' baseline MRI data Did not use least squares (OPLS) o p y
[14] mbination tool 91.8% accuracy for
combinatio 00 CSF and MRI
together
91.3% prediction
Fulton et al. (2019) ADNI clinical study =~ GBM-based feature GBM,, accuracy with GBM,
[15] data and MRI images importance ResNet-50 98.99% for images
with ResNet-50
Gene expression: AUC: 0.657, 0.874,
Lee et al. (2020) [9] ANM1, ANM2, VAE and TF genes LR, L;;IARIS;\II\TMI RE, and 0.804 for ADNI,
ADNI ANMI, and ANM?2
Gene expression:
GSE33000, Integrating DEGs .
Park et al. (2020) [16] GSE44770, and DMPs by DNN (deep neural 0823 is the average
. . . network) accuracy
methylation inter-section
data: GSE80970
AUC of 0.875 for AD
Gene expression: vs. CTL; AUC of
Kalkan [elt;il' (022) " GSE63060, GSE63061,  LASSO regression - on anstored 66, for N1 vs. AD;
and GSE140829 s TeP AUC of 0.619 for
MCI vs. CTL
AUC value 0.65 for
ADNI sene Mutual Information SVM, Adaboost, di(ajl\I\L‘(;zisl\ﬁ(;ZAze
AlMansoori et al. 8 (MI) feature selection, Random Forest (RF), §nos &
expression, SNP, ) ) expression data; 0.94
(2024) [18] . Chi-square, Lasso Multilayer .
clinical data for combined SNP,
SHAP Perceptron (MLP) ..
clinical, and gene
expression
Accuracy of 98.57,
96.37,94.22,99.83,
. 93.88, and 93.92 for
MRI images from Resizing, removing ma.oﬁflj]:g;h and NC/AD, NC/EMCI,
Fathi et al. (2024) [19] & non-brain image jorty-votng EMCI/LMCI,
ADNI . probability-based
slices LMCI/AD, 4-way,
ensemble methods
and 3-way
classification,
respectively

Westman et al. conducted research with CSF and a baseline MRI biomarker combina-
tion to enhance accuracy [14] compared with when each biomarker was used individually.
Their dataset comprised 96 samples from 273 CN and 96 AD patients. Their proposed
classification achieved an accuracy of 91.8% utilizing a combination of CSF and MRI. Veer-
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amuthu et al. employed PET brain images to classify subjects with AD and CN. Initially,
they conducted feature extraction with spatial normalization and noise filters [20], and then
applied the Fisher discriminant ratio for feature extraction to obtain the region of interest
(ROI). The associative rule (AR) mining algorithm was used for training, resulting in 91.33%
accuracy, 100% specificity, and 82.67% sensitivity. However, their approach did not address
the handling of missing data, the management of data with an imbalanced class, or the
validation process. Fulton et al. designed a gradient-boosted machine (GBM) to predict AD
from cognitive and sociodemographic data with 91.3% accuracy. Their deep learning and
convolutional neural network-based ResNet-50 framework achieved a multiclassification
accuracy of 98.99% from MRI [15]. However, the findings cannot be generalized due to
the limited sample size of merely 416 persons in the study. Lella et al. developed an
ML framework for the classification of AD and the analysis of feature significance using
DICOM images obtained from the ADNI database [21]. Artificial neural network (ANN),
support vector machine (SVM), and random forest (RF) techniques were applied to classify
the information content of the communicability metric of the image samples collected
from AD and CN natives. By applying image processing techniques, they generated a
connectivity matrix that represented the structural complexity of the brain network of each
subject. Their ANN model attained an AUC score of 83% and an accuracy of 75% in the
classification task. Despite a competitive performance, the study omitted the MCI stage of
classification. Sarma et al. [22] applied different machine learning techniques to predict
AD stages (CN, MCI, and AD) and achieved the optimal F1 scores of 89% for CN, 84% for
MCI, and 80% for AD stage identification using deep learning from ADNI baseline clinical
trial samples from 2000 participants. They utilized Sequential Floating Backward Selection
(SFBS) and correlation matrix techniques to reduce dimensionality from 113 biomarkers to
8 biomarkers. Nonetheless, DL techniques are typically sensitive to the nature of training
data. They are also sensitive to random initialization, which is often overlooked and has
not been addressed.

In their study, Bae et al. [23] utilized T1-weighted MRI images of the medial temporal
lobe to detect AD. They employed Inception-v4, a pretrained 2D image classification
CNN model. The research utilized two datasets: one from ADNI and another from Seoul
National University Bundang Hospital (SNUBH). The fine-tuned model comprised 156 AD
patients and 156 CN controls from each dataset while testing the final model was conducted
with 39 AD patients and 39 CN from each dataset. Five model instances were generated
from each dataset utilizing 5-fold cross-validation. The final outcomes of the test were
determined by calculating the mean ensemble values of the average probabilities derived
from models generated through cross-validation. The ADNI-trained model achieved
an AUC score of 0.94 using ADNI test data while the SNUBH-trained model attained
an AUC score of 0.91 using SNUBH test data. The AUC ratings for the ADNI-trained-
SNUBH test and SNUBH-trained—ADNI test data were 0.88 and 0.89, respectively. Fathi
et al. [19] selected six of the most effective individual CNN-based classifiers to combine
and construct an ensemble model for classifying AD stages. They achieved accuracy rates
of 98.57, 96.37, 94.22, 99.83, 93.88, and 93.92 for NC/AD, NC/EMCI, EMCI/LMCI, and
LMCI/AD, four-way, and three-way classification groups, respectively, from the ADNI
MRI dataset. The ensemble technique significantly enhanced performance compared
to individual model performance; however, when tested with a local MRI dataset, the
performance was suboptimal. Furthermore, they employed accuracy as a performance
metric for multiclass classification, which is not recommended.

