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Abstract: Artificial intelligence (AI) is the new medical hot topic, being applied mainly in
specialties with a strong imaging component. In the domain of gynecology, AI has been
tested and shown vast potential in several areas with promising results, with an emphasis
on oncology. However, fewer studies have been made focusing on urogynecology, a branch
of gynecology known for using multiple imaging exams (IEs) and tests in the management
of women’s pelvic floor health. This review aims to illustrate the current state of AI in
urogynecology, namely with the use of machine learning (ML) and deep learning (DL) in
diagnostics and as imaging tools, discuss possible future prospects for AI in this field, and
go over its limitations that challenge its safe implementation.

Keywords: artificial intelligence; gynecology; urogynecology; machine learning; deep
learning

1. Introduction
1.1. Definition and Scope

Artificial intelligence (AI) is a type of computer system that mimics our brains’ intel-
ligence and capacity to learn, process information, solve problems, and establish critical
thinking to perform tasks, and whose growth and widespread has been remarkable in
many areas, including medicine [1–3].

Healthcare-related AI has three categories: patient, clinician, and administrative-
oriented, and has significant applications in diagnosis, prognosis, drug discovery, and
development, improving communication, matching symptoms to appropriate physicians,
transcribing medical documents, organizing and classifying images and remote treatment,
thus reducing physicians’ workload, healthcare costs and improving patient outcomes [4,5].
Some AI applications in medicine include ECG interpretation, lung nodule detection on
X-rays, and differentiation of high and low-grade dysplasia in colposcopy [6,7].

Urogynecology focuses on pelvic floor disorders (PFDs), including pelvic organ pro-
lapse (POP), urinary incontinence (UI), and urinary tract infections (UTIs). AI enhances
physicians’ clinical practice by assisting in diagnosis, tailored treatment and surgical
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planning well-informed decision-making, improving diagnostic accuracy, mitigating misdi-
agnosis, and offering personalized care. AI allows patient monitoring from afar or during
the post-operative period through wearable devices (WDs) and sensors, enabling early
interventions while reducing the probability of complications and hospital readmissions [8].
Urogynecology has a strong imaging component, using ultrasound, magnetic resonance
imaging (MRI), and computer tomography (CT), which enables AI to be applied in image
recognition, processing, reconstruction, automated analysis, and classification [3,9].

1.2. Historical Perspective

AI emerged in the 20th century, appearing in works like Turing’s test, and going
through three waves of research and development since the 1950s. Currently, tremendous
progress is being made and accelerated by deep learning (DL), responsible for AI’s third
wave, contributing to its growing popularity and incorporation into our daily lives [10,11].

Over the years, there has been an increase in healthcare data availability and rapid
development of big data analytic methods, which favored AI’s use in healthcare like ma-
chine learning (ML), a domain used for analyzing imaging exams (IEs), genetic data,
laboratory exams and predicting the probability of certain outcomes, giving health-
care a computational decision-making tool to help physicians, opening the door for
precision medicine [12–14].

1.3. Objectives of the Review

While AI is positively impacting several medical specialties, its application in urog-
ynecology is recent and in its initial phases. Consequently, AI literature is still scarce on
urogynecology. This review aims to illustrate the current state of AI in urogynecology,
discuss ML and DL advances that benefit this area, analyze its limitations, and explore
future prospects.

2. Chapter 1: AI Fundamentals and Techniques
2.1. Basic Concepts of AI

AI combines computer science and robust datasets, allowing problem-solving like
humans do [15]. AI has a significant presence in our daily lives, being found on search
engines, recommendation systems, facial recognition systems in smartphones, or in entities
like ChatGPT powered by GPT-4o (OpenAITM, San Francisco, CA, USA) [3,16,17].

To comprehend this domain, it is important to acknowledge that AI, ML, and DL are
overlapping disciplines [18]. ML is a subset of AI that focuses on how computers learn with
data, recognizing patterns and processing raw input data, employing a computer analysis
that enables predictions of output values within an acceptable accuracy interval [6,19–21].
It can identify patterns and trends and learn through past experiences [21]. Thus, the
algorithm can learn new tasks without being programmed for them.

