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Abstract: Background and Objective: The rapid development of artificial intelligence (AI)
is impacting the medical sector by offering new possibilities for faster and more accurate
diagnoses. Symptom checker apps show potential for supporting patient decision-making
in this regard. Whether the AI-based decision-making of symptom checker apps shows
better performance in diagnostic accuracy and urgency assessment compared to physicians
remains unclear. Therefore, this study aimed to investigate the performance of existing
symptom checker apps in orthopedic and traumatology cases compared to physicians in
the field. Methods: 30 fictitious case vignettes of common conditions in trauma surgery and
orthopedics were retrospectively examined by four orthopedic and traumatology specialists
and four different symptom checker apps for diagnostic accuracy and the recommended
urgency of measures. Based on the estimation provided by the doctors and the individual
symptom checker apps, the percentage of correct diagnoses and appropriate assessments of
treatment urgency was calculated in mean and standard deviation [SD] in [%]. Data were
analyzed statistically for accuracy and correlation between the apps and physicians using a
nonparametric Spearman’s correlation test (p < 0.05). Results: The physicians provided the
correct diagnosis in 84.4 ± 18.4% of cases (range: 53.3 to 96.7%), and the symptom checker
apps in 35.8 ± 1.0% of cases (range: 26.7 to 54.2%). The agreement in the accuracy of the
diagnoses varied from low to high (Physicians vs. Physicians: Spearman’s ρ: 0.143 to 0.538;
Physicians vs. Apps: Spearman’s ρ: 0.007 to 0.358) depending on the different physicians
and apps. In relation to the whole population, the physicians correctly assessed the urgency
level in 70.0 ± 4.7% (range: 66.7 to 73.3%) and the apps in 20.6 ± 5.6% (range: 10.8 to 37.5%)
of cases. The agreement on the accuracy of estimating urgency levels was moderate to high
between and within physicians and individual apps. Conclusions: AI-based symptom
checker apps for diagnosis in orthopedics and traumatology do not yet provide a more
accurate analysis regarding diagnosis and urgency evaluation than physicians. However,
there is a broad variation in the accuracy between different digital tools. Altogether,
this field of AI application shows excellent potential and should be further examined in
future studies.

Keywords: orthopedics; traumatology; chatbots; artificial intelligence; symptoms; mobile
health

Diagnostics 2025, 15, 221 https://doi.org/10.3390/diagnostics15020221

https://doi.org/10.3390/diagnostics15020221
https://doi.org/10.3390/diagnostics15020221
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-7676-4221
https://orcid.org/0000-0002-8555-7304
https://doi.org/10.3390/diagnostics15020221
https://www.mdpi.com/article/10.3390/diagnostics15020221?type=check_update&version=1


Diagnostics 2025, 15, 221 2 of 10

1. Introduction
The rapid development of artificial intelligence (AI) has impacted the medical sector in

recent years. It offers new possibilities, including faster and more accurate diagnostics with
the potential to increase efficiency in the healthcare system [1,2]. Applications in radiology,
for example, enable the automatic evaluation of X-ray images with previously trained
systems [3,4]. Other research areas for the potential application of AI in medicine include
oncology [5–7], cardiology [8–10], and gastroenterology [11,12]. Common approaches
include using AI to improve various phases of patient care, from research and diagnosis to
selecting suitable therapy [8]. Another, albeit more nuanced, field is the market for mobile
health applications (apps) [9]. Frequently used apps for monitoring diseases [1] or fitness
also provide personalized health information and recommendations [9]. Simultaneously,
AI app solutions for patients have gained importance [13,14]. Many of these are primarily
designed for non-professionals to interact with their users via individual question trees such
as chatbots and so-called symptom checker apps [13–16]. After entering their symptoms,
some apps provide patients with a diagnosis probability and advice on how they should
proceed [13–16]. The prospective benefits of such technologies are manifold. Particularly in
rural areas, where a shortage of doctors and specialists leads to long waiting times, prior
triage using a reliable app could be of great benefit in directing patient flows [17]. The first
support systems for medical staff in emergency rooms are already being tested [18,19]. In
the years since the coronavirus spread, diagnostic apps have also made it possible to moni-
tor the course of the pandemic [2]. However, the accuracy of AI-based statements [20,21]
is still unknown for many medical fields. It poses a potential problem, as they cannot
fully reflect a human assessment of a patient’s overall appearance based on experience
and intuition [20–25]. In orthopedics and traumatology, comparative studies on symptom
checkers and statements on their accuracy have been lacking. Therefore, this study aimed
to investigate the performance of different market-available symptom checker apps using
reconstructed ideal–typical disease cases by (a) evaluating their ability to recognize clinical
pathologies in orthopedics and traumatology accurately and (b) classifying their respective
clinical urgency.

