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Abstract: Background/Objectives: The methylation status of the O6-methylguanine-DNA
methyltransferase (MGMT) promoter in gliomas has emerged as a critical biomarker for
prognosis and treatment response. Conventional methods for assessing MGMT promoter
methylation, such as methylation-specific PCR, are invasive and require tissue sampling.
Methods: A comprehensive literature search was performed in compliance with the up-
dated PRISMA 2020 guidelines within electronic databases MEDLINE/PubMed, Scopus,
and IEEE Xplore. Search terms, including “MGMT”, “methylation”, “glioma”, “glioblas-
toma”, “machine learning”, “deep learning”, and “radiomics”, were adopted in various
MeSH combinations. Original studies in the English, Italian, German, and French lan-
guages were considered for inclusion. Results: This review analyzed 34 studies conducted
in the last six years, focusing on assessing MGMT methylation status using radiomics (RD),
deep learning (DL), or combined approaches. These studies utilized radiological data from
the public (e.g., BraTS, TCGA) and private institutional datasets. Sixteen studies focused
exclusively on glioblastoma (GBM), while others included low- and high-grade gliomas.
Twenty-seven studies reported diagnostic accuracy, with fourteen achieving values above
80%. The combined use of DL and RD generally resulted in higher accuracy, sensitivity,
and specificity, although some studies reported lower minimum accuracy compared to
studies using a single model. Conclusions: The integration of RD and DL offers a powerful,
non-invasive tool for precisely recognizing MGMT promoter methylation status in gliomas,
paving the way for enhanced personalized medicine in neuro-oncology. The heterogeneity
of study populations, data sources, and methodologies reflected the complexity of the
pipeline and machine learning algorithms, which may require general standardization to
be implemented in clinical practice.

Keywords: radiomics; deep learning; machine learning; O6-methylguanine-DNA methyl-
transferase; gliomas; non-invasive diagnostics
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1. Introduction
High-grade gliomas (HGGs) represent the most aggressive and prevalent primary

brain tumors, marked by a poor prognosis. Methylation of the O6-methylguanine-DNA
methyltransferase (MGMT) gene promoter has emerged as a key prognostic biomarker and
a predictor of treatment response to alkylating agents, including temozolomide (TMZ) [1–3].
Patients with a methylated MGMT promoter generally experience better outcomes and
exhibit greater sensitivity to these chemotherapeutic agents [4–6]. Consequently, MGMT
promoter methylation status has become integral to clinical decision-making in glioma
management, informing treatment protocols and potentially improving survival rates [7,8].

Conventional assessment of MGMT promoter methylation relies on techniques such
as methylation-specific polymerase chain reaction (MSP), pyrosequencing, and other molec-
ular assays [9,10]. However, these methods require invasive tissue sampling, exposing
patients to anesthesiologic and surgical risks. Moreover, intratumoral heterogeneity can
undermine the reliability of a single tissue sample, as methylation status may vary across
different tumor regions [11–14]. These limitations underscore the need for alternative,
non-invasive methods that can accurately evaluate MGMT promoter methylation.

In recent years, machine learning (ML)—specifically radiomics (RD) and deep learning
(DL)—has gained attention for its ability to predict molecular markers, including MGMT
promoter methylation, from standard imaging data, such as magnetic resonance imaging
(MRI) [13–16]. RD involves extracting high-dimensional quantitative features from medical
images, revealing tumor characteristics not visible to the naked eye. By contrast, DL
architectures can discern complex patterns, facilitating predictions of molecular features,
such as methylation status, that would otherwise require invasive testing [17–20].

This review provides a comprehensive, critical examination of the existing literature
on RD- and DL-based methods for predicting MGMT promoter methylation in cerebral
gliomas. We focus on the methodologies employed, the strengths and limitations of various
RD and DL models, and their reported accuracies within clinical contexts. We also discuss
challenges related to the clinical application of these techniques, including issues related
to reproducibility, standardization, and interpretability of ML-derived results. Finally,
we discuss future directions in this field, highlighting developments that are essential to
enhance the reliability and clinical utility of non-invasive MGMT promoter methylation
assessment. By offering clinicians and researchers a detailed overview of current ML
applications in neuro-oncology, this review underscores the transformative potential of
“virtual tumor sampling” to reshape diagnostic and prognostic strategies.

2. Objectives and Organization of This Review
The following are the main contributions to the literature of the present review:

- Identification of Gaps: This study highlights key gaps in existing methodologies,
particularly regarding standardization, reproducibility, and clinical validation;

- Proposed Framework: We propose actionable recommendations for addressing barri-
ers to integrating ML-based approaches into clinical workflows, including the adop-
tion of standardized preprocessing protocols and data-sharing technologies;

- Emerging Technologies: We discuss how federated learning and blockchain can
address challenges in data availability and security, enhancing collaborative research
in this domain;

- Practical Applications: This review explores practical scenarios, such as pre-surgical
planning and therapy response prediction, where RD-DL models can be effectively
applied.

The remainder of this review is organized as follows:



Diagnostics 2025, 15, 251 3 of 27

- Section 3 details the materials and methods, including search criteria, inclusion and
exclusion parameters, and the datasets reviewed;

- Section 4 discusses the findings, including performance metrics, challenges, and
potential solutions;

- Section 5 focuses on emerging technologies and actionable recommendations for
overcoming barriers to clinical adoption;

- Section 6 concludes this paper, summarizing key findings and outlining directions for
future research.

3. Materials and Methods
This review followed the PRISMA guidelines to identify and analyze studies employ-

ing RD or DL techniques to detect MGMT methylation status in cerebral gliomas. Figure 1
shows comprehensive searches conducted across multiple databases, including PubMed,
Scopus, and IEEE Xplore, from January 2018 to September 2024. The choice of limiting
this review to the articles published in the last six years was motivated by the advent of
DL approaches for the grading and identification of molecular mutations using MRI data
of gliomas [21]. The research was performed using various MeSH combinations of terms
such as “MGMT”, “methylation”, “glioma”, “glioblastoma”, “machine learning”, “deep
learning”, and “radiomics”. Studies were selected based on previously set inclusion criteria,
including (1) investigation focusing on MGMT promoter methylation detection, (2) use of
ML methods, (3) investigations based on T1 weighted images (T1WI), T2WI, FLAIR, and
T1WI with gadolinium (-Gd), and (4) adequate data reporting for performance evaluation.
Exclusion criteria included (1) studies not related to MGMT promoter methylations and
(2) investigations based on ML applied to imaging modalities different than MRI. Data
extracted from each study included ML model type, dataset size, feature selection methods,
pre-/and processing pipeline, performance metrics (e.g., accuracy, sensitivity, specificity),
and any validation techniques used. From this review, a total of 18 articles were excluded
(four were reviews on the topic; two articles were not retrievable from the Journal website,
and twelve articles were deemed out of this review scope as they examined other imag-
ing techniques, including PET-CT, or focused on the grading of gliomas rather than the
prediction of MGMT promoter methylation).

3.1. Datasets Utilized in Reviewed Studies

The reviewed studies predominantly utilized datasets from both public and private
sources. Public datasets such as the Multimodal Brain Tumor Image Segmentation Bench-
mark (BraTS) and The Cancer Genome Atlas (TCGA) were frequently cited. BraTS provides
high-quality, multi-institutional MRI scans with annotations for glioma segmentation, mak-
ing it a valuable resource for training and evaluating radiomics and deep learning models.
TCGA complements this with an extensive repository of molecular and imaging data,
including information on MGMT promoter methylation, facilitating the development of
radiogenomic approaches.

Private datasets, typically derived from institutional studies, varied in size and imag-
ing protocols, often lacking the consistency and standardization found in public datasets.
These datasets were valuable for exploring novel hypotheses but presented challenges
related to reproducibility and generalizability.

