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Abstract: Objectives: This paper studies the segmentation and detection of small metastatic
brain tumors. This study aims to evaluate the feasibility of training a deep neural network for
the segmentation and detection of metastatic brain tumors in MRI using a very small dataset of
33 cases, by leveraging large public datasets of primary tumors; Methods: This study explores
various methods, including supervised learning, two transfer learning approaches, and self-
supervised learning, utilizing U-net and Swin UNETR models; Results: The self-supervised
learning approach utilizing the Swin UNETR model yielded the best performance. The Dice
score for small brain tumors was approximately 0.19. Sensitivity reached 100%, while specificity
was 54.5%. When excluding subjects with hyperintensities, the specificity improved to 80.0%;
Conclusions: It is feasible to train a model using self-supervised learning and a small dataset
for the segmentation and detection of small brain tumors.

Keywords: brain tumor; deep learning model; brain MRI

1. Introduction
A brain tumor is an abnormal mass of cells in the brain that can develop at any stage

of life. These cells divide and grow uncontrollably, occupying the limited and enclosed
space of the brain or invading normal brain tissue, leading to various symptoms. This type
of disease is relatively common, with approximately 250,000 new cases globally each year.
In Australia, the government is investing AUD 126.4 million into brain cancer research.
This investment is prompted by the incidence of around 2000 Australians being diagnosed
with brain cancer every year and the low 5-year survival rate of approximately 23% [1].

Brain tumors are named based on their location and the classification of the tumor
cells, which can be primary or metastatic, benign or malignant, and vary in size. Brain
metastases and primary brain tumors with multiple foci glioblastoma (GBM) are two
different pathophysiological entities requiring distinct therapeutic approaches. Primary
brain tumors originate within the brain parenchyma itself, including glioma, meningioma,
and astrocytoma. On the other hand, metastatic brain tumors originate from metastatic
cells spreading from other parts of primary malignancy, such as lung, breast, and colorectal
cancers [2,3].
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Patients with primary or metastatic brain tumors exhibit different symptoms depend-
ing on the size, location, and distribution of the lesion within the brain. As the tumor
grows within the limited space of the skull, it increases intracranial pressure and endangers
the patient’s life. This may cause brain edema due to plasma-like fluid leakage through
impaired capillary endothelial tight junctions in tumors [4]. The mass effect with midline
shift, tumor dimensions, and mass-edema index may contribute to the differential diagnosis
of metastatic versus primary brain metastasis [5].

The size of brain tumors can range from very small to very large with different
progression. The prognosis of a patient depends on several factors, including the type of
brain tumor and its growth rate [6]. Since growth speed is a major concern in treating brain
tumors, it is best to detect them when they are still small. However, there are currently not
many papers discussing how to detect small brain tumors.

To diagnose brain tumors, neurologists and neurosurgeons inquire about the patient’s
and their family’s medical history and conduct a comprehensive neurological examination.
This includes assessments of consciousness, muscle strength, coordination, reflexes, and
pain response to identify the cause of symptoms. Progressive visual field defect and visual
acuity loss generally occur due to an intracranial tumor [7].

Based on the results of physical and neurological examinations, further tests may be
selected, such as a computer tomography (CT) scan, magnetic resonance imaging (MRI),
electroencephalogram (EEG), cerebral angiography, and positron emission tomography
(PET) [8]. In this paper, we focus on the use of MRI to detect and segment small tumors.

To reduce the cost of examinations by experts, automated detection and/or segmenta-
tion is desirable. In the field of automated brain tumor segmentation, many methods have
been proposed, such as region-based approaches [9–12], edge-based approaches [11,13],
threshold-based approaches [11,12], and deep learning-based approaches [12,14–19]. Addi-
tionally, several survey papers are available on these methods [11,20–22]. It can be observed
that deep learning-based approaches are preferable for brain tumor segmentation, as evi-
denced by the vast number of recent publications [21,22]. Among the deep learning-based
approaches, U-net [16] has been one of the preferred models due to its good segmentation
performance. Recent studies by other scholars [17] indicate that adding the Transformer [23]
module to the U-net architecture can effectively improve segmentation results.

Despite the great success of deep learning methods, these methods require a large
number of labeled samples and the high cost of labeling, which typically requires profes-
sional doctors to invest significant time and effort. The high cost of tumor samples further
limits the performance of supervised learning methods.

To mitigate this problem, several efforts have been made to create public brain MRI
datasets for researchers, such as those in [24–26]. Among the datasets, the Brain Tumor
Segmentation (BraTS) challenge 2021 dataset [26–29] is “utilized primarily by maximum
researchers” [22]. With data from over 1200 cases with annotations, it is a highly valuable
resource for segmenting brain tumors in MRI images. More details about the BraTS 2021
dataset will be provided in Section 3.1.1.

Although the BraTS 2021 dataset is available to the general public, it contains only
cases of primary brain tumors with annotations. In contrast, to the best of our knowledge,
there is no public 3D MRI dataset that includes cases of metastatic brain tumors. While both
primary and metastatic brain tumors develop in brain tissues, they can be distinguished
using MRI scans [30]. A previous study investigated the imaging differences between GBM
and multiple brain metastases, aiming to develop a diagnostic algorithm for differentiation
on initial MRI, utilizing apparent diffusion coefficient (ADC) values, surrounding T2-
hyperintensity, and edema distribution.
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To assess the segmentation performance in real-world scenarios, particularly for
metastatic brain tumors, we randomly collected MRI cases from Cheng Hsin General
Hospital (CHGH) in Taipei, Taiwan. The selection was based solely on medical records
without prior viewing of the MRI images, resulting in a dataset that includes both large and
small tumors. The definitions of large and small tumors will be provided in Section 3.1.2.
The visual distinction between large and small brain tumors is evident, as illustrated in
Figure 1. Given the time-consuming and costly process of annotating tumor regions, our
goal is to develop a feasible approach for segmenting and detecting small brain tumors with
very limited available data, supplemented by a public dataset containing primary tumors.
This approach presents challenges, as the imaging features of primary and metastatic
tumors may differ.
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In this paper, the training methods explored include supervised learning, two transfer
learning approaches, and self-supervised learning. Unlike existing research, which typically
focuses on either segmentation or detection performance, our objective is to identify the
most effective segmentation method and subsequently evaluate its detection performance.

