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Abstract: Background: This study aimed to evaluate the effect of sample size on the
development of a three-dimensional convolutional neural network (3DCNN) model for
predicting the binary classification of three types of intracranial hemorrhage (ICH): in-
traparenchymal, subarachnoid, and subdural (IPH, SAH, SDH, respectively). Methods:
During the training, we compiled all images of each brain computed tomography scan
into a single 3D image, which was then fed into the model to classify the presence of ICH.
We divided the non-hemorrhage quantities into 20, 30, 40, 50, 100, and 150 and the ICH
quantities into 20, 30, 40, and 50. Cross-validation was performed to compute the average
area under the curve (AUC) over the last five iterations. The AUC and accuracy were used
to evaluate the performance of the models. Results: Fifty patients, each with the three ICH
types, and 150 non-hemorrhage cases were enrolled. Larger sample sizes achieved stable
and acceptable performance in the artificial intelligence (AI) models, whereas training
with a limited number of cases posed the risk of falsely high AUC values or accuracy. The
overall trends and fluctuations in AUC values were similar between IPH and SDH but
different for SAH. The accuracy of the results was relatively consistent among the three
ICH types. Conclusions: The 3DCNN technique can be used to develop AI models capable
of detecting ICH from limited case numbers. However, a minimal case number must be
provided. The performance of AI models varies across different ICH types and is more
stable with larger sample sizes.

Keywords: intracranial hemorrhage; deep learning; 3D convolutional neural networks;
artificial intelligence; CT

1. Introduction
Intracranial hemorrhage (ICH) is estimated to occur in approximately 30 out of

100,000 people annually [1]. Although ICH accounts for only 10–15% of all strokes, it
contributes to more than half of all stroke cases [2]. Even if the patients survive, more than
one-third suffer from severe disability [3]. In general, the early diagnosis of ICH is crucial
as emergent surgery may be needed to save the patient’s life [4]. Depending on the anatom-
ical location, ICH can be divided into intraparenchymal hemorrhage (IPH), subarachnoid
hemorrhage (SAH), subdural hemorrhage (SDH), and epidural hemorrhage (EDH) [5].
The 30-day mortality rate of IPH is approximately 35–52%, and half of the deaths occur
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within the first day, highlighting the necessity of early treatment [6,7]. The most common
cause of SAH is trauma; however, in non-traumatic cases, the rupture of an intracranial
aneurysm accounts for up to 85% of the cases, which require early surgical clipping or
endovascular coiling to prevent rebleeding [6]. Despite the different ICH patterns, the
early diagnosis of ICH is crucial for reducing mortality. The diagnosis of choice for ICH
was brain computed tomography (CT) without contrast injection [6]. Although ICH can
usually be easily diagnosed using brain CT, delayed or missed diagnoses still frequently
occur in daily practice for several reasons, including subtle hemorrhage, confusion with
calcifications or artifacts, and radiologist fatigue owing to the high workload demand [8].

To reduce the risk of misdiagnosis, peer review by another radiologist has been
proposed; however, it is not widely adopted owing to the additional time required [8].
The introduction of deep learning-based artificial intelligence (AI) algorithms has proved
promising for the interpretation of medical images [9]. Several methods based on deep
convolutional neural networks (CNNs) have been developed to detect and classify ICHs
automatically [8]. Traditionally, these CNN techniques use two-dimensional (2D) CT
images to develop AI models, and each image is predefined by a radiologist [10]. This time-
consuming process can be avoided because the three-dimensional (3D) version, known as
3DCNN, is considered to provide highly accurate results when parsing complex medical
images, such as CT, medical resonance imaging, and X-rays [11]. Notably, a 3DCNN
can capture 3D spatial structural information in images better than their 2D counterparts.
As a result, the physical and biological characteristics of the images can be incorporated
into AI models [12]. A large database is considered to be an important factor in the
performance of AI models. However, obtaining a large database from a single site is
extremely time-intensive. Using an existing online dataset is more efficient than using a
large database to develop AI models; however, the diversity of images, owing to different
sources, different scan settings, or poor quality of controls, may make the database noisier.
Although a carefully curated ICH database is already available, the application of the AI
models developed from the database to the data of a single site requires the use of transfer-
learning techniques [13]. Some relevant issues in transfer learning, such as catastrophic
forgetting and overly biased pretrained models, need to be overcome [14]. In addition,
the development of combined models with image and non-image data from existing
databases is usually not possible because clinical information is largely limited. Other AI
techniques such as radiomics are also valuable for building predictive models. Radiomics is
increasingly employed to extract quantitative image features from medical images, thereby
enabling the creation of analyzable databases. The radiomics process typically involves the
following steps: (a) image acquisition and reconstruction; (b) image preprocessing; (c) the
identification of regions of interest; (d) feature extraction and quantification; (e) feature
selection; and (f) the development of predictive and prognostic models using machine
learning [15,16].