Each dataset included in this review was selected based on its relevance to ML-based
glioma research, its ability to support the study’s objectives, and its accessibility to the
broader research community. By outlining the characteristics and limitations of these
datasets, we aim to provide a resource that aids researchers in selecting appropriate data
sources for future investigations.
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Figure 1. PRISMA 2020 flow diagram.

3.2. Commonly Used Performance Metrics

In the context of ML applications for predicting MGMT promoter methylation, it is
crucial to evaluate model performance using standardized metrics. The following are
commonly employed metrics in the reviewed studies:

1. Accuracy: The proportion of correct predictions (both positive and negative) out of
the total number of cases. It provides an overall measure of the model’s performance.

Accuracy = (True Positives + True Negatives)/Total Cases;

2. Sensitivity: The ability of the model to correctly identify positive cases (e.g., methy-
lated MGMT promoter). It reflects the model’s capacity to minimize false negatives.

Sensitivity = True Positives/(True Positives + False Negatives);

3. Specificity: The ability to correctly identify negative cases (e.g., unmethylated MGMT
promoter), highlighting the model’s precision in avoiding false positives.

Specificity = True Negatives/(True Negatives + False Positives);

4. Precision (Positive Predictive Value): The proportion of true positive predictions out
of all positive predictions made by the model, measuring its reliability in identifying
positives.

Precision = True Positives/(True Positives + False Positives);

5. Area Under the Receiver Operating Characteristic Curve (AUC-ROC): A metric evalu-
ating the model’s ability to discriminate between classes across different thresholds.
Higher AUC values indicate better model performance.

Each of these metrics provides unique insights into model performance, ensuring a
comprehensive assessment of its predictive capability. Employing a combination of these
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metrics facilitates the comparison of methods and aids in identifying the most clinically
applicable models.

4. Results
Thirty-four studies conducted between January 2018 and September 2024 were an-

alyzed. Both private and public datasets provided data for these studies, and different
RD and/or DL algorithms were investigated to assess sensitivity, specificity, and accu-
racy in the prediction of MGMT promoter methylation status. The characteristics of these
studies are summarized in Table 1. An initial evaluation reveals significant heterogeneity
among the study populations: some studies focused exclusively on HGG, while fourteen
investigations included low (LGG) and HGG.

In fourteen studies, data were directly obtained from public repositories such as
TCIA [22], TCGA [23], and the BraTS [24]. Although relying on similar radiological data,
different software, preprocessing pipelines, and classifiers were applied, yielding diverse
values of sensitivity, specificity, and diagnostic accuracy. Sixteen studies used data from
private hospital datasets, and three studies combined imaging data from public sources
with private hospital datasets, achieving notable diagnostic accuracy [16,25,26].

Table 1. Summary of tumor and MRI sequences characteristics.

Author Year Type of Dataset Glioma Grades Used Sequences

Han et al. [27] 2018 Public: TCIA and
TCGA HGG T1WI, T2W2; T2 FLAIR

Li et al. [16] 2018
Public and Private

TCIA and three local
institutions

HGG T1W1; T1Gd; T2-FLAIR

Xi et al. [28] 2018 Private HGG T1W1; T1Gd; T2WI
Hajianfar et al. [15] 2019 Public: TCIA HGG T1Gd; T2 FLAIR

Jiang et al. [29] 2019
Public—The Cancer

Genome Atlas
Low-Grade Glioma

LGG T1Gd; T2WI

Sasaki et al. [30] 2019 Private LGG + HGG T1WI; T1Gd; T2WI; T2Edge;
Gdzscore

Wei et al. [31] 2019 Private LGG + HGG T1Gd; T2-FLAIR; ADC

Calabrese et al. [32] 2020 Private HGG T1WI; T1Gd; T2-FLAIR; SWI;
DWI; ASL; HARDI

Chen et al. [17] 2020 Public: TCIA and
TGCA HGG T1WI; T1Gd; T2-FLAIR;

Le et al. [33] 2020 Public: TCGA and
TCIA HGG T1WI; T1Gd; T2-FLAIR;

Lin et al. [34] 2020 Public: TCIA LGG + HGG T1WI; T1Gd; T2-FLAIR;
Lu et al. [35] 2020 Private HGG T1Gd

Haubold et al. [36] 2021 Private LGG + HGG T1WI; T1Gd; T2-FLAIR;
Huang et al. [37] 2021 Private LGG + HGG T1WI; T1Gd; T2WI; T2-FLAIR
Kihira et al. [38] 2021 Private LGG + HGG T1Gd; T2-FLAIR; DWI

Pasquini et al. [39] 2021 Private HGG MPRAGE; T2-FLAIR; DWI;
ADC; PWI;

Sohn et al. [40] 2021 Private HGG T1WI; T1Gd; T2WI; FLAIR

Yogananda et al. [41] 2021 Public: TCAI and
TCGA LGG + HGG T2WI

Zhang et al. [42] 2021 Private LGG + HGG T1WI; T1Gd; T2WI; T2-FLAIR

Do et al. [43] 2022 Public: TCIA and
TGCA HGG T1WI; T1Gd; T2WI; T2-FLAIR
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Table 1. Cont.

Author Year Type of Dataset Glioma Grades Used Sequences

He et al. [44] 2022 Private LGG + HGG T1WI; T1Gd; T2WI; DWI; ADC

Kim et al. [45] 2022 Public: SNUH and BraTS
2021 LGG + HGG T1WI; T1Gd; T2WI; T2-FLAIR

Pease et al. [46] 2022 Public: MDACC and
TCGA HGG T1Gd; T2WI; T2-FLAIR

Doniselli et al. [47] 2023 Private HGG T1Gd—FLAIR
Faghani et al. [48] 2023 Public—BraTS2021 HGG T1WI; T1Gd; T2WI; T2-FLAIR
Qureshi et al. [49] 2023 Public—BraTS 2021 LGG + HGG T1WI; T1Gd; T2WI; T2-FLAIR
Saeed et al. [50] 2023 Public—BraTS 2021 LGG + HGG T1WI; T1Gd; T2WI; T2-FLAIR

Saxena et al. [51] 2023 Public—BraTS 2021 LGG + HGG T1WI; T1Gd; T2WI; T2-FLAIR

Sha et al. [26] 2023
Public: TCGA and TCIA
+ Private: FHSXMU and

SPPH
LGG + HGG T1Gd; T2-FLAIR

Zhong et al. [52] 2023 Three institutions HGG T1WI; T1Gd; T2WI
Guo et al. [53] 2024 Institutional HGG T1WI; T1Gd; T2WI; T2-FLAIR

Li et al. [25] 2024 Private + Public (TCAI) HGG T1WI; T1Gd; T2-FLAIR
Schimtz et al. [54] 2024 Public—TCIA HGG T1WI; T1Gd; T2WI; T2-FLAIR

Zheng et al. [55] 2024 Private HGG T1WI; T1Gd; T2WI; FLAIR; DWI;
ADC

TCIA: The Cancer Imaging Archive, TCGA: The Cancer Genome Atlas; SNUH: Seoul National University Hospital;
MDACC: MD Anderson Cancer Center; HGG: High-Grade Glioma; LGG: Low-Grade Glioma.

As shown in Table 1, a variety of MRI sequences—including T1WI, T1WI-Gd, T2WI,
and FLAIR—have been employed across various studies. In some cases, diffusion-weighted
imaging (DWI), including apparent diffusion coefficient (ADC) mapping, was also used.
Additionally, Sasaki et al. [30] developed two image-processing techniques, Gdzscore and
T2Edge, to improve the detection of MGMT promoter methylation in GBM. Specifically,
Gdzscore enhances tumor visibility by calculating voxel-wise contrast between T1WI and
T1WI-Gd sequences, while T2Edge applies a Prewitt filter to T2WI to accentuate edges,
thereby improving tumor boundary delineation and facilitating accurate segmentation. In
this study, both Gdzscore and T2Edge images were part of the preprocessing steps in the
RD analysis pipeline, aimed at improving the quality and interpretability of the MRI data
used for predictive modeling in GBM patients. Nevertheless, the authors were able to reach
a peak accuracy of only 67%.