2. Material and Methods
2.1. Study Design

Fictive case vignettes of common clinical pathologies in traumatology and orthopedics
were created for this case vignette study. The cases were then assigned to four volunteer
orthopedic surgeons, who were asked to indicate the three most likely diagnoses and an
urgency recommendation for each case. The data were manually documented, transferred
to an Excel file (Microsoft Corp., Redmond, WA, USA), and coded for analysis. In the
following, the same orthopedic surgeons entered the case vignettes into four different
symptom checker apps (see below). Data were saved digitally, manually transferred to
an Excel file, and coded for further statistical evaluation. The study was conducted in
compliance with the Declaration of Helsinki. Since no personal patient data were used, the
need for an approval statement from the local ethical committee was obsolete.

2.2. Case Vignettes

Specialist physicians selected the pathologies of the fictive case vignettes (n = 30).
They included common pathologies relating to the areas of the foot and ankle (n = 5), hand
(n = 5), spine (n = 5), knee (n = 5), hip (n = 5), and shoulder (n = 5). Based on current
literature, the cases were created under specialist supervision with current anamnesis,
relevant previous history, accident history (if applicable), social anamnesis, medication
anamnesis, and vegetative anamnesis with possible previous illnesses.



Diagnostics 2025, 15, 221 3 of 10

2.3. Selection of Symptom Checkers

The selection of symptom checker apps was based on a literature review. The chosen
tools were Ada Health (version 3.13.9, Ada Health GmbH, Berlin, Germany), Babylon
(version 4.35.0, Babylon Health, London, UK), Symptoma (version 2.1, Symptoma GmbH,
Attersee, Austria), and Symptomate (version 2.4, Infermedica Sp. Z o.o, Wroclaw, Poland),
accessible on mobile devices (iOS, iPhone 7 and iPad mini, Apple Inc., Cupertino, CA,
USA) with specially created user accounts. Ada, Symptoma, and Symptomate were used
to detect diagnosis and estimate urgency. The Babylon app was additionally and solely
used to assess urgency, as this app is widely used in clinical practice.

2.4. Data Rating and Grading for Evaluation

The diagnosis and urgency recommendation of the case vignettes set during cre-
ation by an independent specialist was defined as the gold standard. For the diagnoses,
single points were awarded for the answers (correct diagnosis = 1 point; incorrect diag-
nosis = 0 points). Three suggestions per case and doctor were allowed. In the evaluation
made by the apps, only the first three diagnoses were included if more were provided (D1,
D2, D3). Points were also awarded based on the number of attempts required to reach
the correct diagnosis (1 attempt = 3 points, 2 attempts = 2 points, 3 attempts = 1 point).
No points were scored if the correct diagnosis was not made even after 3 attempts. The
urgency recommendations by the experts and as far as given by the single apps were staged
according to the classification table depicted in Figure 1.
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Figure 1. Urgency recommendations staged from 1 to 5.

2.5. Statistical Analysis

The accuracy of the correct diagnosis and the number of attempts required were
analyzed descriptively (mean and standard deviation [SD] in [%]) for both the doctors and
the apps. In addition, the correlation of the responses (a) among the doctors, (b) between
doctor vs. apps (each for doctor 1 to 4 and respective apps 1 to 4), and (c) between the results
within the respective apps was determined using the nonparametric Spearman’s correlation
test (p < 0.005). The assessment of the degree of correlation was categorized according
to Cohen et al. Thus, |ρ| = 0.10 indicates a small correlation, |ρ| = 0.30 a moderate
correlation, and |ρ| = 0.50 a strong correlation [26].