Therefore, using a small in-hospital database to develop AI models is important; such
a database allows for controlled image quality, ensures identical imaging scan settings of
the trained models and tested data, and provides access to abundant clinical information.
Sample size is crucial for the performance of AI models and is a topic widely discussed
in the literature; however, the discussion is usually focused on hundreds or thousands
of samples [17–19]. Occasionally, the data of interest are difficult to collect quickly, and
the number of researchers available to collect the data is limited. The issue of cost–benefit
ratios with regard to sample size is very important because an increase in sample size does
not always change the effect size and accuracy [17]. In this study, we aimed to assess, using
a limited number of cases, the number of enrolled cases with brain CT images that can
achieve acceptable performance using AI models in terms of ICH detection via the new
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3DCNN technique; this information will be helpful in gauging the cost–benefit ratio. In
addition, we aimed to clarify whether different hemorrhage types affected the number of
cases that achieved acceptable performance in the AI models.

2. Methods
2.1. Participants

This retrospective study was approved by the Institutional Review Board of Mackay
Memorial Hospital and adhered to the ethical standards set by the Institutional Research
Committee and Declaration of Helsinki. The study included patients who presented with
acute ICH in our emergency department between January 2020 and December 2022. All CT
images were obtained using the same scanner and settings. The inclusion criteria required
the participants to be at least 20 years of age. ICH cases were identified and classified by
an experienced neuroradiologist into the following categories: (1) IPH with or without
intraventricular hemorrhage (IVH), (2) SAH with or without IVH, (3) SDH, (4) EDH, and
(5) mixed ICH types.

The exclusion criteria were notable imaging motion artifacts, metallic artifacts, postop-
erative changes in the skull or intracranial region, and combined ICH types. Owing to the
extremely limited number of EDH cases, these patients were excluded from the study. We
consecutively enrolled 50 patients each with IPH, SAH, and SDH. Owing to anatomical
considerations, IVH occasionally coexists with IPH or SAH. Consequently, patients with
IPH or SAH with IVH were excluded from this study. Additionally, we included 150 non-
hemorrhagic cases as the control group. The detailed patient characteristics for each group
are provided in Table S1.

2.2. Model Training
2.2.1. Preprocessing

As shown in Figure 1, each brain CT scan consisted of 30–50 individual images
combined to create 3D images. These 3D images were then used to train models to classify
a patient depending on the presence or absence of an ICH.

Diagnostics 2025, 15, x FOR PEER REVIEW 3 of 14 
 

 

CT images that can achieve acceptable performance using AI models in terms of ICH 
detection via the new 3DCNN technique; this information will be helpful in gauging the 
cost–benefit ratio. In addition, we aimed to clarify whether different hemorrhage types 
affected the number of cases that achieved acceptable performance in the AI models. 

2. Methods 
2.1. Participants 

This retrospective study was approved by the Institutional Review Board of Mackay 
Memorial Hospital and adhered to the ethical standards set by the Institutional Research 
Committee and Declaration of Helsinki. The study included patients who presented with 
acute ICH in our emergency department between January 2020 and December 2022. All 
CT images were obtained using the same scanner and settings. The inclusion criteria re-
quired the participants to be at least 20 years of age. ICH cases were identified and clas-
sified by an experienced neuroradiologist into the following categories: (1) IPH with or 
without intraventricular hemorrhage (IVH), (2) SAH with or without IVH, (3) SDH, (4) 
EDH, and (5) mixed ICH types. 