4.1. Preprocessing Pipeline

The preprocessing steps of image selection and normalization are a common and
fundamental element in all studies, as illustrated in Table 2. This phase typically involves
image segmentation, skull stripping, normalization, coregistration of images, RD, and/or
DL. Each step in the pipeline performs a distinct operation, and the output of one step
becomes the input for the next. A pipeline may present some useful features such as
(1) sequential process, which organizes tasks in a specific order where the data flow from
one stage to the next; (2) automation: once set up, the pipeline automates the process,
reducing manual work; (3) modularity: each stage is a separate module or operation,
making it easier to manage and adjust; (4) scalability: it can handle large amounts of
data efficiently. On the other hand, pitfalls of organizing tasks in a pipeline include
(1) complex setup, (2) limited flexibility, and (3) error propagation. Pipelines are highly
effective for automating and scaling complex processes but can add complexity in setup
and management. They are most useful when dealing with repetitive, large-scale tasks
where consistency and efficiency are critical.
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Table 2. Summary of the preprocessing pipelines adopted.

Author Segmentation
Software/Algorithm

Skull Stripping
Software Coregistration Software Image Normalization

Software/Algorithm

Han et al. [27] Not specified Not mentioned Not mentioned Batch Normalization

Li et al. [16]

TensorFlow (https://
www.tensorflow.org)

accessed on 15
November 2024

Not specified Not specified N4ITK

Xi et al. [28]

Manual segmentation +
MITK (https://www.
mitk.org/wiki/The_
Medical_Imaging_
Interaction_Toolkit)

accessed on 15
November 2024

FSL
(https://fsl.fmrib.ox.
ac.uk/fsldownloads_

registration/) accessed
on 15 November 2024

FSL Nyul intensity
normalization

Hajianfar et al. [15] Manual Segmentation Manually Not mentioned Not specified

Jiang et al. [29]

Manual segmentation +
ITK-SNAP (http:

//www.itksnap.org/
pmwiki/pmwiki.php)

accessed on 15
November 2024

Not specified FSL

Pyradiomics
(https://pyradiomics.

readthedocs.io/en/
latest/) accessed on 15

November 2024

Sasaki et al. [30]

MatLab (https://www.
mathworks.com/

products/matlab.html)
accessed on 15

November 2024

MatLab FSL FSL

Wei et al. [31] Manual segmentation Not mentioned Not mentioned Not mentioned

Calabrese et al. [32] Not specified

BET
(https://mangoviewer.
com/plugin_jbet.html)

accessed on 15
November 2024

Not mentioned ANTs

Chen et al. [17] BraTS 2018 + VAE Not mentioned Not mentioned Batch Normalization
Le et al. [33] BraTS Not mentioned Not mentioned Not mentioned

Lin et al. [34]

Manual segmentation +
GLISTR (https:

//www.nitrc.org/
projects/cbica_glistr/)

accessed on 15
November 2024

BET + MASS method Not specified Z-score

Lu et al. [35]
Manual segmentation +

ITK SNAP (for
necrosis)

Not mentioned Not mentioned

CaPTk (https:
//www.med.upenn.
edu/cbica/captk/)

accessed on 15
November 2024

Haubold et al. [36]

BraTS 2019 pretrained
DeepMedic network

(https:
//deepmedic.org)

accessed on 15
November 2024

HD-BET algorithm

SimpleITK extension
SimpleElastix (https://
simpleelastix.github.io)

accessed on 15
November 2024

Not mentioned

Huang et al. [37] Manual Segmentation Not mentioned Not mentioned Z-score

Kihira et al. [38] Manual segmentation Not specified

Olea Sphere
(https://www.olea-
medical.com/en/)

accessed on 15
November 2024

Olea Sphere

https://www.tensorflow.org
https://www.tensorflow.org
https://www.mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit
https://www.mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit
https://www.mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit
https://www.mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit
https://fsl.fmrib.ox.ac.uk/fsldownloads_registration/
https://fsl.fmrib.ox.ac.uk/fsldownloads_registration/
https://fsl.fmrib.ox.ac.uk/fsldownloads_registration/
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://mangoviewer.com/plugin_jbet.html
https://mangoviewer.com/plugin_jbet.html
https://www.nitrc.org/projects/cbica_glistr/
https://www.nitrc.org/projects/cbica_glistr/
https://www.nitrc.org/projects/cbica_glistr/
https://www.med.upenn.edu/cbica/captk/
https://www.med.upenn.edu/cbica/captk/
https://www.med.upenn.edu/cbica/captk/
https://deepmedic.org
https://deepmedic.org
https://simpleelastix.github.io
https://simpleelastix.github.io
https://www.olea-medical.com/en/
https://www.olea-medical.com/en/
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Table 2. Cont.

Author Segmentation
Software/Algorithm

Skull Stripping
Software Coregistration Software Image Normalization

Software/Algorithm

Pasquini et al. [39] Manual segmentation

Manual
segmentation—3D

Slicer (https:
//www.slicer.org)

accessed on 15
November 2024

FMRIB Linear Image
Registration Tool from
FSL (https://web.mit.
edu/fsl_v5.0.10/fsl/

doc/wiki/FLIRT.html)
accessed on 15

November 2024

Python Standard Scaler
package (https:

//www.python.org)
accessed on 15

November 2024

Sohn et al. [40] HD-GLIO HD-GLIO HD-GLIO N4 bias correction +
Z-score

Yogananda et al. [41] Manual segmentation +
3D-IDH Network BET ANTs

Advanced
Normalization Tools;

N4 Bias Field
Correction; Intensity

Normalization

Zhang et al. [42]

NiftyNet platform
(https://niftynet.io)

accessed on 15
November 2024

BET FSL Not mentioned

Do et al. [43] Not specified Not mentioned Not mentioned Not specified
He et al. [44] Manual Segmentation Not specified ITK-SNAP Z-score

Kim et al. [45] FSL 3D Slicer 3D Slicer N4ITK

Pease et al. [46] Manual segmentation +
3D Slicer BET Not mentioned Nyul intensity

normalization

Doniselli et al. [47] Semi-automatic—ITK-
SNAP

SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/

software/spm12/)
accessed on 15

November 2024

ANTs Z-score

Faghani et al. [48] Not specified Not specified Not specified Not specified
Qureshi et al. [49] CNN; U-Net; CRFs CaPTk + FeTS tool CaPTk + FeTS tool L2-norm
Saeed et al. [50] CNN; U-Net; CRFs CaPTK CaPTK Not mentioned

Saxena et al. [51] CNN; U-Net; CRFs Not mentioned Not mentioned N4-bias correction
method

Sha et al. [26] Manual segmentation +
ITK-SNAP Not mentioned FSL

Intensity
Normalization +

Z-Score

Zhong et al. [52] BraTS Not mentioned Not mentioned SimpleITK, Z score
normalization

Guo et al. [53] Not specified Not mentioned Not mentioned Not mentioned
Li et al. [25] 3D U Net + ITK-SNAP Not specified MatLab Z-score

Schimtz et al. [54] BraTS Not specified Not specified Min-max scaling

Zheng et al. [55] Manual segmentation +
ITK-SNAP Not mentioned FSL PyRadiomics

MITK: Medical Image Toolkit; ITK-SNAP: Insight Segmentation and Registration Toolkit; BET: Brain Extraction
Tool; FSL: FMRIB Software Library; ANTs: Advanced Normalization Tools; N4ITK: N4 Bias Field Correction;
CaPTk: Cancer Imaging Phenomics Toolkit; FeTS: Federated Tumor Segmentation.