Regarding the gene expression data modality, datasets from NCBI and ADNI have
been predominantly utilized in research on AD diagnosis employing statistical meth-
ods, machine learning algorithms, and deep neural networks. Substantial research on
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Alzheimer’s disease utilizing genome expression data has been conducted employing
machine learning techniques. Huang et al. [24] developed an SVM-based method to classify
AD genes from gene network data of the human brain and gene expression in the whole
genome. The candidate genes of AD were classified with an accuracy and ROC of 84.56%
and 94%, respectively. This methodology provides a complementary approach for the
spectrum of AD-associated genes identified from more than 20,000 genes on a genome-
wide scale. Lee et al. in their study identified AD-related genes from DEGs (Differentially
Expressed Genes), the TF (Transcription Factor) database, gene connectivity network data,
and CFG (Convergent Functional Genomics) from blood gene expression data [9]. The
AD-related gene expression data were utilized to construct ML models from logistic re-
gression (LR), L1-regularized LR (L1-LR), SVM, RF, and DNN classifiers. The best average
values of the AUC (area under the curve) obtained were 0.657 for ADNI, 0.874 for ANMI,
and 0.804 for the ANM2 dataset employing five-fold cross-validation for each dataset.
These findings suggest that gene expression data derived from blood samples demonstrate
potential utility in predicting AD stages. Nevertheless, the significant data imbalance in the
ADNI dataset, where the minority dementia sample size is very small compared with the
other two categories, results in a suboptimal AUC score in the case of ADNI. Additionally,
multiclassification is avoided here, even though the datasets have three labels, including
the MCI stage. Park et al. in their research [16] proposed a DL-based model capable of
classifying AD by integrating large-scale DNA methylation and gene expression data to
construct multi-omics datasets. They attained an accuracy of 0.823, surpassing that of a
single omics dataset. However, they did not use the multi-omics dataset from the same
sample cohort. AlMansoori, M.E. et al. [18] developed a multimodal machine learning
method to differentiate between CN and MCI/AD cases. The study demonstrated an AUC
performance of 0.95 when combining gene expression profiles, clinical data, and SNP data
using Mutual Information (MI) feature selection from 623 ADNI participants in a binary
classification approach. However, when utilizing gene expression data independently, the
AUC performance decreased to 0.65. Furthermore, integrating genetic data with clinical
data could potentially enhance performance. Nevertheless, it remains to be elucidated
how efficacious it is to combine preclinical data with clinical data, considering that pre-
clinical data are typically utilized to predict disease significantly earlier than the onset of
clinical symptoms.

1.2. Research Gap Analysis

Primary limitations in the earlier research were the lack of sufficient and authentic
data samples and lower accuracy achieved [22]. Nevertheless, a constraint in the majority
of previous research utilizing gene expression and clinical data is the omission of the mild
cognitive impairment (MCI) stage, the intermediate stage of Alzheimer’s Disease (AD) in
diagnosis, despite obtaining impressive scores with binary classification. This omission of
the MCI stage, which constitutes a crucial phase of the disease progression, represents a
significant aspect of research that has been inadequately addressed [1]. Recent research in-
corporating the MCI stage has yielded notable results in the binary classification of disease
states, specifically AD versus CN, AD versus MCI, and MCI versus CN. Although employ-
ing binary classification may have yielded improved results, this approach necessitates the
use of three distinct models and potentially leads to misclassification when evaluated with
previously unseen samples encompassing all three AD stages. MCl stage is a preclinical
stage that can significantly indicate the progression of AD.

Subsequently, the performance output of some of the earlier research demonstrates
promise with an AUC score around 80% when balanced GEO datasets are used for model
training/testing. However, results are not promising when the training and test dataset is
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ADNI. In the research conducted by Lee H. et al. [9] with ADNI data, the AUC for binary
classification of CN against AD was 0.657 during internal validation (using ADNI data
for training and testing/validation). The score is significantly lower when compared with
other outcomes. One potential cause for the suboptimal performance is that ADNI gene
expression data exhibit HDLSS characteristics [25] and are also imbalanced. The dataset
comprises 49,386 gene probes/gene transcripts (or features), contains only 744 samples,
and exhibits an imbalance, as illustrated in Table 2. The authors employed novel feature
selection and modeling approaches; however, they did not adequately address the impact
of low sample size and inherent data imbalance on the model’s learning capacity.

Table 2. Gender, race, and age-wise distribution of AD, CN, and dementia of ADNI blood gene
expression dataset.