2. Related Works
Ronneberger et al. [16] proposed a neural network architecture called U-net, which is

based on an autoencoder architecture. This architecture features skip connections that link
the feature map of each encoder layer to the corresponding decoder layer’s feature map.
These connections help the decoder retain more contextual information during upsampling,
thereby improving the accuracy of segmentation results. It has also been demonstrated
that the U-net architecture outperforms the previous best methods in the International
Symposium on Biomedical Imaging (ISBI) challenge.

Hatamizadeh et al. [17] proposed a variant of U-net called Swin UNETR, which
primarily uses the Swin Transformer [31] as the encoder. They added a residual network to
the skip connections that link the encoder and decoder. The Swin UNETR architecture also
achieved excellent results in the BraTS2021 segmentation challenge.

Chen et al. [32] proposed a framework for image contrastive learning called SimCLR,
which simplifies previously proposed self-supervised learning algorithms. It demonstrates
that the combination of data augmentation in contrastive learning plays a crucial role
in prediction tasks. The SimCLR method has been proven to outperform previous self-
supervised and semi-supervised learning methods, achieving good accuracy even with
only 1% of the labeled training samples.

Tang et al. [33] proposed a self-supervised learning framework for 3D medical imag-
ing, using the Swin Transformer encoder for contrastive learning, followed by fine-tuning
segmentation tasks with Swin UNETR. The authors used their method to perform self-
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supervised pre-training on 5050 open-source CT images of different body organs, followed
by fine-tuning on the Beyond the Cranial Vault (BTCV) and Medical Segmentation De-
cathlon (MSD) datasets. The results show that their model ranks first on the test leader-
boards of the BTCV and MSD datasets.

Abdusalomov et al. used Yolov7 to detect gliomas, meningiomas, and pituitary brain
tumors [19]. With a fairly large dataset (3400+ samples per plane) with data augmentation,
they achieved very high detection sensitivity and specificity. However, this paper does not
provide sufficient information about the size of the tumors in the study.

Mansur et al. [12] investigated brain tumor segmentation using three different methods:
threshold-based, region-based, and CNN-based approaches. Their results indicated that the
threshold-based approach outperformed the other two methods. However, they utilized
the Kaggle dataset [25], which is a 2D dataset (i.e., one image per case), rather than a
3D dataset. Consequently, their findings cannot be directly applied to our study, which
involves the use of 3D images.

Kaifi provided a comprehensive review of AI-based diagnostics for brain tumors [20].
This paper reviews different types of brain tumors, introduces imaging modalities such as
CT, MRI, and PET, and provides an overview of classification and segmentation methods.
It includes a literature review and discussion and highlights some challenges.

Ahamed et al. [22] conducted a review of deep learning methods for brain tumor
segmentation, offering several valuable observations. Notably, most researchers predomi-
nantly utilize the BraTS dataset, thus dealing with only large primary tumors with a large
number of training samples. Another conclusion is that the application of fusion and
attention mechanisms has been shown to enhance segmentation performance. Therefore, it
is expected that a model with attention would be preferable.

The review by Ahamed et al. [22] highlights that detecting small tumors, particularly
metastatic ones, has not received much attention. Additionally, the review indicates
that recently published papers typically use datasets with at least several hundred cases.
Unfortunately, medium-scale hospitals often cannot afford to collect and annotate a large
number of brain MRI cases, as carried out in the BraTS challenge. Therefore, it is important
to explore how a small dataset can be used to segment and detect small metastatic tumors
and to examine the results.

3. Methodology
This section describes the experimental datasets, preprocessing steps, experimental

models, and conducted experiments. Section 3.1 covers the MRI datasets used. Since
the obtained dataset cannot be directly used as training samples, preprocessing steps
are detailed in Section 3.2. Section 3.3 discusses the architectures of the chosen models,
namely U-net and Swin UNETR. Next, Section 3.4 outlines the parameters used for data
augmentation. Section 3.5 describes the three conducted experiments in detail.

3.1. MRI Datasets
3.1.1. BraTS2021 Dataset

The BraTS challenge dataset has evolved since its inception in 2012. This paper utilizes
the latest version, the BraTS 2021 dataset [26–29], for Task 1 (Segmentation). As noted by
Ahamed et al. [22], BraTS is the dataset most commonly used by researchers. Although other
datasets are available, they have various limitations. For example, the Kaggle dataset [25]
includes only 2D images. The TCGA-GBM dataset [34] contains 3D images but has only
262 cases. Additionally, the collection of openly available datasets by the University of
Cambridge [24] is not specifically designed for brain tumor segmentation.
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The BraTS 2021 dataset includes 1251 multimodal MRI cases of primary brain tumors.
The BraTS challenge is jointly organized by the Radiological Society of North America
(RSNA), the American Society of Neuroradiology (ASNR), and the Medical Image Comput-
ing and Computer Assisted Interventions (MICCAI) Society. The data come from multiple
medical institutions in countries such as the United States, Germany, Switzerland, Canada,
Hungary, and India. All tumor data were manually annotated by one to four experts fol-
lowing the same protocol and finally certified by an experienced committee and approved
by neuroradiologists. The dataset is publicly available in [26].