4.2. Skull Stripping

Skull stripping involves the removal of all non-brain tissues from MRI images. This
process often requires specialized algorithms that identify and remove non-brain tissues,
including Brain Extraction Tool (BET), Statistical Parametric Mapping (SPM), and Cancer
Imaging Phenomics Toolkit (CaPTk). As shown in Table 2, the most commonly used tool
in the studies was BET [32,34,36,41,42,46], while in twelve studies, the images were not
subjected to this process, and in seven studies, it was not specified [16,25,29,38,44,48,54].
When applied correctly, skull stripping plays a crucial role, along with other preprocessing
steps, in minimizing noise and bias.

https://www.slicer.org
https://www.slicer.org
https://web.mit.edu/fsl_v5.0.10/fsl/doc/wiki/FLIRT.html
https://web.mit.edu/fsl_v5.0.10/fsl/doc/wiki/FLIRT.html
https://web.mit.edu/fsl_v5.0.10/fsl/doc/wiki/FLIRT.html
https://www.python.org
https://www.python.org
https://niftynet.io
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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4.3. Coregistration

Coregistration is an imaging technique to precisely align two or more images, ensuring
they match up in terms of position, size, and orientation. It enables precise comparison
and analysis across various types of scans and allows for accurate comparison and analysis
across different types of scans or over different periods. By aligning images of the same
area taken at different times, it becomes possible to track subtle changes, such as tumor
growth or disease progression, with greater accuracy. This process is vital for combining
data from various sources or longitudinal studies where images from the same subject are
compared over time. In thirteen studies [15,17,27,31–33,35,37,43,46,51–53], the images were
not co-registered, while in four studies, this was not specified. Software such as FSL (in
seven studies), CaPTk, and ANTs were commonly used.

4.4. Normalization

Image normalization involves adjusting the data to improve comparability across
different scans. In practice, normalization is typically performed during the preprocessing
stage before the image is input into a model.

There are two main types of image normalization:

- Intensity normalization. This process adjusts the intensity values of MRI images to
account for variations in pulse sequence parameters, magnetic field inhomogeneity,
patient positioning, or other factors that can affect image brightness. The purpose
is to make intensity values comparable across different scans, which is especially
important in multicenter studies where different scanners are used. It usually involves
two main steps: (1) convert the DICOM data to another format, with NifTI being
the most popular option; (2) choose a normalization technique (N4 bias correction,
Batch normalization, Z-score, etc.) to standardize the pixel values. By normalizing the
data, inconsistencies in brightness or contrast can be removed, making it easier for
the model to focus on the actual patterns in the image, improving the accuracy and
performance of the analysis;

- Spatial Normalization. This method involves aligning the images to a standard tem-
plate or coordinate system, using different registration techniques. The most widely
used coordinate systems here are the Montreal Neurological Institute space template
(MNI template) and the Talairach space template (Talairach atlas). Spatial normaliza-
tion is crucial for comparison across subjects or for performing group analyses where
scans need to be aligned in a standardized way.

Both types of normalization are essential for making MRI data reliable for quantitative
analysis and machine learning applications. Among the examined studies, the normal-
ization process is one of the most commonly applied, with only seven publications not
providing specific information regarding this process [31,33,36,42,48,50,53]. The Z-score
intensity normalization method was applied in eight studies, making it the most used
method. Z-score, also known as a standard score, is a statistical measure that describes
how far a data point is from the mean of a dataset, measured in terms of standard de-
viations. First, the mean (µ) and standard deviation (σ) of pixel values in the image are
calculated. For grayscale images, the average pixel intensities are considered. Then, the
Z-score formula is applied to transform each pixel (x) into a normalized value through
a simple formula (x − µ)/σ; after this transformation, the image will have a mean of 0
and a standard deviation of 1, which helps in standardizing the data for analysis. This
normalization can make models more efficient, especially when the images are used as
inputs to ML algorithms, as it helps stabilize and speed up the learning process.
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4.5. Segmentation

Image segmentation can be performed manually, semi-automatically, or automatically.
In six studies [15,31,37–39,44], expert neuroradiologists performed manual segmentation,
while in ten studies [26,28,29,34,35,41,46,55,56], manual feature selection by experts was
paired with verification software. Certainly, the use of software inevitably minimizes
interrater bias in tumor segmentation. In the BraTS challenge, various segmentation
techniques are used, including traditional ML and advanced DL approaches. Recent
experiences have demonstrated the effectiveness of various DL methods for tasks related
to brain tumor segmentation and analysis [57–60], including (1) cascaded anisotropic
convolutional neural networks (CNN), which have been used to improve segmentation
accuracy by leveraging multiple stages of processing; (2) ML algorithms, which refer
to a broader evaluation of these algorithms for brain tumor segmentation, progression
assessment, and overall survival prediction, as seen in the BraTS challenge; (3) DL-based
RD that involves extracting quantitative features from medical images to predict genetic
biomarkers and analyzing them through ad hoc DL algorithms.

Among the most common DL methods, CNN and U-Net are specifically designed
to perform highly effective image segmentation. A similar method was used by Cal-
abrese et al. [32], where a deep CNN (dCNN) for automated tumor segmentation was
applied. Specifically, the segmentation network consisted of three cascaded instances of a
2-dimensional dCNN. The first instance was responsible for segmenting the entire tumor
volume from whole brain images, while the second and third instances focused on segment-
ing the tumor core and the Gd-enhancing tumor, respectively, from the tumor volume. This
approach allowed for rapid and accurate three-dimensional (3D) segmentation of GBM
subregions from MRIs, which is crucial for subsequent RD feature extraction and genetic
biomarker prediction. Notably, some authors applied morphological operations or Condi-
tional Random Fields (CRFs) to refine the initial results to further improve the accuracy of
the segmentation [24]. Furthermore, ITK-SNAP was utilized in six studies [25,26,29,54–56],
and it is widely known for its capability in the semi-automatic segmentation of MRIs
(Figure 2). The tool combines both manual input and automated algorithms, offering a
balance between precision and efficiency in generating accurate segmentations. Its 3D
visualization and region-growing algorithm allow for rapid segmentation with minimal
manual effort, especially when defining regions of interest (ROIs). Unfortunately, as shown
in Table 2, the segmentation process is not specified in five studies [27,32,48,53].

4.6. Radiomics vs. Deep Learning

As shown in Table 3, the software and classifiers used are also heterogeneous. Some
studies used RD (n = 14; PyRadiomics, GLCM, HOG, LBP), while others adopted DL
classifiers (n = 5; CNN, CRNN, UNet, ResNet), and some combined both approaches (n = 15).
The most used tool for RD was PyRadiomics, an open-source Python package for extracting
features from medical images to identify biomarkers, though three studies [33,34,50] did
not specify the model used. Sha et al. [26] developed a model that successfully predicted a
combination of the two factors: IDH mutation and MGMT promoter methylation in glioma.
However, the focus of this study was not solely on predicting MGMT promoter methylation
but rather on both genetic factors. Hence, the approach used in their study does not directly
reflect the performance of MGMT methylation alone.
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Figure 2. (A) ITK-SNAP Toolkit adopted for the semi-automatic segmentation of a right temporome-
sial and (B) large left temporal glioblastoma. Yellow: edema, green: contrast-enhancing component,
red: necrosis.
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Table 3. Characteristics of radiomics and deep learning software used and their results.