Diagnosis  Class Sample Gender Race Age
Class Size Male Female  White Black Asian  Others Age<65 Age>65
CN 246 117 129 226 16 2 2 7 239
MCI 382 216 166 356 11 5 10 66 316
Dementia 116 75 43 108 3 4 1 6 110

While certain effective gene selection techniques have been employed, it would have
been more comprehensive to consider the entire list of genes as input for selection. Regard-
ing limited sample size and data imbalance, certain researchers have addressed this issue
by augmenting the sample size through the integration of comparable gene expression
datasets, such as ANM1 and ANM2, which are affiliated with NCBI. This approach is not
feasible for ADNI gene expression profile data, as the samples are collected utilizing differ-
ent technology from that of NCBIL. Consequently, the diagnostic performance of models
derived from ADNI gene expression profiles is substantially limited [10]. Although inherent
complexity is associated with gene expression data and cannot be circumvented, enhanced
feature selection and classification techniques, in conjunction with data augmentation,
would have significantly improved classification performance.

Some researchers [18] integrated preclinical stage biomarkers with clinical biomarkers
and were able to produce exceptionally high performance. While the integration of clinical
biomarkers such as CSF and MRI and similarly the integration of preclinical biomarkers
such as gene and epigenetic expression are logical, the integration of clinical biomarkers
with preclinical biomarkers may not be efficacious in practical diagnosis. This is primarily
attributable to the fact that preclinical biomarkers are predominantly utilized to identify
the risk of Alzheimer’s disease well before the onset of clinical symptoms.

Furthermore, researchers did not employ appropriate performance metrics for AD
classification measurement from imbalanced data, which is very common in real data. They
used accuracy and AUC as performance measurements and omitted F1-score. Fl-score
provides a more accurate assessment of model performance across all types of test data,
particularly for imbalanced data such as ADNI blood gene expression data.

1.3. Key Contributions

This study presents four primary contributions. First, we conducted stage diagno-
sis utilizing two distinct data modalities of ADNI participants: blood gene expression
profile, a biomarker at the preclinical stage, and clinical study data, a biomarker at the
clinical stage. Given that both data modalities originate from the same ADNI source, with
participants contributing gene expression samples belonging to the cohort contributing
clinical study samples, we have a pragmatic comparison of the inherent challenges of both
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sets of biomarker data and their efficacies in multistage AD prediction. As illustrated in
Figure 3, we developed two separate models and subsequently compared their perfor-
mances and discussed the inherent challenges and efficacies of each type of biomarker in

AD stage prediction.
ADNI participants
Blood gene expression samples Clinical study samples
Multiclassifier construction Multiclassifier construction

\ '

Classification performance evaluation and comparison
Performance cause analysis

Biomarker efficacy analysis

Figure 3. Comparative investigation of AD diagnosis at broad level.

Second, we achieved a multiclassification-based ROC performance score on ADNI
genomic data, which significantly surpasses the AUC score of 0.657 and 0.65 obtained from
binary classification with internal validation in two previous studies [9,18], as discussed in
Section 1.1. Given the low efficacy in Alzheimer’s disease (AD) identification from ADNI
blood gene expression data in prior studies, we opted for a unique feature selection and a
novel data augmentation approach. Third, this study represents the first instance in which
an Fl-score-based performance analysis and multiclassification were implemented in the
context of blood gene expression-based AD multistage assessment whereas prior research
was limited to AUC-based performance analysis. Our research demonstrates the ability
to achieve the highest reported F1 score and AUC score from non-imagery clinical data in
Alzheimer’s disease diagnosis using multiclassification.

Fourth, this study uncovered novel genes that may be potentially implicated in the
etiology of or confer protection against AD. The analysis of the second modality of the ADNI
clinical dataset revealed the most effective biomarkers for diagnosis, achieving the highest
known F1-score and ROC AUC for multiclassification in AD stage diagnosis. The results of
both models developed utilizing the two modalities of ADNI subjects were analyzed.

2. Material and Methods
2.1. Dataset Selection and Exploration

In our investigation, we focused on two modalities of ADNI data: blood gene ex-
pression profile and clinical study datasets available on the Laboratory of Neuro Imaging
(LONI) website. The 744 ADNI participants contributing to gene expression samples con-
stitute a subset of the 2400 participants contributing to clinical study samples. The gene
expression profiling data are derived from the blood samples of 744 ADNI participants.
The samples were collected in different ADNI phases, and the Affymetrix Human Genome
(HG) U219 Array was used for expression profiling. The samples were passed through dif-
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ferent QC processes and ultimately samples from 744 participants were chosen for further
analysis. Each sample from these 744 participants comprises a total of 49,386 probe sets.
The acquisition of stage diagnosis information for the participants presented challenges
and was derived from ADNI clinical/study data by utilizing collection phase/date and
patient ID information common to both study/clinical and gene expression profile datasets.
The participants in the genome expression profiling constitute a subset of the study/clinical
data participants.

ADNIMERGE is the clinical study dataset utilized as the additional data modality in
this research. The ADNIMERGE data were collected in multiple phases and comprised
baseline and periodic samples. In this study, baseline clinical samples were collected from
2400 participants. The collected clinical dataset consisted of total 892 samples from the CN
class, 1821 samples from the MClI class, and 413 samples from the AD or Dementia class.

The blood gene expression dataset, comprising 744 participants, is detailed in Table 2,
which shows the sample distribution across three categories: CN, MCI, and AD.