Each case in the BraTS 2021 dataset includes four modalities: T1, T1Gd, T2-weighted,
and T2 fluid-attenuated inversion recovery (T2-FLAIR). Each modality has a data size
of 240 × 240 × 155 and shares tumor segmentation labels. The segmentation labels are
(0, 1, 2, 4), where label 0 represents the background, label 1 represents the necrotic tumor
core (NT), label 2 represents the peritumoral edema (ED), and label 4 represents the
enhancing tumor (ET). We consider labels 1, 2, and 4 as the entire tumor area. All four
modalities of the cases have undergone spatial registration, interpolation to the same
resolution, and skull stripping. The final data are stored in the NifTI (.nii.gz) format. Due
to usage restrictions stated on the website [26], we officially declare that this dataset is only
used for the publication of this paper and not for any other purposes.

3.1.2. The CHGH Dataset

Another set of brain MRI data used in this paper is provided by Cheng Hsin General
Hospital (referred to as the CHGH dataset). It was approved by the Institutional Review
Board of Cheng Hsin General Hospital, Taipei, Taiwan with the protocol code: (1123)113-53,
approval date: 9 October 2024. The tumor areas of the patients were annotated/validated
by a neurologist (Y.H.L, one of the authors). The provided MRI data are in the original
DICOM (Digital Imaging and Communications in Medicine) [35] format without any
processing. The MRI data include images from different planes: axial, coronal, and sagittal,
and contains multiple modalities. In this paper, we will use the axial T2-FLAIR modality
for experiments, and the tumor area information is stored in the JSON (JavaScript Object
Notation) format. The MRI DICOM files and JSON files require additional processing steps
to be used in the experiments, which will be detailed in the next subsection.

Table 1 shows the CHGH dataset, which includes 18 large-tumor cases, 15 small-tumor
cases, and 22 normal cases. The main task of this paper is to segment and detect small
tumors. In the literature, large brain metastases are typically defined as lesions greater
than 2 cm in diameter [36]. However, some cases in our study present very long and thin
sections of tumors, making it difficult to use diameter as a true representation of tumor
size. Therefore, we use the tumor area in a slice, rather than diameter, to classify lesions as
“large” or “small.” In this study, a small tumor is defined as a tumor with an area of less
than 3.5 cm2 in the slice with the largest tumor area in all slices of a case. This threshold is
slightly greater than the area of a circle with a diameter of 2 cm. The median area of the
small tumors is approximately 1.1 cm2, while the median area of the large tumors exceeds
16 cm2. The dataset containing only small-tumor cases is denoted as CHGH_S.

Table 1. The CHGH datasets.

Dataset CHGH

Large Tumor Subject 18
Small Tumor Subject 15

No Tumor Subject 22 1

1 Used only in Experiment three.
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3.2. Preprocessing of MRI Dataset
3.2.1. Preprocessing of the BraTS2021 Dataset

The dimensions of the input images for the experimental model must be multiples of
32. This means both the size of the images and the number of images in a case should be
divisible by 32. The tensor size of the BraTS2021 dataset is 240 × 240 × 155, so we need to
adjust it to 128 × 128 × 64. To decimate the slices, we use the following equation:

ui = s16+2i (1)

where u represents one of the target 64 slices and s represents one of the 155 slices in the
BraTS2021 source slices. Since the first 15 slices in the BraTS2021 dataset are blank, we start
from the 16th slice and take every other slice until we have 64 slices.

The original BraTS2021 dataset has four labels: 0, 1, 2, and 4. Label 0 is the background,
and the other labels represent different tumors. In our experiment, we do not perform
detailed tumor segmentation, so we merge labels 1, 2, and 4 into label 1.

3.2.2. Preprocessing of the CHGH Dataset

The CHGH MRI data are originally in DICOM format with multiple modalities. For
the following experiments, we select the T2-FLAIR as the experimental data. By stacking
the processed FLAIR images in sequence, we create a three-dimensional data structure and
save it as a NifTi (.nii.gz) file. The tumor location information, marked by the doctor, is
originally stored in a JSON file. We need to convert this location information into images
and save them as NifTi files as well. Therefore, the final output of each case is a pair of
NifTi files, one for the brain image and one for the tumor label. The detailed processing
steps are as follows:

• Parsing DICOM files: A DICOM file stores the pixel information of the image and
related metadata, such as patient ID, study, series, equipment, and image information.
We need to parse the series information part, which contains information related to the
series. We use the Pydicom package to parse the DICOM files and the dcmread() func-
tion provided by Pydicom to read the DICOM files and access the series description
attribute. This makes it very convenient to classify the series. A detailed description
of all DICOM attributes can be found on the DICOM official website [35].

• Image pixel conversion: The grayscale range in the original DICOM file images is not
uniform, as equipment from different manufacturers usually has minor differences in
image details. To address this issue, we need additional steps, as shown in Figure 2.

1. Modality look-up table (LUT) conversion: This step converts the original
grayscale values of the image into a standard space to ensure that images gen-
erated by different equipment have consistent measurement standards. We use
the DICOM attributes rescale slope (m) and rescale intercept (b0) to calculate the
standardized pixel value ( v) from the original pixel value (vorg) as follows:

v = m·vorg + b0. (2)

2. Value of interest (VOI) LUT conversion: This step primarily aims to enhance
image contrast by scaling grayscale values to a windowed range. The VOI is
an attribute in the DICOM standard [37], and this conversion is a widely used
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preprocessing step [38,39]. It uses the DICOM attributes window center/level
and window width to perform the grayscale conversion as follows:

G(v) =


0, v < (c − w

2 )
gm
w
(
v + w

2 − c
)
, −w

2 ≤ v ≤ (c + w
2 )

gm, v > (c + w
2 )

(3)

where v is from (2), G(v) represents the value after conversion, gm is the maximum
display value of the monitor, w is the window width, and c is the window level.
Although we did not use a monitor to observe the images, performing this step
effectively adjusts the image contrast. In a sense, it serves as another type of
grayscale normalization.