Author Radiomics Used Deep Learning
Used Sensitivity Specificity Accuracy

Han et al. [27] Not specified CRNN 67% 67% 62%

Li et al. [16] GLCM; GLRLM; GLSZM;
NGTDM - - - 80%(6f); 70%(8f)

Xi et al. [28] Not specified SVM 87.50% 75.00% 80%
Hajianfar et al. [15] Shape—Intensity-Texture - - - -

Jiang et al. [29]

3D-CE-T1 Single Model;
T2-weighted Single Model;

Linear Combination
Model; Fusion Radiomics
Model; Clinical Integrated

Model

-
71.4%; 82.1%;
92.9%; 82.1%;

92.9%

71.4%; 71.4%;
71.4%; 71.4%;
85.7%; 71.4%;

88.6%; 80%;
88.2%; 88.6%;

88.6%

Sasaki et al. [30] Texture and Location
analysis - - - 67%

Wei et al. [31]

ROI segmentation, feature
extraction, feature

selection, and model
construction

- - - 90.2%

Calabrese et al.
[32] PyRadiomics 2.2.0 - - - -

Chen et al. [17] - CNN with VAE - - 82.70%
Le et al. [33] Not specified XGBoost 88% 88.7% 88.70%
Lin et al. [34] Not specified - - - -
Lu et al. [35] PyRadiomics Not specified - - 45–67%

Haubold et al. [36] PyRadiomics HD-BET 75.6% ± 9.4% 81.5 ± 9.1% 78.6 ± 4.4%

Huang et al. [37] Radscore - GBM: 90.5%,
Gliomas: 70.2%

GBM: 72.7%,
LGG + HGG:

90.6%

GBM: 78.3%,
LGG + HGG:

83%

Kihira et al. [38] First-order mean absolute
deviation; GLCM - 70% 65% 67%

Pasquini et al. [39] PyRadiomics - - - 70.8%

Sohn et al. [40] PyRadiomics - 46.9% BR; 47.7%
ECC

77.7% (BR);
97.6% (ECC)

65.3% (BR);
76.1% (ECC)

Yogananda et al.
[41] - 3D-dense UNets 96.31% 91.66% 94.73%

Zhang et al. [42] PyRadiomics 2.0.0 autoML with
TPOT 81.1% 94% 89.40%

Do et al. [43] -
XGBoost + GA;

RF + GA; SVM +
GA

89.4% (GBM);
78% (LGG)

96.6% (GMB);
62% (LGG)

92.5% (RF-GBM);
75% (LGG)

He et al. [44] PyRadiomics - - - -

Kim et al. [45] PyRadiomics EfficientNet-B0
(CNN) - - 54.80%

Pease et al. [46]

Intensity-level histograms;
GLCM; the Maximum
Relevance Minimum

Redundancy technique

- 84.60% 93.30% 89%

Doniselli et al. [47] PyRadiomics 2.2.1 SVM—RF 83.5 ± 8.9% 82.5 ± 11.8%
83 ± 5.7% (SVM

on
CE-NEC-HYP)

Faghani et al. [48] - Not specified (1) 71.2% (2)
55.5%; (3) 65.4%

(1) 58.9%; (2)
48%; (3) 51.5%

(1) 0.65; (2) 0.56;
(3) 0.61

Qureshi et al. [49] GLCM; HOG, LBP DLRFE; HFS 96.08 ± 0.10% 97.44 ± 0.14% 96.84 ± 0.09%

Saeed et al. [50] Not specified

ResNet,
DenseNet,

EfficientNet; ViT;
Swin

- - -

Saxena et al. [51]
GLCM), GLRLM, LBP,
NGTDM, GLSZM ->

CaPTk

ResNet and
EfficientNet --

61.33% (ML);
69.26% (DL);

76.18% (Fused
Deep Learning)
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Table 3. Cont.

Author Radiomics Used Deep Learning
Used Sensitivity Specificity Accuracy

Sha et al. [26] PyRadiomics - 81.10% 80.80% 88.60%

Zhong et al. [52] PyRadiomics ResNet and C3D 64.29% (ResNet);
85.71% (C3D) - 86.76% (ResNet);

89.71% (C3D)

Guo et al. [53] -

PCA—FLD—
Binary Hashing
and Blockwise

Histograms

- - 70%

Li et al. [25] uLR-mRMR-LASSO—
ComRad 3D U Net 65% 95.70% 81.40%

Schimtz et al. [54]
Skewness; Energy; GLCM;
GLSZM; GLSZM low gray;

NGTDM
MedicalNet 78% 84% 81%

Zheng et al. [55] PyRadiomics XGBoost - - 75.4%

GLCM: Gray Level Co-occurrence Matrix; GLRLM: Gray Level Run Length Matrix; GLSZM: Gray Level Size
Zone Matrix; NGTDM: Neighborhood Gray Tone Difference Matrix; CNN: Convolutional Neural Networks;
SVM: Support Vector Machine; RF: Random Forest; XGBoost: eXtreme Gradient Boosting; DLRFE: Deep Learning
Radiomic Feature Extraction; PCA: Principal Component Analysis; FLD: Fisher Linear Discriminant.

In seven studies [28,33,42,43,53,56], general ML was applied instead of DL; although
the two techniques are similar in certain aspects, they are by no means identical. Indeed,
ML involves algorithms that learn patterns from data and make decisions with minimal
human intervention, while DL is a subset of ML that uses neural networks with many layers
to automatically identify complex patterns in large datasets. Interestingly, better results
were achieved using ML, and the most used algorithms are Extreme Gradient Boosting
(XGBoost) in three studies [33,43,55] and the Support Vector Machine (SVM) model in
two investigations [28,47]. The key difference is that XGBoost is an ensemble of learning
methods that build decision trees iteratively, each one correcting errors of the previous
ones in a process defined as “boosting”. SVM is a supervised learning algorithm that finds
a hyperplane to separate data into classes. XGBoost is typically faster on large datasets
due to its parallel capabilities, while SVM may be slower. Both algorithms are powerful,
but XGBoost excels in structured data and large datasets, while SVM is better for specific
classification problems with smaller datasets. However, comparing studies using DL and
ML, the outcomes ultimately depend on the task and dataset. For instance, ML achieves
better results for smaller, structured data and simpler tasks, while DL excels with large,
unstructured data, like images, and complex tasks, like image recognition. DL requires
more data and computing power but can outperform ML in those cases.

In the field of DL, CNNs are fundamental models for image-processing tasks. Over
time, a variety of CNN architectures have been developed to tackle specific challenges
and improve performance in different areas. Notable examples include LeNet for early
image recognition, ResNet for addressing the vanishing gradient problem in deep networks,
EfficientNet for optimizing model scaling, and UNet for precise image segmentation in
medical and other applications. The best results were achieved by Qureshi et al. [49], where
the authors highlight the application of the Deep Learning Radiomic Feature Extraction
(DLRFE) module in predicting the genetic subtype of GBM, particularly the MGMT pro-
moter methylation status, using multiparametric MRI. The DLRFE model extracts dynamic
features, capturing spatial distribution and tumor size through a DL architecture [61]. It
fuses these latent features with traditional RD features like Gray Level Co-occurrence
Matrix, Histogram of Oriented Gradients, and Local Binary Patterns to create a hybrid
feature set, enhancing the model’s predictive power [62]. This study reports improved
classification performance using k-NN and SVM classifiers. Additionally, a novel rejection
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algorithm isolates negative training instances, refining the model’s accuracy [61,62]. In
conclusion, the DLRFE module significantly contributes to better GBM classification and
prediction outcomes. Unfortunately, the values for specificity, sensitivity, and accuracy
were not determined for each study, making comparisons challenging. However, based
on the data reported in Table 3, diagnostic accuracy was calculated in twenty-nine studies,
with sixteen of them achieving values above 80%. In thirteen studies where both DL and
RD approaches were employed, sensitivity and specificity were determined in only ten
studies (sensitivity ranging from 64.29% to 96.18%, and specificity from 67% to 97.6%). In
one study, diagnostic accuracy was not determined, while the remaining studies reported
accuracy values varying from 45% to 96.8% [49]. When DL or ML was used without RD,
diagnostic accuracy ranged between 56% and 94.7%, with specificity between 55.5% and
96.32% and sensitivity between 48% and 91.66% [41,48]. In fourteen studies that applied
only RD, diagnostic accuracy varied between 65.3% and 89%, while sensitivity ranged from
46.9% to 90.5%, and specificity ranged from 65% to 93.6% [40,46]. Finally, the combined
use of DL and RD yields higher maximum values for accuracy, sensitivity, and specificity
compared to studies that used only one approach, even though the minimum accuracy
values were lower in studies employing the combined approach.