2.2. Data Pre-Processing and Feature Selection

The ADNI clinical dataset exhibits relative simplicity in comparison to the gene ex-
pression profile, which represents the alternative modality. We utilized the SFBS algorithm
for feature selection. Based on our examination of previous research on AD diagnosis, we
selected 25 biomarkers from a total of 116. Subsequently, we applied the SFBS (Sequential
Floating Backward Selection) technique, which identified 8 essential features from the
initial 25, as illustrated in Figure 4 and Table 3.

SFBS: Mean CV Scores vs No of features

0.17

0.16 1

0.15 A1

0.14 A1

0.13 4

0.12 1

0.11 A
0 5 10 15 20 25

Figure 4. SFBS graph depicting the relationship between mean cross-validation scores and the number
of features of selection of 8 clinical feature biomarkers.

Table 3. The eight selected ADNI clinical study biomarkers.

Feature Name Feature Description
APOE4 Number of ¢4 alleles
PTMARRY Marital status
FDG Cell metabolism measurement, reduced for AD patients

Hippocampus Hippocampus measurement

WholeBrain Whole brain measurement

mPACCdigit Modified Preclinical Al.zhenr}e'r Cognitive Composite

with Digit
LDELTOTAL Logical memory delayed recall total

CDRSB Clinical Dementia Rating Scale—Sum of Boxes
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Quality control procedures for gene expression data were implemented at the time of
the public provision of the dataset, resulting in the selection of 744 samples. Subsequently,
pre-processing and cleaning were directly applied to the gene expression dataset. Data
normalization and scaling were performed using the ‘MinMax" scaler. Following pre-
processing, the dataset comprised 744 samples (rows) and 48,158 gene transcripts (features).
This situation exemplifies the ‘curse of dimensionality” due to the exceptionally high
dimensionality [26]. Consequently, this leads to significant overfitting. Furthermore, the
magnitude of approximately 50,000 features impacts computational efficiency. Previous
research has employed feature selection techniques such as VAE (Variational Auto Encoder),
LASSO, and RFE (recursive feature elimination) [9,17]. For autoencoder techniques, it is
necessary to specify the number of features to be minimized, with the selected features
represented in an encoded format.

This study employed a two-step process for feature selection. Initially, we calculated
the feature score of each feature utilizing the XGBoost algorithm and subsequently ranked
48,158 genes according to these scores. Subsequently, we applied the SFBS algorithm to the
top 300 gene transcripts. The SFBS algorithm automatically selected 95 features/transcript
genes from the 300 transcripts, as illustrated in Figure 5 below.

SFBS: Mean CV Scores vs No of features
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Figure 5. SFBS graph depicting the relationship between mean cross-validation scores and the number
of features for selection of 95 gene features/gene probe sets.

As illustrated in Figure 6 below, the graph of the top 40 features indicates that the
gene probe/transcript ‘SCGB1D4: 11737959_at’ is positioned at the bottom of the graph
exhibiting the highest score. The SHAP summary plot reveals a hierarchy of influential fea-
tures, with ‘SCGB1D4: 11737959_at’ demonstrating the highest impact. Subsequent features
of significance include "ASXL3: 11737082_a_at’, ‘MAPK14: 11742204_a_at’, “TMEMB30B:
11756750_a_at’, and ‘SQLE: 11717731_at’, followed by additional features. The score graph
plot ranks these features within the top 25.

Recent research has utilized the SHAP explainability and feature selection tool, lever-
aging its visualization capabilities and other functionalities [27]. Employing an XGBoost
algorithm-based model, we applied the SHAP method to determine the impact of each
feature or gene transcript on the model output for three stages of Alzheimer’s disease (AD)
patients: cognitively normal (CN), mild cognitive impairment (MCI), and dementia. We
conducted SHAP analysis on the ADNI gene expression dataset. The SHAP analysis tool,
when applied to these datasets, generates output figures that facilitate the understanding
of the positive and negative impacts of gene expression values for each gene transcript. If a
high gene expression value of a gene transcript produces a significant impact indicative of
AD or MCI stage as output, the gene is considered an AD risk factor. Conversely, if it has a
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negative impact or if a high gene expression value of a gene transcript produces a significant
impact indicative of CN stage as output, the gene is considered an AD suppressor gene.
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Figure 6. Top 40 features/gene transcripts out of 95 ranked as per feature score. The asterisk (*) in the

illustration holds no specific meaning. It is part of the gene ADNI transcript name—LOC100509445

[ OVOS2* | | LOC728715: 11756504_S _at.

In our investigation, the application of SHAP analysis to ADNI gene expression data

resulted in the generation of Figures 7 and 8. This facilitated the examination of the

influence of various genes on AD stages. Subsequently, we identified genes associated with

AD, as enumerated in Table 4 below.

Table 4. AD risk and suppressor gene list found from ADNI dataset.