3. Presentation LUT conversion: In this step, we normalize the images to 12-bit
grayscale images.

• Parsing JSON annotation files and converting them to image files: In the JSON file we
received, the tumor areas are represented by closed lines, composed of continuous seg-
ments. Each segment consists of a set of coordinates and width. Using the coordinate
information, we draw lines on a blank image canvas, fill the inside of the closed lines
with a gray value, and finally save the image. The pairing between the brain image
files and the annotation files is matched using the DICOM SopInstanceUID attribute
and the JSON file name.

• Interpolation of brain images and tumor annotation images: Although most cases
have between 48 and 51 brain slices, a few cases have only 24 or 25 slices. Therefore,
we interpolate these brain slices and the paired annotation images to double the
slice number, from 24–25 slices to 47–48 slices. This way, the number of slices for
all cases will range from 47 to 51 slices. We use the high-order slice interpolation
method for interpolation [40,41] because this method outperforms linear and cubic
interpolation counterparts.

• Padding black images: Since the number of slices in all cases ranges from 47 to 51, we
pad the end of the slices with black images to reach a total of 64 slices. Finally, we save
the three-dimensional data structure as a NifTi file with dimensions 128 × 128 × 64.

Diagnostics 2025, 15, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 2. Image preprocessing of the DICOM conversion. 

• Parsing JSON annotation files and converting them to image files: In the JSON file we 
received, the tumor areas are represented by closed lines, composed of continuous 
segments. Each segment consists of a set of coordinates and width. Using the coordi-
nate information, we draw lines on a blank image canvas, fill the inside of the closed 
lines with a gray value, and finally save the image. The pairing between the brain 
image files and the annotation files is matched using the DICOM SopInstanceUID 
attribute and the JSON file name. 

• Interpolation of brain images and tumor annotation images: Although most cases 
have between 48 and 51 brain slices, a few cases have only 24 or 25 slices. Therefore, 
we interpolate these brain slices and the paired annotation images to double the slice 
number, from 24–25 slices to 47–48 slices. This way, the number of slices for all cases 
will range from 47 to 51 slices. We use the high-order slice interpolation method for 
interpolation [40,41] because this method outperforms linear and cubic interpolation 
counterparts. 

• Padding black images: Since the number of slices in all cases ranges from 47 to 51, we 
pad the end of the slices with black images to reach a total of 64 slices. Finally, we 
save the three-dimensional data structure as a NifTi file with dimensions 128 × 128 × 
64. 

3.3. Experimental Models 
In this section, we introduce the experimental models. During the initial research 

stage, we explored various models, including convolutional neural networks, conven-
tional autoencoders, and ResNet-based networks. However, these models did not yield 
satisfactory results. We ultimately found that U-net [16,42] and Swin UNETR [17,33] per-
formed better. Therefore, we will focus on describing these two models to save space. For 
a comprehensive review of U-net and its variants in medical image segmentation, please 
refer to [43]. 

3.3.1. U-Net Model 
In the following experiments, our U-net model follows the work of Ronneberger et 

al. [16], as shown in Figure 3. The model input is an image with a size of 1 × 128 × 128 × 64 
(Channel × Height × Width × Depth). It first passes through a convolutional layer with a 
stride of 1, increasing the number of channels to 16, resulting in a feature map size of 16 × 
128 × 128 × 64. 

Next, the feature map goes through the encoder blocks. Inside each encoder block, as 
shown at the bottom left of Figure 3, the input first passes through a 3D convolutional 
layer with a stride of 2, followed by instance normalization and a ReLU (Rectified Linear 
Unit) activation function. Then, it passes through another 3D convolutional layer with a 
stride of 1, followed by instance normalization and a ReLU activation function before out-
putting. It is worth noting that there is a “bypass path,” similar to the design of a residual 
network [44], connecting the input and output of the encoder block. In the encoding path, 
the number of channels doubles, and the height, width, and depth are halved from top to 
bottom blocks. After the 5th encoder block, we obtain a feature map size of 256 × 8 × 8 × 4, 
which is then fed into the 1st decoder block. 

Figure 2. Image preprocessing of the DICOM conversion.

3.3. Experimental Models

In this section, we introduce the experimental models. During the initial research stage,
we explored various models, including convolutional neural networks, conventional au-
toencoders, and ResNet-based networks. However, these models did not yield satisfactory
results. We ultimately found that U-net [16,42] and Swin UNETR [17,33] performed better.
Therefore, we will focus on describing these two models to save space. For a comprehensive
review of U-net and its variants in medical image segmentation, please refer to [43].
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3.3.1. U-Net Model

In the following experiments, our U-net model follows the work of Ronneberger et al. [16],
as shown in Figure 3. The model input is an image with a size of 1 × 128 × 128 × 64
(Channel × Height × Width × Depth). It first passes through a convolutional layer with
a stride of 1, increasing the number of channels to 16, resulting in a feature map size of
16 × 128 × 128 × 64.
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Next, the feature map goes through the encoder blocks. Inside each encoder block, as
shown at the bottom left of Figure 3, the input first passes through a 3D convolutional layer
with a stride of 2, followed by instance normalization and a ReLU (Rectified Linear Unit)
activation function. Then, it passes through another 3D convolutional layer with a stride of
1, followed by instance normalization and a ReLU activation function before outputting. It
is worth noting that there is a “bypass path,” similar to the design of a residual network [44],
connecting the input and output of the encoder block. In the encoding path, the number of
channels doubles, and the height, width, and depth are halved from top to bottom blocks.
After the 5th encoder block, we obtain a feature map size of 256 × 8 × 8 × 4, which is then
fed into the 1st decoder block.