5. Discussion
The methylation status of the MGMT promoter is a pivotal biomarker for predicting

the efficacy of TMZ chemotherapy in GBM [63–66]. As conventional methods for assessing
MGMT promoter status rely on invasive tissue biopsies, RD and DL offer promising non-
invasive alternatives [41,67–69]. Leveraging imaging modalities such as multiparametric
MRI, these methods aim to characterize tumor heterogeneity and predict molecular profiles
accurately [70,71]. However, challenges such as variability in imaging protocols, feature
extraction, and model generalizability need to be addressed for clinical adoption.

5.1. Radiomics: Current Developments and Challenges

RD has emerged as a powerful approach for extracting quantitative imaging features
that correlate with tumor biology. Zheng et al. [55] demonstrated that RD models built
using mpMRI—including T1WI, T2WI, and FLAIR—achieve significantly higher predictive
accuracy (AUC 0.75) compared to single-sequence models. Similarly, Li et al. [25] developed
a multiregional model incorporating features from enhancing, necrotic, and edematous re-
gions, achieving AUCs of up to 0.84. This progress is complemented by Lin et al. [34], who
highlight the potential of RD as a decision-support tool in the management of gliomas. The
authors assert that RD, through quantitative analysis of medical imaging, can contribute
to the risk stratification of glioma patients, enabling the prediction of survival outcomes.
Specifically, their study demonstrated that an RD model derived from multiparametric
MRI could distinguish subgroups of patients with HGG who exhibited significantly dif-
ferent prognoses. The analysis of RD features, such as those related to intensity, volume,
morphology, histograms, and texture, facilitated the identification of two distinct patient
subtypes with divergent prognostic outcomes. This ability to predict survival based on RD
features could provide valuable insights for clinicians in personalized treatment planning,
patient selection for specific therapies, and disease progression monitoring. The integration
of RD data with clinical and molecular information could further enhance the accuracy of
risk stratification and support more informed therapeutic decision-making [34].

5.2. Clinical Applications and Limitations

Despite these advancements, challenges persist in leveraging RD for MGMT promoter
methylation prediction. Sasaki et al. [30] found that RD achieved an accuracy of only 67%,
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which was deemed insufficient for clinical utility. This is in contrast to the demonstrated
success of RD in predicting IDH mutations in LGG and HGG [42,72–74]. This limitation
may stem from the use of structural MRI alone, as evidenced by the study’s findings that
second-order texture features, such as the standard deviation of GLRLM of the Gd-T1WI,
while influenced by MGMT promoter methylation status, were inadequate for precise
prediction [30,75,76]. Furthermore, while Sasaki et al. observed no asymmetry in lesion
localization between methylated and non-methylated tumors, prior research highlighted
the importance of lesion localization in predicting IDH mutations in LGG (grades I and
II) [30,75,77,78].

Nevertheless, RD demonstrated clinical significance in stratifying GBM patients into
prognostic groups independent of MGMT methylation status, with the RD risk score serv-
ing as an independent prognostic factor more robust than initial Karnofsky Performance
Status or the type of surgery performed [30,79–81]. Most prognostic RD features were de-
rived from the tumor core, a finding consistent with other studies. Additionally, combining
the RD risk score with MGMT methylation status enhanced the stratification of clinical
outcomes for newly diagnosed GBM patients, further underlining the integrative value of
RD [30]. Further validating RD applications, a systematic review by Samartha et al. [82] and
the work of Doniselli et al. [47] emphasized the clinical utility of RD in early, non-invasive
MGMT promoter status estimation. Doniselli et al. [47] also demonstrated the advantages
of integrating multiple tumor subregions, which improved sensitivity and specificity in
MGMT methylation prediction. Standardization of imaging protocols is critical for advanc-
ing RD applications. Sasaki et al. [30] emphasized intensity normalization as essential for
consistent quantitative analyses, aligning with clinical practices with radiologists adjusting
image windows for improved interpretation [83,84]. Nyul et al. [85] proposed advanced
methods for addressing scanner-related variability, enhancing downstream analyses such
as segmentation and quantification. These steps are crucial for ensuring reproducibility
and reliability in radiomic studies.

5.3. Deep Learning: Enhancing Radiomics

DL expands RD capabilities by enabling automated feature extraction and complex
pattern recognition. Saxena et al. [51] introduced a fused DL paradigm combining hand-
crafted and deep features, achieving a 15% improvement in predictive performance over
standalone RD models. Similarly, Sha et al. [26] demonstrated that integrating clinical
variables with RD features in DL frameworks significantly enhanced MGMT promoter
methylation prediction accuracy (AUC > 0.93). Li et al. [16] further explored DL and RD
integration, emphasizing the utility of “all-relevant” models based on the Boruta algorithm
for feature selection. This approach accounts for interactions among features and outper-
formed univariate models, achieving robust validation performance. By leveraging the
“all-relevant” model, this study demonstrated higher AUCs even in validation cohorts,
suggesting greater generalizability and reliability across datasets [16,86–88]. Additionally,
Li et al. [16] underscored the advantages of RD over biopsy-based approaches, as RD imag-
ing assesses the entire tumor, addressing the molecular heterogeneity of GBM [76,89–92].
The importance of comprehensive preprocessing pipelines, including bias field correction,
skull stripping, isotropic voxel resampling, rigid registration, and intensity standardiza-
tion, was also highlighted as critical for ensuring quality and consistency in extracted
features [16,24,93–98].

Building on these advancements, Han et al. [27] and Palsson et al. [99] proposed
integrating tumor segmentation with RD and shape features in DL pipelines, enhancing
prediction accuracy by incorporating spatial and morphological characteristics. An example
of an integrated RD and DL pipeline can be seen in Table 4.
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Table 4. Combined RD-DL Pipeline for MGMT Promoter Methylation Prediction.

Step Description Challenges and Solutions

1. Data Acquisition
Collect multiparametric MRI data (T1,

T1-Gd, T2, FLAIR) from public and
private datasets.

Challenges: Variability in imaging protocols.
Solutions: Use intensity and spatial normalization.

2. Preprocessing
Prepare MRI data through skull stripping,

segmentation, normalization, and bias
field correction.

Challenges: Accurate segmentation and error
propagation.

Solutions: Use automated tools (e.g., HD-BET) and
validate manually.

3. Radiomic Feature
Extraction

Extract handcrafted features (e.g., texture,
shape, intensity) using PyRadiomics or

similar tools.

Challenges: Feature redundancy and segmentation
errors.

Solutions: Apply feature selection techniques like
LASSO.

4. Deep Learning Feature
Extraction

Train CNNs or use transfer learning to
extract abstract features from MRI data.

Challenges: Large labeled datasets required.
Solutions: Use data augmentation and federated

learning.

5. Feature Fusion Combine radiomic and deep learning
features into a unified representation.

Challenges: Balancing scales and dimensions.
Solutions: Normalize features and experiment with

fusion strategies.

6. Model Training
Train hybrid models (e.g., Random Forest

with fused features) and validate via
cross-validation.

Challenges: Risk of overfitting.
Solutions: Regularize models and use explainability

tools like SHAP.