DL, a subset of ML, is organized in neural networks with multiple layers to perform
more complex tasks [22]. In deep neural networks (DNN), input layers work with elemen-
tary information and, as it progresses through its layers, it becomes more detailed until
reaching the output layer where important aspects for the input data’s discrimination are
amplified [23]. DL uses convolutional neural networks (CNNs), a class of DNN developed
to replicate the visual cortex’ structure and organization. Due to their similar organization
to neurons’ connectivity pattern, CNNs outperform other types of DL in visual imaging
analysis like detecting and recognizing objects [24,25]. Given this, both DL and CNNs
have promising potential in urogynecology, allowing imaging recognition, reconstruction,
processing, automated analysis, and classification [3,9,26] (Figure 1 and Table 1).
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Table 1. Machine learning (ML) and deep learning (DL) models discussed in this review and their
definitions.

Type of Model Model Definition

ML

Support Vector Machine (SVM)

Supervised algorithm used for classification and
regression tasks, searching the ideal hyperplane to
categorize data in a high-dimensional space while

maximizing the margin between them.

Random Forest (RF)

Algorithm used for classification and regression
tasks that generates multiple decision trees,
yielding the categories’ mode or the mean

prediction, respectively, mitigating overfitting in
the training set.

Extreme Gradient Boosting
(XGBoost)

Gradient boosting algorithm used for classification
and regression tasks which combines sequentially

multiple decision trees’ predictions originating
more precise and robust models.

k-Nearest Neighbors (kNNs)

Algorithm used for classification and regression
tasks which uses a non-parametric supervised

method to analyze the most common class or the
average of the k value closest to the data points to

make predictions.

K-Means Clustering
Non-supervised algorithm used to cluster data to

separate it into k different groups based on
shared similarities.

Coupled Switched Hidden Markov
Model (CSHMM)

Algorithm used to analyze complex data such as
time series from various intertwined processes and

fluid data interactions.

Manifold Learning
Method to simplify and better comprehend
multidimensional complex data to facilitate

working with them.

Adaptive Boosting (AdaBoost)

Algorithm used for classification tasks that
combines multiple weak classifiers to originate a
stronger one, adjusting the weight of the training
data so that errors would receive more attention.
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Table 1. Cont.

Type of Model Model Definition

ML

Elastic Net

Regression method used for datasets with many
predictor variables, able to improve the model’s

stability and the selection of variables by
combining Lasso (L1) and Ridge (L2) penalties.

Multilayer Perceptron (MLP)

Artificial neural network used for classification
and regression tasks where each neuron is

connected to all neurons in the following layer,
using a non-linear activation function to facilitate

teaching complex data patterns.

Multiple Logistic Regression (MLR)

Supervised algorithm used for classification tasks
based on several independent variables, enabling

effective modeling and the prediction of
categorical outcomes.

Ensemble Voting Classifier
Technique that gathers and combines different
models to make enhanced predictions based on

the different models’ outputs.

Neural Network
Model inspired by the human brain that is able to
identify patterns and make predictions due to its

interconnected neural layers.

Sequential Minimal Optimization
(SMO)

Training algorithm for SVMs that aims to solve its
optimization problem by finding the ideal

hyperplane for separating different data classes.

Linear Regression (LR) ML algorithm used for regression tasks, able to
make predictions and discover data trends.

Ensemble Bagging (EB)

ML technique that generates many training dataset
subsets and uses each to train a model, originating
predictions for each subset that are then combined

to create a final prediction, reducing overfitting
and variance.

Prognostic AI-Monitor (PAM) Algorithm that predicts healthcare outcomes, risks,
and events based on healthcare data analysis.

DL

Convolutional Neural Networks
(CNNs)

Neural network which processes
multidimensional grid-topology data like images,
enabling image classification, object recognition
and detection, segmentation, and more, being

highly used in computer vision.