Inside each decoder block, as shown at the bottom right of Figure 3, the input first
passes through a 3D transposed convolutional layer with a stride of 2. The output of the
transposed convolution is concatenated with the corresponding encoder output (as shown
by the gray arrows connecting left and right in Figure 3). Then, it passes through a 3D
convolutional layer with a stride of 1, followed by instance normalization and a ReLU
activation function. The output of the concatenated layer in a decoder block is connected to
the final layer output inside a block, again similar to a residual network [44]. With decoder
blocks going upwards, the number of channels is halved, and the height, width, and depth
are doubled. After the 4th decoder block, we obtain an output size of 16 × 128 × 128 × 64.

Finally, it passes through a final 3D convolutional layer with a stride of 1, reducing the
number of channels to 2, resulting in a tensor size of 2 × 128 × 128 × 64. We then perform
an argmax operation on the result, taking the index of the maximum value, and ultimately
obtain a tumor segmentation image size of 1 × 128 × 128 × 64.

3.3.2. Swin UNETER Model

In the experiments, the Swin UNETR model consists of five encoder blocks and five
decoder blocks, as shown in Figure 4, following the design of [33]. The structure of these
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five encoder blocks is the same as the Swin Transformer architecture (shown at the bottom
left of Figure 4) [31]. The input to the Swin UNETR model is an image with a size of
1 × 128 × 128 × 64 (Channel × Height × Width × Depth). Following the concept of the
Swin Transformer, the input image is divided into multiple non-overlapping 3D patches
through patch partition and then fed into a series of encoder blocks (shown at the bottom
left of Figure 4).
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The first step of each encoder block is patch merging, which doubles the number of
channels and halves the image resolution, similar to the setup of a convolutional neural
network. Each encoder block implements a Swin Transformer, which contains two attention
sub-blocks. The first sub-block has a layer normalization, windowed multi-head self-attention
(W-MSA), a second layer normalization, and a multi-layer perceptron (MLP, essentially a fully
connected multi-layer network). The second sub-block is similar to the first sub-block but
uses SW-MSA (shifted windowed multi-head self-attention), instead of W-MSA. After passing
through five encoder blocks, we obtain a feature map size of 768 × 4 × 4 × 2.

As shown in Figure 4, there are five decoder blocks in the decoding path. The input
to each decoder block first passes through a 3D transposed convolutional layer with a
stride of 2, then concatenates with the feature map output from the encoder and finally
passes through a residual sub-block before outputting. The feature map from the encoder
is reshaped to the same dimension as the decoder block, and then concatenated with the
decoder block after passing through the residual sub-block. After the 5th decoder block,
we obtain an output size of 48 × 128 × 128 × 64.

Finally, it passes through a final 3-D convolutional layer with a stride of 1, reducing
the number of channels to 2. By using the same treatments as in the U-net, we have a tumor
segmentation image size of 1 × 128 × 128 × 64.
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3.4. Data Augmentation

We perform data augmentation in some experiments to expand the number of training
samples. By applying various transformations to the original training data, additional
samples are generated. Overall, we have used the following transformations:

• Rotation: Rotate the image by 20◦~50◦ or −20◦~−50◦.
• Scaling: Scale the image by 0.6~0.9 times or 1.1~1.5 times.
• Rotation and scaling: Apply both rotation and scaling with the same range as above.
• Affine transformation: Apply a shear transformation of 0.4 to the image.

Once the augmented samples are generated, they are added to the training set to train
the models. For self-supervised learning, the samples for pretext tasks and downstream
tasks differ. In this case, the augmentation is performed on training for the downstream
models. However, the test set is not subjected to the augmentation step.

3.5. Conducted Experiments

Three experiments are conducted in this paper. The first experiment compares the
segmentation performance of large and small tumors, measured by the Dice score. The
second experiment evaluates the Dice scores of various approaches used to improve the
segmentation performance of small tumors. The third experiment computes the sensitivity
and specificity of the best model obtained in the second experiment.

3.5.1. Experiment One

We will use the models introduced in Sections 3.3.1 and 3.3.2 to perform 3-fold cross-
validation on the datasets. The training and test datasets are the BraTS2021 and CHGH
datasets (only using the 33 tumor cases). The training and testing dataset combinations are
as follows:

• Training: BraTS2021; Testing: BraTS2021.
• Training: BraTS2021; Testing: CHGH.
• Training: CHGH; Testing: CHGH.
• Training: BraTS2021 + CHGH; Testing: CHGH.

For using the BraTS2021 dataset for training and testing, the conventional 3-fold cross-
validation is carried out. For using the CHGH as the test set, we first divide the CHGH
dataset into three subsets: O1, O2, and O3, each containing 11 cases. Next, we select the O1
subset as the test set and the remaining subsets, if applicable, as part of the training data.
We then conduct complete supervised learning and evaluate O1. This process is repeated
for O2 and O3.

3.5.2. Experiment Two

The BraTS2021 training set consists of 1251 patients, primarily with large and promi-
nent tumors. In contrast, the CHGH dataset includes 33 cases, of which 18 have large
tumors and the remaining 15 have small tumors. With such a small number of small-tumor
cases, it is difficult to train a model to achieve higher performance. We will show that Swin
UNETR has a higher performance in Experiment One. Therefore, this experiment only
uses Swin UNETR. As the number of small-tumor cases is limited, we perform leave-one-
out cross-validation to report the segmentation results. To find an effective segmentation
method for small tumors, we study the following five methods:

• Supervised learning: This method uses the BraTS2021 + CHGH_S data as the training
set with conventional supervised learning. Recall that leave-one-out cross-validation
is used for CHGH_S during testing. Therefore, all cases but one in CHGH_S are in the
training set. This method does not use an augmented dataset during training due to
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the large number of training samples and the limitations of the experimental hardware
on training the augmented dataset.