Gene Gene Nature
MAPK14 AD risk
TEP1 AD risk
VSIG4 AD suppressor
ATP9A AD suppressor
usr47 AD suppressor
KISSIR AD suppressor
PLG AD risk
FZD2 AD risk
FXYD6 AD risk
MID1 AD risk
DRAXIN AD risk
WNT5B AD risk
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Figure 7. SHAP plot showing impacts of gene transcripts in identification of stages. Left to right,
first—AD/dementia stage identification output from ADNI samples; second—MCI classification
output from ADNI samples. The asterisk (*) in the first illustration holds no specific meaning. It is
part of the gene ADNI transcript name—LOC100509445 | | OVOS2* | | LOC728715: 11756504_S _at.
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Figure 8. Left to right, first—SHAP plot showing impacts of gene transcripts to produce CN classifi-
cation output; second—SHAP summary plot showing impacts of gene transcripts in identifying CN,
AD, and MCI stages from ADNI samples. The asterisk (*) in the first illustration holds no specific
meaning. It is part of the gene ADNI transcript name—LOC100509445 | | OVOS2* | | LOC728715:
11756504_S _at.
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2.3. AD Multistage Diagnosis Model Construction

Deep learning is the common classifier used for model construction for both data
modalities. Given the availability of more than 2000 clinical samples, deep learning was
deemed the appropriate methodology for developing a model from the clinical data. Deep
learning is a better classifier technique than many other ML-based classifiers [28]. A prior
study by the authors exhibited superior performance utilizing deep learning techniques
with ADNI clinical data relative to other machine learning multi-classifiers [24]. Con-
sequently, alternative machine learning classifiers have not been explored for analyzing
clinical data. It is worth noting that prior researchers [9,16,18,23] have effectively applied
SVM, RF, and boosting algorithms in blood gene expression studies, yielding encouraging
outcomes. The gene expression dataset comprised 744 samples. There remains substantial
scope for exploring additional machine learning algorithms. This study conducted experi-
ments utilizing three additional machine learning-based classifiers: SVM, GBM, and RE.

2.3.1. Multiclassification Model for Clinical Data

The deep learning model developed for ADNI clinical study data analysis exhibits a
straightforward architecture. Unlike ADNI gene expression profiles, this dataset does not
possess high-dimension, low-sample-size (HDLSS) characteristics. The clinical data com-
prised 2000 samples, which is sufficient for model construction. The available 2400 samples
were partitioned into 5 sets of training and validation utilizing 5-fold cross-validation, with
each set having a 20% allocation for validation [29,30]. Five deep learning model instances
were trained from each set. The hyperparameters utilized during the training process are
delineated in Table 5. The performance metrics of the five most effective deep learning
model instances are presented in the subsequent section.

Table 5. Hyperparameters for deep learning models for clinical data analysis.

Hyper Tuning Parameter Parameter Value
Optimizer Adam optimizer
Cost or loss function categorical cross_entropy
Learning rate 0.001
Batch size 5
Epochs 4000
No. of layers 2
Activation function—layer 1 RELU
Activation function—layer 2 Softmax
Dropout rate 0.20

2.3.2. Multiclassification Model for Gene Expression Data

The genomic dataset exhibits high-dimensional, low-sample-size (HDLSS) character-
istics and is imbalanced in nature. The dataset comprises 384 samples of mild cognitive
impairment (MCI), 280 of cognitively normal (CN), and only 116 of dementia, as indicated
in Table 2. A significant imbalance exists between the MCI and dementia categories. The
minority class, dementia, presents challenges in prediction due to its limited sample size,
resulting in fewer learning opportunities compared to the majority samples. A common
issue associated with imbalanced datasets is that most learning methods exhibit bias to-
wards the majority class, leading to the inadequate modeling of minority samples [31].
Despite extensive research efforts to address imbalanced learning, numerous limitations
persist [32]. To date, no research has been conducted on the classification of imbalanced
gene expression data. The primary challenge in imbalanced classification stems from
the insufficient samples in the minority category, which impedes the model’s ability to
accurately learn the decision boundary [33].
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As illustrated in Figure 9, there are primarily two approaches for developing various
models from imbalanced data. Given the small overall sample size and its imbalanced
characteristics, the data augmentation strategy was preferred over alternative methods
such as weighted or ensemble modeling. The application of oversampling to obtain a more
balanced dataset is an effective strategy. Minority sample data are replicated prior to model
fitting. However, random oversampling increases the probability of overfitting occurrence
as it creates exact copies of minority class samples [31]. This study employed oversampling
techniques where additional minority samples are synthetically generated, which is a form
of data augmentation. One of the most widely used methods is the ‘Synthetic Minority
Oversampling Technique’, or SMOTE [34]. This research utilized a popular extension,
‘Borderline SMOTE’, where misclassified minority samples are selected for oversampling
instead of indiscriminate oversampling. The samples along the borderline and those nearby
tend to be misclassified more frequently than those distant from the borderline, making
them more crucial for classification [35].

Imbalanced data

AW

+ Low Sample Size, High Dimensionality

Cost-Sensitive / Weighted Method, \
Ensemble Method Dimensionality Reduction

N

Data Augmentation / Oversampling

Imbalanced Genomic data

Figure 9. Handling of genome expression data for model construction.

As illustrated in Figure 10 below, the data were randomly partitioned into 5 sets of
training and testing samples utilizing 5-fold cross-validation. Oversampling was applied to
the training dataset, but not to the validation dataset. This approach is necessary to ensure
that model evaluation is conducted using a dataset that accurately represents the problem
domain. Evaluating the model with a dataset containing deleted or synthesized examples
would likely result in an overly optimistic performance estimation [33].