U-NET
Type of CNN used in image segmentation tasks at

the pixel level, being applied in the
biomedical domain.

Residual Network (ResNET)

DL architecture that uses residual connections to
improve information flow and facilitate training,

all while diminishing the vanishing
gradient problem.

ResNet-50
Popular version of ResNET with 50 layers created
to improve deep neural networks’ performance in

imaging classification.

Inception-V3

CNN architecture used for image recognition and
identification tasks and for transfer learning, able

to analyze different parts of the image at the
same time.
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Table 1. Cont.

Type of Model Model Definition

DL

Transfer Learning
Technique where a model created to perform a
task is adapted to perform a different task by
drawing insights from a pre-trained model.

No-new U-Net (nnU-Net)

Advanced framework used for medical image
segmentation at pixel level which automates part
of the required training enabling it to adapt itself

to different databases without broad
manual training.

TUMNet
DL architecture used for medical imaging
segmentation, more specifically for tumor

detection and analysis.

Xception
Type of CNN used for image classification and

segmentation, object detection, image and video
analysis, and computer vision tasks.

Recurrent Neural Networks (RNNs)

Artificial neural networks used for processing
sequential data, having connections that enable
maintaining the memory of past inputs due to

them looping back on themselves.

Long short-term memory (LSTM)
Type of RNN used for sequential data and to

address RNNs’ limitations of maintaining
long-term data.

2.2. Key AI Techniques Used in Medicine

ML has two categories [27]. Supervised ML focuses on classification and aims to
predict a predefined output or risk [6]. To learn new functions, the algorithm uses training
data like images from IEs and maps the input’s variables and features onto a qualitative or
quantitative output [19,28]. It is important to notice that it depends on high-quality labeled
data. Then, its external validity and generalization are evaluated by testing the algorithm
in a new patient set to assess its performance [21].

Unsupervised ML identifies patterns or groupings within unlabeled data on its own,
having no outputs to predict [6]. It is a data-driven technique that automatically learns
based on the relationship between essential pieces of information and each dataset variable.
It depends on the arbitrary aggregation of unlabeled datasets and generates groups based
on similarities, including ones that might not have been noticed before [28,29].

Both categories can be applied in urogynecology, enabling outcome prediction and
new pattern identification within multidimensional datasets [6].

Natural language processing (NLP) is a subfield of AI that understands human lan-
guage and infers meaning from unstructured data, ideal for analyzing large-scale databases
that use free text like electronic health records (EHRs). These allow physicians to write
more naturally without concerns about the computer not recognizing the data and enable
physicians to identify complications and adverse events based on EHR data [30]. Thus,
NLPs are able to search through large databases and predict outcomes.

Soguero-Ruiz et al. used an NLP model with SVM to search over EHRs for words
and phrases that could predict and detect anastomosis leakage after colorectal cancer
surgery earlier with a sensitivity of 100% and a specificity of 72% [31]. NLP can generate
diagnostic models to detect early-stage chronic diseases and can be found in the form
of patient-interactive chatbots, answering their questions and providing relevant and
personalized information. NLP can be applied to research, clinical coding, diagnostics,
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patient care, patient-facing interfaces, and classifying IE reports, enabling physicians to
assess treatments and interventions’ efficacies and successfully predict hospital admissions
in a shorter time [15,32].

Computer Vision (CV), a subset of AI, allows computers to simulate human vision
and uses algorithms to conclude and act based on the acquired visual data [33]. CV was
initially combined with ML to handle more data; however, DL has gained an important
role with CV, enhancing its performance and presenting great results for complex analysis
problems and visual data analysis [34]. Current research centers on teaching computers
surgical steps and tool identification/tracking. CV combined with CNNs can identify
surgical instruments covered in blood, in different positions, or in blurry images, and
analyze surgical videos. Additionally, CNNs and LSTM neural networks enable computers
to understand a time point in the procedure [35].