The exclusion criteria were notable imaging motion artifacts, metallic artifacts, 
postoperative changes in the skull or intracranial region, and combined ICH types. Ow-
ing to the extremely limited number of EDH cases, these patients were excluded from the 
study. We consecutively enrolled 50 patients each with IPH, SAH, and SDH. Owing to 
anatomical considerations, IVH occasionally coexists with IPH or SAH. Consequently, 
patients with IPH or SAH with IVH were excluded from this study. Additionally, we in-
cluded 150 non-hemorrhagic cases as the control group. The detailed patient characteris-
tics for each group are provided in Table S1. 

2.2. Model Training 

2.2.1. Preprocessing 

As shown in Figure 1, each brain CT scan consisted of 30–50 individual images 
combined to create 3D images. These 3D images were then used to train models to clas-
sify a patient depending on the presence or absence of an ICH. 

 

Figure 1. Images of one brain computed tomography dataset. 

Subsequently, we maintained the same model capacity, and randomly selected cases 
from a total of 150 non-hemorrhage patients and 50 patients with each hemorrhage type 
to train the models. We conducted a five-fold cross-validation to determine the specific 
number of cases needed for each hemorrhage type to achieve an area under the curve 

Figure 1. Images of one brain computed tomography dataset.

Subsequently, we maintained the same model capacity, and randomly selected cases
from a total of 150 non-hemorrhage patients and 50 patients with each hemorrhage type
to train the models. We conducted a five-fold cross-validation to determine the specific
number of cases needed for each hemorrhage type to achieve an area under the curve
(AUC) exceeding 0.6. This process involved varying the numbers of non-hemorrhagic and
ICH cases.
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Models were developed using different combinations of non-hemorrhagic (ranging
from 20 to 150) and ICH cases (ranging from 20 to 50). The dataset was divided into training
and validation sets in a 4:1 ratio. For example, if 100 non-hemorrhagic and 40 ICH cases
were used to develop the model, 80 non-hemorrhagic and 32 ICH cases were randomly
selected for the training set, whereas the remaining 20 non-hemorrhagic and 8 ICH cases
were used for validation. The details of the different case–number combinations used in
this study are provided in Table 1.

Table 1. Training and validation sample distribution.

Non-hemorrhage

Enrolled case numbers 20 30 40 50 100 150

Training:Validation 16:4 24:6 32:8 40:10 80:20 120:30

Intracerebral hemorrhage

Enrolled case numbers 20 30 40 50

Training:Validation 16:4 24:6 32:8 40:10

After dividing the data into training and validation sets, the 2D CT images of each
patient were stacked into 3D CT images. Each patient had 30–50 2D CT images, resulting
in 3D CT images with heights corresponding to this range. To ensure consistency across
input data, we adjusted the heights of all 3D CT images to a uniform value of 32.

2.2.2. 3DCNN

Traditional CNNs have been successful in image classification and recognition. The
3DCNN, an extension of the traditional 2DCNN model, excels in learning depth-related
features from 3D images. This feature makes 3DCNNs particularly effective for medical
imaging applications, in which depth and spatial context are crucial.

The CNN architecture includes convolutional and pooling layers for feature represen-
tation and fully connected layers for classification. The convolutional layer, which is a core
component of a CNN, is primarily responsible for feature extraction. It utilizes convolution
kernels that slide over the input images to capture various local features such as edges and
textures. These filters are not manually predefined but learned and refined automatically
during the training process of the model. By extracting crucial visual features from the
input data, the convolutional layer provides valuable information to the subsequent layers
of the network, thereby enhancing the recognition capabilities and overall performance of
the model.

The pooling layer is primarily responsible for reducing the dimensionality of the data
from the convolutional layer, while preserving important feature information. This process
not only decreases the computational load of the model, but also helps mitigate overfitting.
In our model, we used max pooling as the pooling operation. Max pooling selects the
maximum value within a defined window on a feature map to represent a region. This
approach effectively retains the most prominent features within a window and is less
sensitive to noise.