3. Results
Based on the given 30 vignettes, altogether, n = 600 single cases with n = 120 doctor

case ratings and n = 480 app case ratings were created and analyzed.
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3.1. Accuracy of Diagnoses

On average, the doctors provided the correct diagnosis in 84.4 ± 18.4% of cases (range:
53.3 to 96.7%) and the symptom checker apps in 35.8 ± 1.0% of cases. The symptom checker
app Ada provided the correct diagnosis in 54.2 ± 4.2% of cases (range: 50.0 to 60.0%),
Symptomate in 26.7 ± 4.7% (20.0 to 30.0%), and Symptoma in 26.7 ± 2.7% (23.3 to 30.0%)
of the evaluated cases. A detailed overview of the results can be found in Figure 2.
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Figure 2. Percentage of correct diagnoses via physicians (n = 3 diagnosis) and symptom checker apps
(n = 4) based on case vignettes (n = 30).

Table 1 shows the degree of agreement between the physicians regarding the accuracy
of the correct diagnosis. Spearman’s correlation test was used to calculate this agreement.

Table 1. Correlation in the evaluation of correct diagnosis between doctors.

Spearman’s ρ Significance (2-Tailed) ρ

Doctor 1 vs. Doctor 2 0.538 0.002

Doctor 1 vs. Doctor 3 0.388 0.034

Doctor 2 vs. Doctor 3 0.143 0.450

The correlation of the diagnostic results between Doctor 1 and the symptom checker apps
varied from low to moderate. The correlation of the respective results between Doctors 2, 3, and
4 and the respective symptom checker apps was low. Detailed results are shown in Table 2.

Table 2. Correlation between doctors and symptom checker apps.

Spearman’s ρ Significance (2-Tailed) ρ

Doctor 1 vs. Ada 0.036 0.849

Doctor 1 vs. Symptomate 0.358 0.052

Doctor 1 vs. Symptoma 0.037 0.846

Doctor 2 vs. Ada 0.007 0.969

Doctor 2 vs. Symptomate n/a n/a

Doctor 2 vs. Symptoma 0.267 0.154

Doctor 3 vs. Ada −0.160 0.399
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Table 2. Cont.

Spearman’s ρ Significance (2-Tailed) ρ

Doctor 3 vs. Symptomate 0.040 0.832

Doctor 3 vs. Symptoma −0.086 0.653

3.2. Urgency

Two of the four physicians assessed the urgency of the medical treatment of the cases
based on the correct estimated diagnosis. On average, they correctly assessed the urgency
level at 75.9 ± 0.8% (range: 75.9 to 76.9%). In relation to the total population (n = 30), the
physicians’ success rate is 70 ± 4.7% (range: 66.7 to 73.3%). In 10.9 ± 0.8% (range: 10.3
to 11.5%) of the evaluated cases, the degree of urgency was assessed as too low, and in
12.7 ± 1.6% (range: 11.5 to 13.8%), it was too high.

The data from 3 (Ada Health, Babylon, and Symptomate) symptom checker apps were
also evaluated regarding the correctness of the urgency assessment where correct diagnosis
was provided beforehand. On average, the level of urgency was correctly assessed in
37.6 ± 10.3% (range: 21.0 to 50.7%) of cases. In relation to the total population (n = 30), the
apps’ success rate is 20.6 ± 5.6% (range: 10.8 to 37.5%). On average, the success rate was
21.9 ± 2.0% for Ada Health, 41.0 ± 17% for Babylon, and 51.0 ± 21.8% for Symptomate. In
relation to the total population (n = 30), Ada’s success rate was 10.8 ± 1.7% (range: 10.0 to
13.3%), Babylon’s success rate was 37.5 ± 12.9 (range: 20.0 to 50.0%), and Symptomate’s
success rate was 13.3 ± 6.1% (range: 6.7 to 20.0%). Ada Health rated the urgency as too
low in 67.0 ± 7.9%, Babylon in 44.4 ± 19.2%, and Symptomate in 25.0 ± 12.8% of cases.
Meanwhile, Ada rated the urgency too high in 18.0 ± 4.5%, Babylon in 14.4 ± 2.7%, and
Symptomate in 29.9 ± 11.9% of cases. Details are provided in Table 3.

Table 3. Percentage of correct diagnosis via doctors (n = 2) and symptom checker apps (n = 3).