7. Validation and Testing Test the model on external datasets to
ensure generalizability.

Challenges: Dataset shifts and single-metric reliance.
Solutions: Use comprehensive metrics and external

validation.

8. Clinical Integration Deploy the pipeline for non-invasive
prediction in clinical workflows.

Challenges: Integration and interpretability.
Solutions: Develop user-friendly interfaces and

conduct pilot studies.

SHAP: SHapley Additive exPlanations.

Calabrese et al. [32] advanced these efforts with a dCNN for automatic segmentation of
key GBM components, achieving high accuracy and scalability. Their approach allowed for
rapid segmentation (under 25 s per MRI) and utilized PyRadiomics to extract standardized
features, facilitating comparisons across studies [32]. Schmitz et al. [54] proposed adaptive
fine-tuning methods to customize DL models for individual patient profiles, enhancing
model generalizability. Saeed et al. [50] emphasized the necessity of external validation
datasets to ensure model reliability, reinforcing the importance of robust and reproducible
methods in RD-driven prediction frameworks.

5.4. Real-Life Application of RD-DL Models in Neurosurgery and Neuro-Oncology

RD-DL models have demonstrated their utility in enhancing the precision of surgical
interventions. Advanced segmentation algorithms like U-Net and DeepMedic enable
accurate delineation of GBM subregions, including the enhancing tumor core, necrotic
core, and surrounding edema. These tools assist surgeons in defining tumor margins more
effectively, potentially improving the extent of resection while preserving healthy brain
tissue [32,36].

Additionally, RD-DL models can integrate functional MRI data to predict tumor prox-
imity to critical functional areas, such as motor and language regions [100]. This capability
allows surgeons to plan safer resections that minimize postoperative deficits [29,34]. Fur-
thermore, longitudinal monitoring of chemotherapy response is another domain where RD-
DL models excel. By analyzing changes in RD features from serial MRI scans, these models
can provide insights into treatment effectiveness, tumor progression, or recurrence [45,47].
RD-DL approaches have also been employed in radiotherapy planning. By correlating RD
features with molecular profiles, these models can predict radiation sensitivity in gliomas,
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facilitating personalized adjustments to radiation doses. This precision minimizes collateral
damage to healthy tissues while ensuring effective tumor control [37,52].

Finally, combining RD and DL models allows for the stratification of glioma patients
based on survival probabilities and disease progression risks. These models integrate
RD-DL models and clinical data to identify high-risk patients and guide personalized
treatment protocols. Additionally, models leveraging radiogenomic insights enhance the
prediction of outcomes by associating imaging phenotypes with molecular markers such as
IDH mutation and MGMT methylation [31,49].

5.5. Radiogenomics: Bridging Imaging and Molecular Data

Radiogenomics bridges imaging phenotypes and molecular profiles, offering a holistic
view of tumor biology. Qureshi et al. [49] demonstrated the integration of spatial imag-
ing features with molecular markers in a radiogenomic classification system, achieving
sensitivity and specificity exceeding 96%. Similarly, Faghani et al. [48] validated voxel-
wise, slice-wise, and whole-brain DL models for MGMT promoter methylation prediction,
identifying whole-brain approaches as the most effective due to their ability to capture
global tumor characteristics. Xi and Sasaki highlighted the significance of texture features
as predictors of MGMT methylation status, emphasizing their value in reflecting intratu-
moral heterogeneity [28,30]. Xi identified that 25 out of 30 features from Gd-T1WI and
16 of 19 features from T2WI were texture-related, making them key biomarkers for strati-
fication [28]. Sasaki similarly found that 14 of 22 prognostic features, identified through
Supervised Principal Component Analysis, originated from texture analyses of central
GBM lesions, further underlining the importance of these features in prognostication [30].

Integrating RD with genomic data enhances survival stratification and personalized
treatment approaches. Wei et al. [31] and Lin et al. [34] demonstrated that combining
RD with genomic information improves risk stratification, enabling the identification of
distinct glioma subgroups with divergent prognostic outcomes. Han et al. [27] reinforced
the utility of advanced MRI-derived features in capturing tumor heterogeneity associated
with MGMT methylation, while Lin et al. [34] highlighted the potential of multiparametric
MRI-derived radiomic models in predicting survival outcomes. In this study, the authors
emphasized that RD, through its quantitative analysis of features such as intensity, volume,
morphology, histograms, and texture, can distinguish subtypes of glioma patients with
significantly different prognoses [34]. These findings support the integration of RD data
with clinical and molecular information to enhance the accuracy of patient stratification,
guide personalized treatment planning, and monitor disease progression, advancing its
role as a decision-support tool in glioma management.

5.6. Key Challenges and Recommendations

Despite their promise, RD and DL face challenges in reproducibility, generalizability,
and clinical interpretability. Doniselli et al. [56] highlighted the need for adherence to report-
ing guidelines like TRIPOD and RD quality scores to ensure reliability and reproducibility
in RD studies. Saeed et al. [50] and others have noted dataset heterogeneity as a significant
barrier, increasing the risk of overfitting in DL models, particularly when applied to small,
single-center datasets. Collaborative initiatives utilizing large-scale, publicly available
datasets, such as BraTS, TCIA, and TCGA, enable more robust evaluations, improving
model reliability across diverse populations [22,101,102].

Standardization of imaging protocols and feature extraction methods is imperative
to address variability in MRI acquisition techniques and post-processing pipelines, which
often leads to inconsistent results across studies. Validation on large, multicenter cohorts, as
emphasized by Qureshi et al. [49] and others, is essential for establishing the generalizability
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of predictive models. Emerging technologies like federated learning and blockchain-based
data-sharing systems offer secure solutions for collaborative research, maintaining pa-
tient privacy while enabling broader training datasets. Interpretability remains a critical
barrier to the clinical adoption of DL-based methods. Tools like Grad-CAM and feature
visualization require further refinement to elucidate decision-making processes effectively,
as noted by Saeed et al. [50]. Transparency and explainability are essential for building
clinician trust and facilitating regulatory approval for clinical use. Feature selection is
another critical aspect, as emphasized by Jiang et al. [29,103,104]. Techniques like LASSO
ensure that models focus on the most relevant features, avoiding overfitting and enhancing
predictive power. Interestingly, Jiang et al. [29] observed that while patient age correlates
with MGMT methylation, it was not among the top predictive features selected by LASSO,
suggesting that MRI-derived radiomic features are more informative for prediction. This
finding highlights the importance of prioritizing RD features that capture intratumoral
heterogeneity and molecular complexity [29,75,103,105]. Spearman correlation offers an
additional perspective on model accuracy. Xi et al. [28] applied this measure to assess
the relationship between predicted values from an RD-based model and actual MGMT
promoter methylation status, achieving a strong positive correlation (0.7399) by integrating
features from T1WI, T2WI, and Gd-T1WI. This underscores the potential of quantitative
metrics in evaluating RD model performance. In conclusion, while RD and DL hold im-
mense promise for non-invasive MGMT promoter methylation prediction, addressing
dataset heterogeneity, standardization, and interpretability will be pivotal for their success-
ful clinical translation. Emerging technologies and collaborative efforts will play crucial
roles in overcoming these challenges, ensuring the broader applicability of these tools in
precision medicine.

5.6.1. Addressing Standardization, Reproducibility, and Clinical Validation Barriers in
Radiomics and Deep Learning

To advance the use of RD and DL in predicting MGMT promoter methylation,
several barriers related to standardization, reproducibility, and clinical validation must
be addressed.