The fully connected layer, positioned at the end of the CNN, functions similarly to the
layers in traditional neural networks. It connects each input node to every output node,
transforming the multidimensional feature information obtained from the convolution
and pooling operations into one-dimensional data. The primary purpose of this layer is to
integrate the local or regional features extracted by the previous layers into higher-order
features. By providing this advanced feature representation, the fully connected layer
enhances the ability of the model to accurately classify and identify the input data.
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The 3DCNN architecture used in this study is illustrated in Figure 2, with the relevant
parameters given in each layer. The model begins with a preprocessed 3D image as the
input, followed by feature extraction through four convolutional layers and two pooling
layers. The classification is then performed using three fully connected layers. Regular-
ization is incorporated into the fully connected layers to prevent model overfitting. The
output from the final fully connected layer represents the result of the binary classification
task with a sigmoid function as the activation function.
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2.2.3. AUC

The AUC is a key metric for evaluating model performance. It measures the area
under the receiver operating characteristic (ROC) curve, which plots the false-positive rate
on the x-axis against the true-positive rate on the y-axis. The AUC value ranges from 0.5 to
1.0, with a value closer to 1 indicating better model performance and classification accuracy.
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Conversely, an AUC value closer to 0.5 suggests poorer classification ability. In biomedical
image classification, the AUC is a crucial indicator for assessing the effectiveness of a model.

2.2.4. K-Fold Cross-Validation

K-fold cross validation involves dividing the data into K equal parts. The value of K
can be selected based on the requirements. After splitting the data, (K-1) groups were used
for training, whereas the remaining groups were reserved for validation. For example, in a
five-fold cross-validation with 200 data points, 160 and 40 points were used for training
and validation, respectively. This approach allows for averaging the results across different
folds, minimizing errors during training. Cross-validation is especially beneficial with
limited data because it helps reduce variance and improves the reliability of the results.

2.2.5. Hyperparameter Tuning

The model contained 2,773,869 trainable parameters. Overfitting is a common problem
encountered during training, particularly for small datasets. To address this issue, we use
the “resize volume”, which refers to the number of images per case, should be controlled.
Standardizing this parameter is crucial because of variations in the number of images per
case. In addition, several hyperparameters, including the learning rate, batch size, kernel
size, pool size, and L2 Regularization, can be adjusted. These hyperparameters (Figure 2)
were manually fine-tuned to achieve optimal accuracy and AUC.

2.2.6. External Validation

The external validation data used in this study were obtained from the CQ500 dataset
((accessed on 1 October 2024). https://arxiv.org/pdf/1803.05854). This dataset contained
CT scans classified by three professional readers; only the scans with consistent classification
results were used for validation. Target CT scans were selected based on our in-house
criteria, including: (1) no hemorrhage, (2) pure SDH, (3) SAH with or without IVH, and
(4) IPH with or without IVH. The final validation dataset included 245 non-hemorrhagic,
15 SDH, 9 SAH, and 53 IPH cases.

During model training, one-fifth of the cases were used for validation, resulting in
validation set combinations of 4–30 non-hemorrhagic and 4–10 hemorrhagic cases. To align
with these combinations, we selected the first 10 cases of each hemorrhage type and the first
30 non-hemorrhagic cases from CQ500. However, because of the presence of only 9 SAH
cases, we included an additional non-hemorrhagic case to meet the requirement of 10 SAH
cases. The performances of the models on in-house data and CQ500 were compared, with a
difference of less than 0.1 in accuracy considered similar in this study.

3. Results
The enrolled 300 participants included 170 men and 130 women, with a mean age of

62.35 ± 17.09 years (ranging from 20 to 98 years). This study aimed to investigate changes
in AUC and accuracy based on varying non-hemorrhagic-to-ICH case ratios. Different
hemorrhage types exhibited distinct fluctuations in these ratios.

In this study, we recorded three different AUC values: the Average AUC of the Last
Five Epochs (representing the average AUC of the last five generations of training), the
Average Last Epoch Validation AUC (representing the average AUC of the last generation
of training), and the Average Validation AUC (representing the AUC for each generation
of training). These average AUC values for the SDH hemorrhage type are presented in
Table 2, and the values were obtained based on the data obtained from 50 ICH cases in the
SDH type and various non-hemorrhagic cases (ranging from 20 to 150). Upon observation,
it was noticed that the Average Validation AUC showed slightly lower values than the
other metrics. To assess the impact of sample size on the AUC, we relied on the more

https://arxiv.org/pdf/1803.05854
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stable Average AUC of the Last Five Epochs. Although the Average Last Epoch Validation
AUC closely resembled the Average AUC of the Last Five Epochs, only the AUC of the last
generation could have led to a biased recording of high and low values.