• Supervised learning with data augmentation: The training set is CHGH_S with different
augmentation rates to observe whether data augmentation is useful for this problem.

• Transfer learning with parameter finetuning: Pre-train the Swin UNETR model using
the BraTS2021 dataset with supervised learning, then use transfer learning to fine-tune
the parameters with augmented CHGH_S cases, as shown in Figure 5. Specifically, we
first use the BraTS2021 training set to conduct complete supervised learning to obtain
a pretrained model. We then use the weights of the pretrained model to fine-tune
the model with augmented CHGH_S training data. For finetuning, it is important to
select the appropriate number of training epochs. Therefore, we use 2, 4, 6, 8, and
10 epochs to fine-tune the model with four-times augmentation rates and select the
number of epochs that perform best. With this epoch number, the performance of
other augmentation rates is examined.

• Transfer learning with layer freezing: This method also pre-trains a model using the
BraTS2021 dataset. However, during fine-tuning, we only train the bottom two layers,
freezing the weights of all other layers, as shown in Figure 6. We hope that the top
layers of the model can learn to extract features from the BraTS2021 dataset while
allowing the bottom two layers to adapt to segment small tumors. This approach aims
to enhance the model’s generalization performance.

• Self-supervised learning: Pre-train the model using the BraTS2021 dataset with self-
supervised learning (SSL), then use different augmentation rates on small-tumor cases
for downstream training. The training procedure is shown in Figure 7. Following the
procedure of [32,33], we use the encoder (i.e., Swin Transformer) part of Swin UNETR
to perform contrastive learning on the BraTS2021 dataset. We apply an inner cutout
and outer cutout to generate contrastive images as the inputs to the pretext task.
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The inner cutout images are obtained by randomly cropping the interior of the image
with sizes ranging from a minimum of 5 × 5 to a maximum of 32 × 32 and adding noise.
The number of crops is 6.

The outer cutout images are obtained by randomly cropping the outer edges of the
image with sizes ranging from a minimum of 20 × 20 to a maximum of 64 × 64 and adding
noise. The number of crops is also 6.
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The resulting images, referred to as Aug 1 and Aug 2 in Figure 7, are the inputs to
the Swin Transformer model, producing reconstructed images Recon 1 and Recon 2. We
calculate the contrastive loss between Recon 1 and Recon 2, as well as the L1 Loss between
Recon 2 and the original, un-augmented data. The combined loss from the contrastive
loss and L1 Loss is used to update the model’s weights. For the downstream task, only
augmented data from small-tumor samples are used in training. During the downstream
training, the encoder parameters are fixed and only the decoder parameters are trainable.

3.5.3. Experiment Three

We use the best-performing model from Experiment Two to predict cases with and
without small tumors, evaluating the sensitivity and specificity of the trained model.

4. Experimental Results
4.1. Experimental Environments

Experiments are conducted through computer simulations using two computers. The
hardware specifications and software package versions are provided in Tables 2 and 3,
respectively. Although these two computers have different hardware and software configu-
rations, we conducted trial experiments to ensure they produced exactly the same results.
Using two computers allows the experiments to be completed faster.

Table 2. Specifications of the computers used in the experiments.

Item Computer 1 Computer 2

Processor Intel Core i9-9900x@3.50 GHz Intel Core i7-6700@3.40 GHz
Memory 32 GB DDR4 32 GB DDR4

Display Card NVIDIA GTX 1080-Ti NVIDIA GTX 1080-Ti
Mother Board Gigabyte X299 Designer EX ASUS 820MT

OS Ubuntu 20.04.6 LTS Windows 10 Pro

Table 3. Versions of software packages used in the experiments.

Package Version

Python 3.10
Pytorch 2.0.0
CUDA 11.6

MONAI 1.2.0

4.2. Results for Experiment One

This experiment compares the relative performance of the U-net and Swin UNETR, in
terms of convergence speed and testing Dice scores. Figure 8; Figure 9 show the changes in
training loss and validation Dice scores over training epochs for the BraTS2021 + CHGH
training set. It is observed that Swin UNETR converged faster than U-net. However, after
about 50 epochs, the convergence speed of both models became roughly the same. In
terms of validation Dice, the scores of both models increased more slowly after 20 epochs
compared to before. After 100 epochs of training, the loss value for both models dropped
to around 0.03. In terms of validation Dice scores, U-net can reach a maximum score of
around 0.88, while Swin UNETR can reach around 0.91.

The results of the three-fold cross-validation are shown in Table 4. It is observed that
the Dice scores of Swin UNETR on the BraTS2021 test set and the CHGH test set are about
3% higher than those of U-net using the BraTS2021 dataset as the training set. For the
training set including a portion of the CHGH data, Swin UNETR is about 6.3% higher
than U-net. On average, the Dice scores of the Swin UNETR model are 4–5% higher than
its counterpart.
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Table 4. Dice scores in Experiment One.