- Standardization

Standardization is critical for ensuring consistency across studies. Developing and
adopting unified imaging acquisition protocols, such as those aligned with Quantitative
Imaging Biomarkers Alliance (QIBA) standards, is essential. Preprocessing pipelines, in-
cluding skull stripping, normalization, and segmentation, should follow common method-
ologies using established tools like HD-BET or PyRadiomics. Defining RD features accord-
ing to the Image Biomarker Standardisation Initiative (IBSI) will further enhance consistency.
Additionally, data should be stored in uniform formats, such as NIfTI for MRI scans, to
facilitate cross-study comparison. Open-source software and standardized templates for
preprocessing and feature extraction will make these practices more accessible;

- Reproducibility

Reproducibility can be improved through transparent reporting and data sharing.
Adhering to standards like TRIPOD (Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis) ensures detailed documentation of methods
and results. Public datasets, such as BraTS and TCIA, should be used for model training and
validation, while federated learning frameworks can enable insights sharing without com-
promising data privacy. Independent benchmark teams should validate published models
on external datasets. Hosting models and pipelines on version-controlled repositories (e.g.,
GitHub) will allow others to replicate and build on existing work;
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- Clinical Validation

Multicenter studies are essential for assessing model performance across diverse
populations and imaging settings. These trials should include patients with both low-
and high-grade gliomas to enhance generalizability. Integration with clinical workflows is
another priority; user-friendly interfaces can enable clinicians to incorporate DL predictions
into routine diagnostics. Regulatory approvals require collaboration with agencies like
the FDA and EMA to define evaluation criteria and conduct post-market surveillance to
monitor real-world performance. Interpretability tools such as SHAP or Grad-CAM can
provide insights into model decisions, fostering trust among clinicians. Validation on
external datasets ensures robustness before deploying models in practice.

5.6.2. Emerging Technologies for Data Sharing and Collaboration

Advancements in data-sharing technologies, such as federated learning (FL) and
blockchain, hold great promise in addressing key challenges in non-invasive MGMT
promoter methylation prediction. Federated learning enables collaborative model train-
ing across multiple institutions without the need to exchange raw data [106–108]. This
privacy-preserving approach aligns with regulations like GDPR and HIPAA, ensuring data
confidentiality while fostering multicenter collaborations [109]. By training models on
diverse datasets across institutions, FL enhances generalizability and reduces biases from
single-institution data, ultimately improving model robustness.

Blockchain technology complements FL by providing a secure, decentralized infras-
tructure for data integrity and traceability [110]. Using an immutable ledger, blockchain
can securely record preprocessing steps, data transactions, and model updates, ensuring
reproducibility and fostering trust among stakeholders. Furthermore, blockchain can facili-
tate regulatory compliance by creating transparent audit trails, which are critical for the
clinical deployment of ML models.

Despite their potential, these technologies face challenges. For FL, ensuring consis-
tency in data quality across sites is critical. Robust preprocessing standards and optimized
algorithms like federated averaging can address these issues. Blockchain, while offering
security, requires lightweight protocols tailored for healthcare applications to reduce com-
putational overhead. Seamless integration with existing medical systems through APIs is
also necessary for adoption [111].

Integrating FL and blockchain into the predictive modeling pipeline can enhance col-
laboration, protect patient data, and establish reproducibility. These technologies provide a
roadmap for overcoming current barriers, paving the way for robust, secure, and clinically
viable models in neuro-oncology.

6. Limitations
One significant limitation of the generalizability of the described results is the het-

erogeneity of study populations and data sources. This review includes studies utilizing
both public datasets (e.g., BraTS, TCGA) and private institutional datasets. This variabil-
ity introduces inconsistencies, particularly because public datasets are often well-curated
and standardized, while private datasets may differ in imaging protocols, quality, and
patient demographics.

The lack of standardization in imaging protocols, feature extraction methods, and ML
pipelines is another critical concern. RD and DL models heavily rely on preprocessing steps
such as skull stripping, normalization, and image segmentation. However, the reviewed
studies employed varied preprocessing techniques, and several studies did not clearly
define these methods. This inconsistency affects the reproducibility of the findings and
highlights the need for unified guidelines for ML-based radiogenomic research.
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Another drawback is the variability in methodologies and reported metrics. Although
we critically combined results from RD, DL, and hybrid approaches, the diagnostic accuracy,
sensitivity, and specificity metrics are inconsistently reported in the original studies. This
inconsistency hinders the ability to benchmark different approaches and identify the most
effective methods for clinical use. Additionally, limited external validation of the predictive
models discussed raises concerns about their robustness and applicability across diverse
clinical settings.

Interpretability remains a key challenge, particularly for DL models. Despite achieving
high accuracy in some studies, these models are often viewed as “black boxes,” making it
difficult for clinicians to understand the basis of their predictions. This lack of transparency
could hinder the adoption of DL models in clinical workflows, where explainability is
critical for trust and decision-making.

Furthermore, we highlighted the overfitting risk associated with ML models trained
on small, single-center datasets. Overfitting reduces the models’ generalizability to new
datasets, especially those collected from different institutions. Moreover, many studies
focus exclusively on HGGs, leaving a gap in understanding the predictive power of these
methods for LGGs, which are less represented in the literature.

Data quality concerns are another limitation. In several studies, preprocessing steps
like skull stripping, normalization, and coregistration are inadequately reported, which can
lead to inconsistencies in the features extracted for analysis. Moreover, the computational
demand and complexity of DL models pose practical challenges, particularly in resource-
limited settings.

Finally, the exclusion of experiences published before 2018 may pose limits to the
conclusions of this review. For instance, early research, although potentially using less
advanced techniques, could provide valuable insights into the evolution of methodologies,
challenges addressed, and key milestones achieved.

7. Conclusions
RD and DL offer transformative potential for non-invasive prediction of MGMT

promoter methylation in gliomas. By combining RD features and DL models, hybrid
approaches consistently achieve higher diagnostic accuracy, sensitivity, and specificity
compared to standalone methods, addressing gaps in tissue-based diagnostics. Despite
advancements, challenges like standardization of preprocessing, feature extraction, and
model validation persist. Variability in imaging protocols and dataset heterogeneity hinder
reproducibility and clinical adoption. Standardized methodologies, multicenter collabora-
tions, and technologies like federated learning and blockchain for secure data sharing are
critical to overcoming these barriers and ensuring robust, generalizable models.

Beyond molecular profiling, RD-DL pipelines have applications in treatment planning,
response monitoring, and prognostic stratification, enabling precision medicine in glioma
care. Developing interpretable models with tools like SHAP and Grad-CAM can build
clinician trust and foster broader acceptance. Future research should focus on external
validation with diverse datasets and exploring radiogenomic applications to bridge imag-
ing and molecular data. By addressing standardization and reproducibility challenges,
radiomics and DL can revolutionize glioma diagnostics, providing precise, non-invasive
tools for advancing neuro-oncology and personalized medicine.
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BraTS Multimodal Brain Tumor Image Segmentation Benchmark
CNN Convolutional Neural Networks
CRNN Convolutional Recurrent Neural Network
DL Deep Learning
FLAIR Fluid-Attenuated Inversion Recovery
GBM Glioblastoma
Gd Gadolinium
HGG High-Grade Glioma
ITK-SNAP Insight Segmentation and Registration Toolkit
LGG Low-Grade Glioma
MGMT O6-methylguanine-DNA methyltransferase
ML Machine Learning
MRI Magnetic Resonance Imaging
NIfTI Neuroimaging Informatics Technology Initiative
PCR Polymerase Chain Reaction
PWI Perfusion Weighted Imaging
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RF Random Forest
RD Radiomics
ROI Region of Interest
SHAP Shapley Additive Explanations
SVM Support Vector Machine
SWI Susceptibility Weighted Imaging
T1WI T1 Weighted Images
T2WI T2 Weighted Images
TCGA The Cancer Genome Atlas

TRIPOD
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis

VAE Variational Autoencoder
XGBoost Extreme Gradient Boosting
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