Original GEX samples with 95 probe sets

Five-fold cross-validation-based division of data to training and testing

Training Test Training Test

Data Data Data Data
Oversample :I Oversample
Multiclassifier 1 2 3 4 Multiclassifier 5

Figure 10. Model construction from gene expression profiles with 5-fold cross validation.
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3. Performance Results

We utilized ROC AUC and Fl-score to evaluate the model performance of multi-
classification. Accuracy, a commonly employed performance metric, is recognized as an
inadequate measure for model performance assessment with imbalanced data [33]. Conse-
quently, we did not employ this metric. A range of metrics is utilized when learning from
imbalanced data. The most prevalent among these are receiver operating characteristic
(ROC) analysis and the area under the ROC curve [36,37]. Additional widely utilized met-
rics in learning from imbalanced data are derived from precision and recall. The F1-score
measure equally weights precision and recall. Beyond F1-score and ROC AUC, researchers
can utilize alternative performance metrics for imbalanced classification, such as G-Mean,
Brier score, F2-score, and F0.5-score [38]. F1-score is appropriate when false negatives and
false positives hold equal significance. However, when there is greater concern about false
negatives, F2-score is more appropriate. Conversely, FO.5-score is preferred when false
positives are of higher importance. Probabilistic metrics like the Brier score are tailored to
assess the uncertainty in classifier predictions. In our study on stage identification, where
all classes hold equal significance, we opted to use F1-score and ROC AUC as our evalua-
tion criteria. Furthermore, the F1-score variant is frequently employed as a performance
metric in learning from imbalanced data [33].

For both clinical data and genome expression data, we used the k-fold cross-validation
technique. Cross-validation is a data resampling methodology utilized to evaluate the
generalization capability of predictive models and to mitigate overfitting [29,30]. “In
k-fold cross-validation, the available learning set is partitioned into k disjoint subsets
of approximately equal size. Here, fold refers to the number of resulting subsets. This
partitioning is performed by randomly sampling cases from the learning set without
replacement. The model is trained using k-1 subsets, which, together, represent the training
set. Subsequently, the model is applied to the remaining subset, which is denoted as the
validation set, and the performance is measured. This procedure is repeated until each of
the k subsets has served as validation set” [29].

An elevated k value would reduce the quantity of test samples while augmenting
training samples. The genetic dataset comprised 744 samples, while the clinical study had
2400 samples. Given the relatively small amount of gene expression data, we set k = 5 for k-
fold cross-validation for both gene expression and clinical data. The 5-fold cross-validation
would retain 20% of the total samples for testing. With this, the testing sample count for
gene expression data was 148, which is optimal, while the training sample count was 596.
We established k = 5 for the clinical data-based model in cross-validation, consistent with
the gene expression-based models to facilitate performance comparison. The number of
training samples was augmented by the SMOTE-based minority oversampling method
where the minority sample size was increased, as outlined in the preceding section.

For both datasets, we initially conducted multiple trials by temporarily modifying
the random state in the k-fold cross-validation method to control randomness, ensure the
reproducibility of the results, and optimize parameters. This facilitated the minimization
of performance variations across diverse random states, resulting in consistent AUC and
F1-score outcomes for each model instance generated from both biomarker categories, as
illustrated in the subsequent tables.

Tables 6 and 7 present the area under the curve (AUC) and F1-score results from the
5-fold cross-validation models of the deep learning (DL), support vector machine (SVM),
gradient boosting machine (GBM), and random forest (RF) classifiers constructed from gene
expression data. For each Synthetic Minority Oversampling Technique (SMOTE)-based
model result, the associated result from a non-SMOTE-based model result is presented. The
first row in the SMOTE-based section of the table presents the evaluation of each classifier
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constructed from the identical oversampled training set with the corresponding testing
data from the first cross-validation. This corresponds to the first row of the non-SMOTE
models constructed from the data of the first cross-validation. Subsequently, the second
to fifth rows present the results of the complete 5-fold validation for both SMOTE- and
non-SMOTE-based models.

Table 6. AUC-based performance of DL, SVM, GBM, and RF models from gene expression data.

ROC Score of SMOTE-Based Models

DL SVM GBM RF
CN MCI Dementia CN MCI Dementia CN MCI Dementia CN MCI Dementia
0.717 0.681 0.634 0.672 0.651 0.597 0.711 0.667 0.548 0.593 0.575 0.620
0.763 0.761 0.706 0.690 0.648 0.660 0.659 0.660 0.574 0.617 0.597 0.534
0.736 0.644 0.602 0.761 0.664 0.572 0.678 0.635 0.577 0.613 0.578 0.527
0.669 0.668 0.607 0.694 0.647 0.586 0.678 0.655 0.639 0.639 0.592 0.619
0.732 0.729 0.613 0.668 0.641 0.572 0.663 0.655 0.618 0.598 0.574 0.601
ROC Score of Non-SMOTE-Based Models
DL SVM GBM RF
CN MCI Dementia CN MCI Dementia CN MCI Dementia CN MCI Dementia
0.717 0.713 0.620 0.654 0.616 0.500 0.717 0.654 0.518 0.655 0.632 0.500
0.682 0.662 0.572 0.676 0.632 0.500 0.614 0.659 0.592 0.579 0.570 0.496
0.773 0.703 0.593 0.663 0.629 0.500 0.634 0.670 0.613 0.622 0.612 0.500
0.735 0.706 0.607 0.637 0.601 0.500 0.668 0.638 0.584 0.622 0.573 0.500

0.698 0.689 0.600 0.658 0.628 0.500 0.663 0.614 0.563 0.554 0.547 0.520

Table 7. F1-score-based performance of DL, SVM, GBM, and RF models from gene expression data.