Considering that, CV can harvest useful information from digital images and use it
in segmentation, object recognition, reconstruction and detection, earlier detection and
characterization of diseases, better selecting patients for early interventions, and better
defining treatment and follow-up [34].

2.3. AI in Medical Imaging

Humans operate most imaging systems, not being exempt from making errors due to
experience level, stress, work overload, or lack of sleep. AI can have a beneficial impact on
this domain by improving imaging interpretation, reducing physicians’ workload and the
chances of details being overlooked [5,36].

Urogynecology evaluates stress urinary incontinence (SUI) and POP with ultrasounds
since they are inexpensive, radiation-free, and allow dynamic evaluations. However, they
are highly dependent on the sonographer’s skills, the physician’s interpretation capacity,
the scanner, and the patient [37,38]. DL and CNN computer-aided systems improve these
limitations and ameliorate the detection, diagnosis, classification, and segmentation of
ultrasound images. These systems identify anatomic structures and lesions, classify diseases
into categories, evaluate disease status, delineate lesion boundaries, register images, and
retrieve content [38].

MRIs and CT scans are widely used in urogynecology. MRIs show greater anatomic
details for soft tissues, but image acquisition takes a long time, while CT scans are faster
but not radiation-free. Implementing DL tools like CNNs for these imaging modalities
enables the improvement of data acquisition, image quality, and registration, decreases
segmentation time, detects lesions that could have been missed, accurately quantifies
features, and reduces physicians’ workflow [39,40].

3. Chapter 2: AI in Diagnosis and Screening
3.1. Clinical Evaluation and AI

AI can help in accurately diagnosing PFDs and reducing chances of misdiagnosis by
analyzing complex datasets like EHRs, anamneses, and IE, and using unsupervised ML to
detect patterns that might match the diagnosis of PFD [8].

AI tools can help physicians during anamnesis as chatbots can access EHRs and
conduct more oriented anamneses according to known health conditions and symptoms
mentioned, without overlooking any important information. Afterward, AI can integrate all
the collected information into EHRs, offering differential diagnoses that require professional
evaluation and validation [41]. In this context, NLP can identify keywords in the anamnesis
that can alert to disease risks [30].
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3.2. Imaging and Diagnostic Techniques

Urodynamics tests (UTs) face challenges like characterizing normal parameters in
middle-aged and older women. Additionally, their interpretation is not exempt from er-
rors as sometimes their findings do not match the symptoms reported. AI can automate
manual analyses and inputs in urodynamics hence avoiding expensive costs, and exces-
sive time spent in analyzing results and reducing human error chances [15]. Wang et al.
developed an ML predictive model with manifold learning and dynamic time warping
for UTs with an accuracy of 81.35%, a sensitivity of 76.92%, and a specificity of 81.41% to
detect detrusor overactivity events, allowing for standardization and more reliable UTs
interpretation [16,42]. Similarly, Hobbs et al. created an ML algorithm with SVM that
interprets UTs accurately and identifies detrusor overactivity in spina bifida patients with
an AUC of 91.9%, the sensitivity of 84.2%, and specificity of 86.4% for their time-based
model with 3 channels and an AUC of 90.5%, the sensitivity of 68.3% and specificity of
92.9% for their 3-channel frequency-based model [43].

AI can aid in analyzing MRIs and CTs as seen by Onal et al. where they reviewed
15 MRIs in midsagittal view using five pelvic floor measurement reference points that were
to be identified manually and with their semiautomated pelvic floor measurement model.
Their model with SVM and k-means clustering presented highly consistent and accurate
locations for all points of reference and at a faster speed, showing its applicability to fa-
cilitate and improve pelvic floor measurements on MRIs. Additionally, it could improve
the correlation analysis with clinical outcomes, improving POP assessment. Nekooeimehr
et al. developed a CSHMM that automatically tracks and segments pelvic organs on dy-
namic MRIs with a Dice similarity index > 78% and classifies multiple-object trajectory,
helping to better comprehend POP. It can quantitatively analyze pelvic organs’ movement
on MRI, complement clinical examination, and improve treatment and outcomes. Fur-
thermore, it can automatically track, segment, and classify structures from an imaging
sequence [16,44,45]. Wang et al. created a ResNet-50 multi-label classification model that
simultaneously diagnoses three types of prolapse based on MRI images in 0.18 s with an
AUC of 91% and average precision of 84% [46].