Training/Test U-Net Swin UNETR

BraTS2021/BraTS2021 0.8725 0.9036
BraTS2021/CHGH 0.2574 0.2871

CHGH/CHGH 0.2863 0.3500
BraTS2021 + CHGH/CHGH 0.3565 0.4402

BraTS2021 + CHGH/CHGH_S - 0.0332

It is also observed that the Dice scores for segmenting the CHGH test set are lower than
those for the BraTS2021 test set. This is because, among the 33 cases in the CHGH dataset,
15 have only small tumors. The average Dice score for segmenting large tumors is 0.78,
whereas the average Dice score for segmenting small tumors is almost zero (0.03 in Table 4),
even with Swin UNETR. This indicates that the models used cannot segment small tumors
satisfactorily, thus affecting the average Dice score of the CHGH dataset. As the BraTS2021
dataset does not contain any samples with small tumors, the models trained with this
dataset perform poorly when segmenting small tumors. To improve performance, we study
several methods mentioned in Experiment Two (Section 3.5.2).
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4.3. Results for Experiment Two

This experiment compares various approaches to train Swin UNETR, including con-
ventional supervised learning (SL), finetuning and layer freezing of transfer learning, and
self-supervised learning (SSL). In the case of finetuning, it is found that the accuracy is
highest with 6 epochs of training. Therefore, only the results of 6 epochs are reported to
save space. The experimental results are given in Table 5.

Table 5. Dice scores in Experiment Two.

Training/Downstream Method
Augmentation Rate

×1 ×4 ×8 ×16

BraTS2021 + CHGH_S SL 0.0174 - - -
CHGH_S SL 0.0169 0.1203 0.1270 0.1258

BraTS2021/CHGH_S Finetuning 0.0285 0.1109 0.1220 0.1260
BraTS2021/CHGH_S Layer Freezing 0.0135 0.0662 0.1195 0.1172
BraTS2021/CHGH_S SSL 0.0600 0.1439 0.1517 0.1882

It is observed that, as mentioned previously, adding the BraTS2021 dataset to the
training set provides very little improvement (0.0169 vs. 0.0174) compared to training only
with the CHGH_S dataset. It is also evident that using data augmentation can significantly
improve the Dice scores. However, using data augmentation in supervised learning can
only achieve a Dice score of 0.13, which is comparable to that of transfer learning.

From Table 5, we can see that the self-supervised learning model has a higher Dice
score than other approaches before applying data augmentation. With augmentation
rates of 4, 8, or 16 times, the Dice scores of self-supervised learning also show a clear
advantage. Additionally, when the augmentation rate increases from 8 times to 16 times,
the performance of supervised learning and transfer learning shows no improvement,
whereas the performance of self-supervised learning continues to show an upward trend
until it reaches its limit at 16 times. In fact, further increasing the augmentation rate to
32 times reduces the Dice score. Therefore, the self-supervised learning model with an
augmentation rate of 16 times is the one to be used in Experiment Three.

The increase in the Dice score with data augmentation actually helps tumor detection,
in both sensitivity and specificity. Taking the subject at the top of Figure 10 as an example,
without using data augmentation, the small tumor was not detected, but after applying
data augmentation, the small tumor was correctly detected. Thus, sensitivity improves.
Conversely, for the subject at the bottom of Figure 10, there were segmentation errors with-
out using data augmentation. But after applying data augmentation, the falsely detected
tumors disappear, thereby improving specificity. In short, applying data augmentation is
an essential step in training the above models.

4.4. Results for Experiment Three

This experiment studies the sensitivity and specificity of Swin UNETR trained with self-
supervised learning and performing data augmentation to generate 16 times the amount
of data. In this experiment, we performed tumor detection on all subjects in the CHGH
dataset, including the 22 normal cases. Please note that normal cases were not used during
training. The results, given in Table 6, show that the model has 100% accuracy in detecting
small tumors. However, in terms of specificity, 10 subjects were incorrectly detected with
tumors. Therefore, the specificity of this model is 54.5%.

Among the 10 incorrectly detected cases, 7 of them have white bright spots in their
MRIs. After reviewing the subjects’ medical records, these white bright spots were con-
firmed as white matter hyperintensities rather than actual tumors, as shown in Figure 11.
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However, it is difficult, even for an expert, to distinguish whether these white spots are
tumors or not using only MRI. Therefore, to improve the model’s specificity, additional
information beyond MRI, such as the subject’s medical records, is needed in an actual
diagnosis. Nevertheless, if we exclude subjects with white spots, the model’s specificity is
12/15 = 80.0%.
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Table 6. Detection results.

Subject Tumor Detected Not Detected

With small tumors (15 cases) 15 0
Normal with hyperintensities (7 cases) 7 0

Normal without hyperintensities (15 cases) 3 12
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4.5. Comparison with Existing Works

In terms of segmentation results, we could not find any existing literature discussing
the segmentation of small tumors. Although we found papers addressing segmentation
performance on BraTS 2021, such as [45,46], our main focus is not on segmenting BraTS 2021
images. So, we will not provide comparison results here. When comparing our findings
with the existing research on brain tumor detection by Abdusalomov et al. [19], the results
are displayed in Table 7.
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Table 7. Performance comparison.

Approach Training Test Tumor Size Sensitivity Specificity

Abdusalomov et al. [19] 8232 2056 Large 0.99 0.99
Proposed 32 1 15 + 22 Small 1.0 2 0.55/0.8 3

1 Model trained for segmentation with BraTS 2021 for training the pretext task. 2 Based on leave-one-out
cross-validation. 3 Excluding cases with white matter hyperintensities.

It is apparent that the specificity of our results is relatively low compared to those of
Abdusalomov et al. [19]. However, several factors are worth noting. Firstly, the experimen-
tal dataset used by Abdusalomov et al. is significantly larger than ours (8000+ vs. 32 cases),
which certainly contributes to improved detection performance. Secondly, the study by
Abdusalomov et al. is not specifically designed for detecting small tumors. As stated in the
article’s summary, “we acknowledge that additional investigation and testing are essential
to ensure the effectiveness of our method for detecting small tumors”. This acknowledg-
ment underscores the technical challenges of detecting small tumors, particularly given the
limited size of our dataset.