F1-Score of SMOTE-Based Models

DL SVM GBM RF
CN MCI Dementia CN MCI Dementia CN MCI Dementia CN MCI Dementia
0.63 0.71 0.39 0.57 0.70 0.32 0.62 0.70 0.20 0.45 0.64 0.37
0.71 0.77 0.53 0.60 0.67 0.41 0.55 0.68 0.25 0.46 0.65 0.18
0.63 0.69 0.33 0.67 0.71 0.27 0.55 0.67 0.29 0.44 0.66 0.17
0.52 0.70 0.37 0.56 0.69 0.36 0.53 0.68 0.43 0.48 0.65 0.39
0.65 0.73 0.36 0.55 0.67 0.28 0.53 0.69 0.36 0.42 0.64 0.33

F1-Score of Non-SMOTE-Based Models

DL SVM GBM RF
CN MCI Dementia CN MCI Dementia CN MCI Dementia CN MCI Dementia
0.63 0.75 0.37 0.52 0.71 0.00 0.62 0.72 0.09 0.51 0.74 0.00
0.58 0.69 0.25 0.57 0.69 0.00 0.45 0.71 0.30 0.32 0.68 0.00
0.68 0.73 0.32 0.51 0.74 0.00 0.48 0.75 0.36 0.42 0.74 0.00
0.62 0.75 0.36 0.47 0.70 0.00 0.52 0.70 0.30 0.43 0.69 0.00
0.60 0.72 0.33 0.52 0.71 0.00 0.53 0.68 0.24 0.27 0.67 0.08

The results indicate that, in the majority of instances, the SMOTE-based models exhibit
superior performance compared to their non-SMOTE-based counterparts. Furthermore, it
is evident that the stage diagnosis of CN and MCI stages demonstrates higher efficacy rela-
tive to AD/dementia stage identification. This can be attributed to the larger sample size in
comparison to the minority AD samples, as elucidated in the preceding section. A larger
sample size facilitates the enhanced learning of the specific features involved, while a low
sample size results in reduced learning, thereby impacting the performance in identifying
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learned features. Nevertheless, the application of minority oversampling techniques results
in an enhancement in AD/dementia stage identification performance. This improvement
is evident when comparing the performance of each instance of SMOTE-based model with
its non-SMOTE-based model counterpart. The results obtained demonstrate significantly
superior outcomes compared to those of prior research conducted with ADNI gene ex-
pression data [9,18]. This establishes our superior feature selection and innovative data
augmentation of minority samples for training.

Table 8 illustrates the performance metrics of the five clinical data-based deep learning
model instances constructed using 5-fold cross-validation. The performance data, pre-
senting Fl-scores and ROC AUC values for the multiclassification of the deep learning
model derived from clinical data, surpass those of gene expression-based models, as an-
ticipated. This superiority is attributable to the substantially larger sample size, relatively
straightforward data structure, and absence of challenges inherent in gene expression data,
such as high-dimensionality, low-sample-size (HDLSS) characteristics, data imbalance, and
multiple pathway involvement.

Table 8. Performance of the DL model constructed using clinical data.

F1 Score ROC AUC
CN MCI Dementia CN MCI Dementia
0.983 0.923 0.847 0.983 0.937 0.877
0.971 0.939 0.886 0.989 0.927 0.907
0.944 0.931 0.869 0.967 0.921 0.915
0.968 0.933 0.846 0.968 0.944 0.897
0.947 0.856 0.823 0.941 0.893 0.908

Figure 11 illustrates a visual comparative analysis of the best performing models
constructed using gene expression data and clinical information. The evaluation metrics
employed include the receiver operating characteristic (ROC) curve, the precision-recall
(PR) curve, and the confusion matrix (CM). The graphical representations and confu-
sion matrix outcomes provide compelling evidence for the superior multiclassification
capabilities of a model derived from clinical data. The results indicate that both models
demonstrate enhanced classification ability in identifying CN and MCI stages compared
to the AD category where AD represents minority samples. To evaluate and compare the
performance of both model types, we prioritized assessing the classification accuracy of the
AD/dementia category, which represents the minority samples over other CN and MCI
categories. As per the confusion matrix, out of 131 AD/dementia testing samples, the clini-
cal data-driven model categorized 109 samples as AD/dementia and 22 as MCI, with no
samples categorized as CN, whereas the blood gene expression model classified 8 samples
as AD/dementia, 7 as MCI, and 3 as CN, from a total of 18 AD/dementia testing samples.
The clinical data-based model exhibited superior classification performance compared to its
gene-based counterpart due to multiple factors elucidated in other sections. However, the
gene-based model effectively distinguished 15 combined AD/dementia and MCI samples
from cognitive normal (CN) out of a total of 18 dementia samples.
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Figure 11. Performances of gene expression-based model and clinical data-based model. (A) ROC
curve, gene expression-based model; (B) ROC curve, clinical data-based model. (C) PR curve, gene
expression-based model; (D) PR curve, clinical data-based model. (E) CM, gene expression-based
model. (F) CM, clinical data-based model.