Correct
Evaluation [%]

Incorrect Evaluation
(Too Low) [%]

Incorrect Evaluation
(Too High) [%]

Number of
Cases [n]

Doctor 2 75.9 10.3 11.5 29

Doctor 3 76.9 13.8 11.5 26

Ada (Dr_1) 20.0 60.0 20.0 3

Ada (Dr_2) 60.0 43.3 6.7 18

Ada (Dr_3) 23.1 76.9 23.1 16

Ada (Dr_4) 18.8 68.8 12.5 16

Babylon (Dr_1) 22.2 66.7 11.1 27

Babylon (Dr_2) 36.7 50 13.3 30

Babylon (Dr_3) 43.3 40.0 16.7 30

Babylon (Dr_4) 62.5 20.8 16.7 24

Symptomate (Dr_1) 50.0 33.3 16.7 6

Symptomate (Dr_2) 75.0 0.0 25.0 6

Symptomate (Dr_3) 55.6 11.1 33.3 9

Symptomate (Dr_4) 22.2 33.3 44.4 9

There is no agreement in the accuracy of the urgency evaluation between the physicians
calculated using Spearman’s correlation test (Spearman’s ρ = 0.000, p not available).

The correlation of the accuracy of the urgency evaluation of the case vignettes entered
by the four doctors varied from zero to perfect within the individual apps.

The correlation of the accuracy of the urgency evaluation of the case vignettes entered
by the four physicians varied from moderate to strong between the apps. Detailed results
are shown in Table 4.
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Table 4. Correlation of accuracy in urgency evaluation between physicians (n = 4) and Symptom Checker apps (n = 3).
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Ada Health (P1) 0.671 * (12) 1.000 * (13) 0.604 * (14) 0.408 (14) 0.833 (4)
Ada Health (P2) 0.671 * (12) 1.000 * (12) 1.000 * (14) 0.315 (18) 0.745 (5)
Ada Health (P3) 1.000 * (13) 1.000 * (12) 1.000 * (12) 0.415 (16) 0.894 * (6)
Ada Health (P4) 0.604 * (14) 1.000 * (14) 1.000 * (12) 0.669 * (14) 0.323 (5)

Babylon (P1) 0.408 (14) 0.563 * (27) 0.550 * (27) 0.660 * (21) 0.833 (6)
Babylon (P2) 0.315 (18) 0.563 * (27) 0.474 * (30) 0.607 * (24) 0.690 (8)
Babylon (P3) 0.415 (16) 0.550 * (27) 0.474 * (30) 0.724 * (24) 0.926 * (9)
Babylon (P4) 0.669 * (14) 0.660 * (21) 0.607 * (24) 0.724 * (24) 0.567 (6)

Symptomate (P1) 0.833 (4) 0.833 (6) 0.000 * (4) 1.000 * (3) 1.000 * (3)
Symptomate (P2) 0.745 (5) 0.690 (8) 0.000 * (4) 0.791 (5) 0.577 (4)
Symptomate (P3) 0.894 * (6) 0.926 * (9) 1.000 * (3) 0.791 (5) 0.943 (4)
Symptomate (P4) 0.323 (5) 0.567 (6) 1.000 * (3) 0.577 (4) 0.943 (4)

* = p < 0.05; P1: Physician 1, P2: Physician 2, P3: Physician 3, P4: Physician 4; green: strong correlation, blue: moderate correlation, orange: no correlation; number of cases in brackets.
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4. Discussion
The study aimed to investigate the performance of different market-available symp-

tom checker apps using reconstructed ideal–typical disease cases by (a) evaluating their
ability to recognize clinical pathologies in orthopedics and traumatology accurately and
(b) classifying their respective clinical urgency compared to specialized physicians.

Even though the use of algorithms with artificial intelligence (AI) is making increasing
progress in medicine and promises to support and improve healthcare in the future signifi-
cantly, the results of this study indicate no superiority regarding the accuracy of diagnosis
and estimation of urgency in decision-making compared to physicians [6,8,9].

The results reveal that physicians were, on average, around 75% accurate in making a
correct diagnosis. However, there were fluctuations of 53–96% between doctors.