5. Discussions and Future Directions
Given the proposed approach’s sensitivity of 100%, it ensures that all tumors are

correctly detected. High sensitivity is typical, as the model was trained to perform seg-
mentation, which requires accurately finding the locations of tumors. However, the low
specificity of 54.5% may not be sufficient for many applications. In a typical situation, using
a threshold determined by, say, Youden’s index can trade sensitivity for specificity. To deter-
mine the threshold, a validation set is necessary, partitioned from the test set. This process
ensures no data (or knowledge) leakage during experiments. That is, no information from
the test set is used during the testing phase. Unfortunately, in our case, it is difficult to
further partition the validation set from the already small dataset.

The low specificity of 54.5% of our approach is partly due to some cases having white
spots on the MRI slices. By excluding these subjects, the specificity increases to 80%, which
could be sufficient for screening purposes. Currently, we are investigating using PET-CT
(positron emission tomography–computed tomography) images in conjunction with the
MRI for the same subject to improve the specificity. Still, the presented experiments confirm
the feasibility of detecting small tumors with the proposed method with a small dataset.

In this paper, our dataset is relatively small. While CHGH has many more cases
available for study, expanding the experimental dataset is not extremely difficult. However,
our intention is to emulate the limited resources of a medium-scale hospital. Therefore, we
decided to use a small dataset for training and testing, with cases randomly selected to
include both large and small tumors. The advantage of training a model with an in-house
dataset, despite its small size, cannot be matched by using an openly available dataset,
such as BraTS 2021. Using such a dataset may lead to the over-expectation of performance
in real-world cases. For example, a model trained with the BraTS dataset reaches a Dice
score of 0.90 for segmenting its own samples (in Experiment One), closely matching the
latest works that also use BraTS, such as [17,45,46]. Thus, the model is successfully trained.
However, when this model is used to segment small tumors, the score drops to 0.0332,
indicating that it cannot hope to have any useful medical applications.

In our experiments, the model using the proposed self-supervised learning approach
improved the Dice score to 0.1882. While this score is still low, the trained model is
nevertheless useful, as demonstrated in the detection experiment with acceptable results.
Therefore, the model could be used for the initial screening of MRI scans to detect tumors
and pinpoint their locations, reducing the workload of neurologists.
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The feasibility of using a small in-house MRI dataset for brain tumor detection and
segmentation also opens up the possibility of exploring other types of diseases, such as
stroke. There are open MRI datasets for stroke lesion segmentation, such as [47]. By using
a similar method presented in this paper, a hospital may develop a model tailored to a
specific application on stroke with a small in-house dataset.

It is also important to note that the Dice score tends to be lower for small objects. The
Dice score is calculated as follows:

Dice =
2TP

2TP + FP + FN
(4)

where TP is the region of true positives, FP is the region of false positives, and FN is the
region of false negatives.

To illustrate that the Dice score favors larger regions over smaller ones, consider the
following hypothetical example in Figure 12: a task to segment a small region size of
3 × 3 and a large region size of 5 × 5. Due to technical reasons (such as labeling bias,
misalignment, etc.), the segmented regions are offset by one pixel in both horizontal and
vertical directions. According to (4), the Dice score for the small region is as follows:

2 × 4
2 × 4 + 5 + 5

= 0.44.
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On the other hand, the Dice score for the large region is as follows:

2 × 16
2 × 16 + 9 + 9

= 0.64.

If the region is larger, the score is even higher. In practical cases, the labeled ground
truth rarely coincides exactly with the tumor. Offsetting by one or two pixels in each direction
is common. In our case, some small tumors have areas less than 1 cm2 in one slice. As we
resample the images to a size of 128 × 128, an offset of a couple of pixels in segmentation (or
annotation) significantly affects the Dice score, making a low Dice score reasonable.

In the future, we plan to implement a two-step approach to improve the Dice score.
The first step involves cutting a portion of an MRI slice containing the region of interest
(ROI). The second step is to enlarge the ROI portion to increase the number of pixels
representing the small tumors. A similar approach for lung cancer is used in [48]. The
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segmented ground truth should be based on the enlarged ROI. This method should be able
to increase the Dice score.

As mentioned in the introduction, detecting small tumors and continuously monitor-
ing their growth rate is beneficial. Therefore, another future direction would be to develop
an algorithm to automatically compute the growth rate of tumors based on several sets of
MRIs taken on different dates.

6. Conclusions
This paper studies the segmentation and detection of small metastatic brain tumors

using a small set of MRI scans. The available literature primarily focuses on segmenting
or detecting large primary brain tumors with a large number of training cases. Our study
closely resembles a real scenario that a medium-scale hospital may face: a wide variety of
tumor sizes and types (primary or metastatic), but insufficient resources to create a large
in-house dataset.

When comparing the performance of the U-Net and Swin UNETR models, the latter
performs better in tumor segmentation tasks. Even so, our experimental results show that
using the BraTS 2021 dataset to train a Swin UNETR model still yields poor performance in
segmenting small tumors. To address this, we use self-supervised learning, which has two
training phases: pretext task training and downstream task training. By using the BraTS
dataset for pretext task training, we can leverage the large number of samples in the dataset
to aid the downstream task. Overall, self-supervised learning with data augmentation
offers advantages in terms of Dice scores, from 0.0332 to 0.1882.

When directly using the self-supervised model, designed for segmentation, to perform
small tumor detection, experimental results show good sensitivity (100%) and acceptable
specificity values (80% if excluding cases with white matter hyperintensities). Overall, the
experiments confirm the feasibility of segmenting and detecting small tumors with only a
small number of in-house samples. To further improve the model’s specificity for subjects
with white matter hyperintensities, additional information beyond MRI scans is needed in
the detection model.
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