4. Discussion and Conclusions

This investigation independently utilized gene expression data and clinical study
data for the diagnosis of Alzheimer’s disease stages. The findings indicate that the model
constructed using gene expression—an alternative data modality—demonstrates relatively
low multiclassification performance for Alzheimer’s disease stage diagnosis compared to
the model built on clinical data—the other data modality. Multiple factors contribute to this
outcome. Primarily, the gene expression dataset, comprising 744 samples, is substantially
smaller in comparison to the clinical study dataset, which contains 2000 samples. This
considerable disparity in sample size inherently constrains the potential for comprehen-
sive model training. Additionally, the dataset presents significantly more complexities
compared to the clinical data, as previously elucidated. The initial two factors necessitate
advanced techniques for identifying crucial features, subsequently followed by the mul-
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ticlassification of the data, as we delineated in the preceding sections. The third reason
pertains to the involvement of numerous pathways in genomic data. While gene expres-
sion is a major area of functional genomics, there are other domains such as proteomics,
metabolomics, and epigenomics which contribute to variations in the type and quantity of
protein production, leading to an individual’s phenotype, health status, and susceptibility
to various diseases [39]. Figure 12 below elucidates this point. Although our research
achieved the best outcome in multistage AD diagnosis utilizing ADNI gene expression
data, the results do not match the performance of models derived from clinical data. Nev-
ertheless, preclinical biomarkers such as genome expression, which is a prominent early
indicator, have the potential to identify the AD stage significantly earlier than the manifes-
tation of AD symptoms in an individual, whereas clinical biomarkers primarily capture
symptomatic manifestations.

Genomics and epigenomics Transcriptomics

ROV VA VAVAN

The study of the DNA sequence and The study of the RNA molecules
associated heritable biochemical

" . present in a sample
modifications

Phenotype

)

Proteomics Metabolomics
OH

o
%

NH,

The study of the proteins present in a sample. The study of the metabolites present in a sample.

Figure 12. Genomic, proteomic, metabolomic, and epigenomic factors in phenotype and health.
Source: EMBL-EBI, shared under a Creative Commons Attribution 4.0 International (CC BY 4.0)
license.

The varying performance scores of the models constructed from each data modality
demonstrate promising results. Both outcomes demonstrate the effectiveness of our feature
selection and model construction in each approach. Notably, an accurate diagnosis of
AD stages can be achieved using only 8 clinical biomarkers, eliminating the need for an
extensive panel of 116 clinical biomarkers. This finding has the potential to provide valuable
support for physicians in laboratory settings. Through the implementation of a proficient
feature selection methodology in conjunction with a novel data-augmentation technique
for addressing imbalanced data, we identified 95 significant gene transcripts from a total of
49,386, thereby improving the ROC AUC score from 0.657 and 0.65, as reported in prior
research on the binary classification of CN versus AD [9,18], to 0.763, 0.761, and 0.706 in the
multiclassification of CN, MCI, and AD stages, respectively. An average gain of 8% in the
AUC score is noteworthy, particularly considering the introduction of multiclassification
in lieu of binary classification utilized in previous research. While none of the previous
research studies on AD diagnosis with blood gene expression data considered F1-score for
performance analysis, our research utilized F1-score in multiclassification and achieved
the competitive scores of 0.71, 0.77, and 0.53 for CN, MCI, and AD, respectively, Our
SHAP analysis of 95 gene transcripts identified a subset of genes potentially relevant to
the etiology of Alzheimer’s disease (AD). This investigation did not elucidate a role for
the known AD risk alleles of APP (amyloid precursor protein), PS1 (presenilin 1), PS2
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(presenilin 2), and apolipoprotein E (ApoE). One potential explanation is that these gene
alleles may remain dormant and incapable of eliciting AD, despite their recognized risk
potential, if their expression levels do not reach a critical threshold. This observation
supports the conclusion that Alzheimer’s disease does not have a singular genetic etiology.
Rather, it may be influenced by the interaction of multiple genes in conjunction with other
factors [39,40]. Figure 13 illustrates the LIME plot, which demonstrates various genes
associated with dementia, including TEP1, SQLE, HLA-DQA1, TTC28, and ZNF835. Upon
analyzing the contributing genes of a dementia test sample using LIME, we observed that
the LIME results were consistent with these findings.

Prediction probabilities NOT Dementia Dementia NOT CN CN
HSPAI2B : 11727137._... HSPAI2B : 11727137_...
CN 011 0.10
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Figure 13. LIME plot showing contributing gene expressions leading to dementia.

In conclusion, we successfully built a sophisticated multiclassification model for AD
stage diagnosis including intermediate MCI stage utilizing two data modalities of clin-
ical and preclinical biomarkers after taking care of multiple challenges. Both models
independently demonstrated best performance in terms of F1-score and ROC AUC. Our
investigation identified the factors contributing to the relatively suboptimal performance of
models derived from gene expression data while emphasizing their contributions towards
early prediction. Although gene expression data have inherent limitations in facilitating a
very high accuracy, there is scope for improvement through integration with other preclini-
cal genomic biomarkers such as epigenetic data. This aspect remains a subject for future
research. Further investigation into the relationship between genomic biomarkers and clini-
cal AD biomarkers reflecting AD symptoms presents an interesting avenue for potential
future studies. Furthermore, this stage diagnosis approach utilizing gene expression and
clinical biomarkers is expected to be more economically feasible due to its relatively lower
cost, especially when juxtaposed with expensive alternatives such as PET, MRI, and other
high-cost diagnostic techniques.
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