Table 2. Area under the curve (AUC) values for subdural hemorrhage (SDH).

SDH 20 30 40 50 100 150

Average AUC of Last Five Epochs 0.6602 0.8119 0.6189 0.6638 0.7071 0.7536

Average last_epoch_val_AUC 0.6652 0.8100 0.6166 0.6635 0.7033 0.7595

Average Validation AUC 0.6518 0.7859 0.6104 0.6406 0.6818 0.7188

In this study, we implemented a five-fold cross-validation, and randomly selected
patients with ICH and without hemorrhage for binary classification training. For instance,
if we chose 150 non-hemorrhagic and 50 ICH patients, we would have 120 non-hemorrhagic
and 40 ICH training samples. The accuracy curve for the ICH training data demonstrated
using the SAH cases is presented in Figure 3A. The accuracy curves presented in the figure
correspond to each training epoch, with a total of five curves. Each set of training results is
associated with a set of loss curves, as shown in Figure 3B.
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The SAH type, with a very small sample size, was prone to yield excessively high AUC.
As the number of non-hemorrhagic cases increased, the overall AUC initially decreased,
before subsequently increasing to a peak when the number of non-hemorrhagic cases
exceeded 100 (Figure 4A). In the case of IPH, the AUC values fluctuated considerably
before the 50 non-hemorrhagic cases, irrespective of the number of hemorrhagic cases.
After 50 non-hemorrhagic cases, the overall AUC values showed a trend of gradually
increasing to 150 non-hemorrhagic cases (Figure 4B). In the case of the SDH type, the
overall patterns of the AUC values were similar to those of the IPH type, showing marked
fluctuations before 50 non-hemorrhagic cases, followed by a gradual increase to 150 non-
hemorrhagic cases (Figure 4C).
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Irrespective of the bleeding type, the accuracy of the data was heavily influenced
by the volume of data available. Consequently, an increase in the overall data volume
led to a notable improvement in the accuracy, as shown in Figure 5. However, when the
quantity of the ICH data was limited, the accuracy tended to increase. This falsely high
accuracy resulted from the consistent use of a 4:1 training-to-validation ratio during the
cross-validation. A higher accuracy rate is more likely to be achieved when the data pool
is small.
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The accuracy of the model’s performances between the in-house and external vali-
dation (CQ500 data) data is detailed in Tables 3–5. A total of 38 out of the 72 conditions
showed a similar accuracy of less than 0.1. Three conditions showed better performance
in the external validation than in the in-house data, whereas the remaining 31 conditions
showed better performance in the in-house data. In the SAH, there were 14 conditions with
similar model performances, 8 with better performances in the in-house data, and 2 with
better performances in the external validation data. In IPH, there were 8 conditions with
similar model performances, 15 with better performances in the in-house data, and 1 with
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better performance in the external validation data. In SDH, there were 16 conditions with
similar model performances and 8 with better performances in the in-house data.

Table 3. Accuracy of model performance using the in-house and external validation (CQ500 data)
data for subarachnoid hemorrhage (SAH).

Accuracy
In-House/CQ500

Non-Hemorrhagic Case

20 30 40 50 100 150

SAH
Hemorrhagic case

20 0.73/0.63 0.64/0.40 0.65/0.33 0.73/0.71 0.83/0.83 0.89/0.88

30 0.66/0.60 0.48/0.58 0.57/0.40 0.66/0.63 0.75/0.77 0.84/0.78

40 0.65/0.67 0.56/0.57 0.56/0.50 0.58/0.44 0.79/0.46 0.80/0.79

50 0.71/0.71 0.56/0.63 0.50/0.55 0.45/0.65 0.69/0.33 0.82/0.25
Bold-faced texts indicate a difference of accuracy less than 0.10. Underlined texts indicate better performance in
the external validation data, while regular texts indicate better performance in the in-house data.