On average, the success rate for symptom checker apps was significantly lower.
Here, considerable differences were found between the individual providers. Ada Health
achieved 54% and thus delivered comparable results to the doctor with the lowest perfor-
mance. Symptoma and Symptomate performed poorly, with an accuracy of only 27%.

The above-mentioned apps delivered significantly better results in the study by
Gilbert et al., in which an accuracy of 99% was achieved for Ada Health, for example [27].
One of the main differences here lies in the medical field. In that study, the app was used by
general practitioners and not doctors specializing in orthopedics and traumatology. In our
study, only diagnoses relating to the musculoskeletal system were evaluated. Therefore,
it can be assumed that AI is not yet sufficiently developed in this special medical field
to achieve values nearly as good as those of a specialist. The correlation between the
accuracy of the diagnosis varied within the medical profession. The agreement of accuracy
of diagnosis between physicians 1 and 2 and physicians 1 and 3 showed a significantly high
correlation, whereas, between physician 2 and physician 3, it was low. Relevant differences
could be found between the doctors and apps and the apps themselves. In 2016, Bisson
et al. showed results similar to our study [15]. Here, 328 patients with knee pain were
diagnosed using a web-based symptom checker application, and the results were compared
with those of rating doctors. The accuracy reached 58%, which seems comparable to the
results of the best app in the study presented here.

Significant differences could be detected between the apps, particularly in diagnos-
tic accuracy, with Ada Health achieving the best results, higher than Symptomate or
Symptoma. Ceney et al. also examined symptom checkers tailored to emergencies in
Australia [28]. Here, Ada Health also proved to be the most reliable app. The range for the
accuracy of diagnoses in this study was 22% and 84%. It was concluded that the accuracy
of diagnosis must be higher in the emergency sector, in particular, than in other medical
fields, where reliability does not necessarily determine the patient’s outcome.

Regarding urgency recommendations, physicians performed significantly better than
the apps. The apps tended to give rather conservative recommendations and classified
the respective results, on average, one urgency level lower. The urgency assessment by
both physicians was consistently high, at around 75%. They were too high or too low in
equal proportions of 10–13%. There were again clear differences in the apps in this study.
Symptomate was the leader here, with 51% accuracy; Babylon was at 41%; and the weakest
and least accurate app was Ada Health, with an average of 21% (outlier when entering
doctor 2; there, accuracy was 60%).

The accuracy of the urgency assessment in this study is based only on the correct
diagnoses. As mentioned above, Symptomate performed significantly worse here than Ada
Health. However, despite the small number of cases, Symptomate had a high level of accu-
racy concerning the urgency recommendation compared to Babylon and Ada Health if the
diagnosis was correct. Chambers et al. found that online symptom checkers made correct
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triage recommendations in 58% of cases with different platforms. The study showed that
around 20–30% of recommendations resulted in over-triage, while under-triage occurred in
10–15% of cases [29].

One of the limitations of this work is that it only represents a snapshot of the respective
versions of the selected apps, as updates and enhancements to the AI can lead to improve-
ments at short intervals. Furthermore, data evaluation of the urgency recommendations of
the apps was complex, as each provider used its own system to classify urgency, which is
why individual adjustments were necessary for this work. This also applied in the event
that the apps asked questions that were not covered by the vignettes. In addition, only a
few doctors participated in this study, so the small data set may have led to distortions
in the results. More significant case numbers should be planned for future studies. In the
future, case vignettes should be used repeatedly, along with newer versions of suitable
symptom checkers. As AI algorithms’ capabilities increase, a rapid improvement in di-
agnostic functions is expected, maybe up to the equivalent of a doctor’s level [25,30–32].
These applications could then lead to a relief of existing structures by improving individual
patient flow coordination, e.g., as part of patient-induced primary triage in many healthcare
systems. Strict regulations and guidelines for protecting health data will be essential here.

5. Conclusions
In summary, the algorithm versions of digital AI symptom checkers used for diagnosis

in orthopedics do not yet offer a more accurate analysis than specialist physicians for the
fictitious case vignettes used. However, it could also be shown that there were already
clear differences in accuracy between the products tested. When classifying the urgency
of treatment, the apps tended to be more cautious than the human specialists. Further
development and research will be necessary to exploit the potential of AI in diagnostics
fully in the future.
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