Table 4. Accuracy of model performance in the in-house and external validation (CQ500 data) data
for intraparenchymal hemorrhage (IPH).

Accuracy
In-House/CQ500

Non-Hemorrhagic Case

20 30 40 50 100 150

IPH
Hemorrhagic case

20 0.55/0.63 0.68/0.40 0.70/0.17 0.69/0.57 0.84/0.83 0.88/0.18

30 0.50/0.60 0.67/0.50 0.67/0.50 0.70/0.31 0.78/0.23 0.86/0.83

40 0.67/0.67 0.61/0.57 0.61/0.50 0.62/0.55 0.78/0.29 0.81/0.58

50 0.73/0.64 0.73/0.63 0.62/0.55 0.61/0.45 0.73/0.33 0.80/0.25
Bold-faced texts indicate a difference of accuracy less than 0.10. Underlined texts indicate better performance in
the external validation date, while regular texts indicate better performance in the in-house data.

Table 5. Accuracy of model performance in the in-house and external validation (CQ500 data) data
for SDH.

Accuracy
In-House/CQ500

Non-Hemorrhagic Case

20 30 40 50 100 150

SDH
Hemorrhagic case

20 0.53/0.50 0.80/0.30 0.68/0.67 0.69/0.71 0.82/0.83 0.85/0.88

30 0.60/0.50 0.53/0.50 0.67/0.50 0.64/0.63 0.76/0.77 0.81/0.83

40 0.65/0.66 0.66/0.50 0.66/0.38 0.53/0.56 0.70/0.71 0.81/0.79

50 0.71/0.29 0.69/0.63 0.59/0.44 0.59/0.45 0.71/0.67 0.76/0.77
Bold text indicating a difference of accuracy of less than 0.10. Underlying text indicating better performance in
external validation and regular text indicating better performance in in-house data.

4. Discussion
In our study, datasets with a higher number of enrolled cases were more likely to yield

a stable and acceptable AI model performance, particularly in terms of AUC and accuracy,
with the trend being more pronounced for accuracy than for AUC. Training AI models
with a limited number of cases sometimes results in deceptively high AUC or accuracy
values, whereas larger datasets produce more stable and consistent results. While the AUC
trends and fluctuations across different ICH types varied depending on the case ratios, the
accuracy trends remained relatively similar across different ICH types.

In a limited dataset, including more cases is important for achieving a stable and
acceptable AI model performance, particularly in terms of AUC, with the effect being even
more pronounced for accuracy than for AUC. In this study, we trained the AI models for
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each hemorrhage type using varying numbers of non-hemorrhagic (20–150) and ICH cases
(20–50). For the SAH type, the AUC values exhibited a U-shaped trend, with relatively high
values observed for both small and large numbers of non-hemorrhagic cases. In contrast,
for IPH, the AUC values fluctuated considerably, with fewer than 50 non-hemorrhagic
cases. A similar pattern was observed for the SDH type, where the AUC values fluctuated
markedly before reaching 50 non-hemorrhagic cases. To achieve an AUC value greater than
0.6, at least 100 non-hemorrhagic and 20 ICH cases are required for both the SAH and IPH
types, whereas the SDH type only requires 30 non-hemorrhagic cases. If an AI model aims
to identify all three ICH conditions with an AUC value of over 0.6, enrolling at least 20 cases
for each ICH type and at least 100 non-hemorrhagic cases is recommended. However, to
achieve an AUC value greater than 0.7, our study found that only the condition with 50 ICH
cases and 150 non-hemorrhagic cases reached this threshold for all three ICH types. Using
this information, researchers can estimate the necessary sample size based on the desired
AUC values. In addition, the specific ICH type studied influenced the required number
of cases. The accuracy results were more consistent across the three ICH types, showing
a gradual increase after 50 non-hemorrhagic cases and reaching an accuracy above 0.7
when the non-hemorrhagic case count exceeded 100. Although the condition with 20 ICH
cases showed the highest accuracy, this was likely due to a false accuracy phenomenon
caused by the limitations of a very small sample size. Increasing the non-hemorrhagic case
count to 150 further improved the accuracy, and the results became more similar across
different ICH case numbers. To achieve accuracy between 0.75 and 0.85 in ICH prediction,
conditions with 150 non-hemorrhagic and either 40 or 50 ICH cases met this goal for all
three ICH types. Therefore, we suggest that at least 150 non-hemorrhagic and 40 cases
each of the ICH types are necessary to develop an AI model with stable and high accuracy.
Notably, the conditions with very limited case numbers sometimes produce very high
accuracy, which should be carefully scrutinized because it may reflect false accuracy due to
the inherent limitations of small sample sizes.

When training AI models with a limited number of cases, there is a risk of obtaining
inflated AUC values and accuracy. In contrast, using a larger case count, even with
varying non-hemorrhage-to-ICH ratios, tends to produce more consistent results. In this
study, the trend of AUC values for the SAH type showed comparable results between
the non-hemorrhage case counts of 20 and 150. However, considerable fluctuations in the
AUC values were observed for the IPH and SDH types when the non-hemorrhagic case
count was less than 50. In the SAH type, the accuracy remained relatively high even with
20 non-hemorrhagic cases, and in the SDH type, the accuracy reached 0.8, with 30 non-
hemorrhagic and 20 ICH cases. Accuracy is highly sensitive to the sample size, with smaller
datasets showing much wider variations than larger ones [20]. The risk of sampling errors
in small datasets can result in an unreasonably high or low accuracy. Previous reviews
have highlighted the negative correlation between sample size and accuracy in similar
research fields [18,21], suggesting that results from studies with small sample sizes should
be interpreted with caution. Unlike the accuracy, which is calculated at a single operating
point, the AUC considers all operating points on an ROC curve [22]. Thus, the AUC is a
more reliable and preferred metric than the accuracy for binary classification. However, the
AUC is also subject to greater variability than the accuracy in small datasets [19]. Because
the AUC represents balanced average accuracy, errors in the minority class are assigned
equal weights to those in the majority class, which can exaggerate the impact of small
sample sizes [22]. Therefore, both the AUC and accuracy should be interpreted carefully
when dealing with small datasets.

The AUC results appeared to vary more across ICH types, whereas the accuracy values
were more consistent. In this study, the accuracy outcomes across the three ICH types
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were more uniform than the AUC, possibly due to the relatively simple calculation for
accuracy. The variation in AUC within each ICH type was greater than that in accuracy,
and the overall trends among the ICH types were different. However, with the increase in
the sample size, the variations and differences became less notable. While the specific ICH
type being studied may influence the AI model’s performance, this effect can be minimized
with larger sample sizes, as evidenced by studies involving extremely large datasets [8].

The total sample size in this study was relatively small, with the combined number
of non-hemorrhagic and hemorrhage cases ranging from 40 to 200 for developing the AI
models. The definition of a small sample size varies across studies, with some defining it as
fewer than 100 cases [18]. Using a small sample size to create AI models can lead to several
challenges, such as inflated accuracy owing to overfitting or random effects [17], which
was observed in our results when the number of non-hemorrhagic cases was less than 50.
Another issue with small sample sizes is that model performance can be substantially influ-
enced by the choice of analytical method [23]. In addition to the 3DCNN, we experimented
with Long Short-Term Memory (LSTM), a Gated Recurrent Unit (GRU), and a combination
of LSTM and GRU. However, none of these methods produced models with an accuracy
above 0.7 in any condition, generally performing worse than the 3DCNN-based models.
Besides this, no universally accepted threshold exists for distinguishing between small and
large sample sizes; however, the concept of “appropriate” sample size is more practical.
The appropriate size can vary depending on the research topic, data characteristics, and
machine learning methods used [17]. Both the sample and effect sizes considerably affected
the performance of the AI models. When the effect size is large, data classification becomes
easier, allowing many machine learning methods to produce excellent models even with
a small sample size. However, some methods require a larger sample size to achieve
good performance. Conversely, when the effect size is small, classification becomes more
difficult, and the model performance can vary substantially depending on the machine
learning method used, especially with a small sample size [17]. In such cases, exploring
different machine learning methods can be beneficial if the performance of the initial model
is unsatisfactory, particularly when both the sample and effect sizes are small.

Class imbalance is an important issue in machine learning, particularly when datasets
are highly imbalanced. In such cases, classifiers tend to prioritize maximizing the overall
predictive accuracy by focusing on the majority class, potentially leading to the misclassi-
fication or neglect of the minority class. In the medical field, this problem is particularly
concerning because disease conditions are typically far less common than normal condi-
tions. Consequently, classifiers trained on imbalanced datasets may struggle to detect rare
but crucial disease conditions [24]. In our study, we observed that as the number of non-
hemorrhagic cases increased, the overall accuracy improved across all three hemorrhage
types. However, this increase was likely driven by the enhanced performance in identify-
ing the majority of non-hemorrhagic cases, while the detection of minority hemorrhagic
cases remained stable or even declined. Several techniques can be employed to address
class imbalance, such as undersampling the majority class, oversampling the minority
class, and modifying the classification algorithms to assign more weight to the minority
class. However, these methods have potential drawbacks, including the risk of discarding
valuable data, overfitting the model, and extended training times [24,25]. Although these
techniques can be helpful, their limitations must be carefully considered when they are
applied in practice.

In the external validation process, 31 of the 72 conditions showed the worse perfor-
mance of our models on the external data, 3 showed better performance, and 38 demon-
strated similar performances. This result indicates that our models exhibited remarkably
worse performance in over 40% of the conditions when applied to external datasets, high-
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lighting generalization issues, particularly with models developed from a small sample
size. While increasing the sample size could improve the performance during external vali-
dation, incorporating more diverse data is also important in addressing this problem [26].
Approximately 60% of the conditions in the SAH and SDH types maintained similar ac-
curacies in the external validation, whereas more than 60% of the conditions in the IPH
type showed a decline in performance. This finding suggests that the ability of a model to
generalize is influenced not only by the sample size but also by the specific classification
target. Another potential confounding factor was the total hemorrhage volume, which
could have influenced the evaluation. While it is well established that sample size plays
a crucial role in improving generalization, our study suggests that the nature of target
classification, which is potentially influenced by the effect size of the data, may also be
an important factor. However, further research is needed to investigate how sample size
and target characteristics interact, and their combined impact on the generalization of
AI models.

This study has several limitations. First, the number of cases was limited, and as
a result, the performance of the developed AI models was expected to be suboptimal.
However, we intentionally constrained the number of cases because our goal was to
develop AI models from a limited dataset, which reflects the practical constraints faced by
many research centers with limited resources. Our study demonstrates that it is feasible to
develop AI models for ICH detection with acceptable performance using a small sample
size. Although this approach can be extended to other medical conditions, further research
is required to validate these findings. Additionally, all images used in this study were
acquired using the same CT scanner with identical scan settings, which raises concerns
regarding the generalization of our results to imaging data from other scanners. However,
the use of a uniform dataset may have resulted in an improved model performance owing
to the reduced variation in image quality. Another limitation is that we used only the basic
3DCNN architecture. Future work could explore the integration of transfer learning to
improve model performance. Transfer learning enables models to leverage knowledge from
large datasets and apply it to smaller specific datasets, thereby potentially enhancing their
performance in specialized classification tasks. Lastly, the issue of sample size is particularly
important when working with 3D data, as it is subject to the “curse of dimensionality”. This
principle suggests that the sample size required for optimal model performance increases
exponentially with higher-dimensional data, such as 3D imaging, compared with lower-
dimensional 2D data. Therefore, carefully addressing the sample size is crucial in studies
involving 3D data to ensure a robust model development. Furthermore, the performance of
the AI models in detecting ICH may be affected by the size and density of the hemorrhage.
In this study, we did not impose constraints on ICH grade; however, it would be interesting
to investigate the detection rate within a more homogeneous ICH group characterized by a
consistent hemorrhage size and density in future research.

5. Conclusions
The 3DCNN technique can be used to develop AI models with acceptable performance

in the detection of ICH from a limited number of cases; however, there is a minimum
required case number suggested by this study to decrease the variation in the result and
increase the performance of the models. The performance of the AI models varies for
different ICH types; however, the differences become less obvious when a larger sample
size is used.
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