SUI diagnosis remains complicated as invasive exams like UTs are only conducted
before surgery in complicated patients while less invasive clinical evaluations and ques-
tionnaires are time-consuming and sometimes redundant. To modify this panorama,
Zhang et al. developed a CNN algorithm based on an Inception-V3 model with transfer
learning, using 2D transperineal ultrasound static images to simplify SUI’s diagnostic
process, demonstrating an AUC of 92.2% and accuracy of 86.3% [47].

Szentimrey et al. created a nnU-Net segmentation model that could sharpen the
efficiency of transperineal ultrasound by reducing the time needed for analysis (1.27 s
vs. 15 min) and that had high reproducibility, presenting significant Dice similarity coeffi-
cients for the bladder (87.4%), the rectum (68.5%) and the anorectal angle (49.2%) [48,49].
Yin and Wang created an effective CNN algorithm to enhance ultrasonic images’ process-
ing, allowing them to measure the effect of pelvic floor rehabilitation training in pregnant
women with POP with a sensitivity of 93%, a positive predictive value of 98%, and a Dice
coefficient of 81% [49,50].

Finally, endoscopy is an imaging modality found in urogynecology. Mascarenhas et al.
created the first AI model in the world, a CNN using a ResNet model, for the vaginal area
that differentiates between low and high-grade squamous intraepithelial lesions with a
sensitivity of 98.7%, specificity of 99.1%, and an accuracy of 98.9%, enhancing colposcopies
and boosting the detection of cancerous lesions [7]. Similarly, studies in urology with great
initial results created CNNs, including TUMNet and Xception-based models, to identify
tumors in cystoscopy videos and images [51]. Besides its clinical application in cervical and
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urothelial cancers, AI can also be used in ovarian cancer as seen in a study by Aramendía-
Vidaurreta et al. where they developed a CNN model that combined patients’ age and their
ultrasound images’ features to discriminate between benign and malignant adnexal masses
with a sensitivity of 98.5%, specificity of 98.9% and global accuracy of 98.8% [3,52].

3.3. Predictive Analytics

Throughout the years, AI evolved into complex predictive models [53]. Taylor et al.
tested multiple models like RF, XGBoost, AdaBoost, VSM, and Elastic Net, concluding
that XGBoost was the best to predict UTIs based on EHRs and variables like vitals, chief
complaint and exam results, with an AUC of 90.4%, a sensitivity of 61.7%, a specificity of
94.9% and an accuracy of 87.5%, allowing the early detection of UTIs as urine cultures,
the gold standard for diagnosis, take up to 48 h to be available. Thereby, it avoids the
unnecessary use of antibiotics, avoids contributing to antibiotic resistance, and allows
early treatment in patients with UTIs [54]. Dedeene et al. investigated models like MLP,
MLR, RF, XGBoost, and KNNs and used an ensemble voting classifier to combine them,
to create an AI model with ML that could rapidly predict the results of urinary culture
tests using urinalysis results, sample collection method and patient demographics with
AUC-ROC values of >85% [55]. Burton et al. tested RF, XGBoost, and Neural Network
models to identify urine samples that would produce negative results to reduce laboratory
diagnostic workload, concluding that the XGBoost algorithm was the best one with a
sensitivity of >95% [56]. Beyond identifying UTIs, AI tools can identify patients at higher
risk of developing sepsis and other preventable complications, alerting doctors earlier [57].

AI is pivotal in oncology, which benefits urogynecology as it encompasses renal and
bladder cancer. AI can interpret imaging and histological exams, predict tumor grades,
identify genomic biomarkers, and reduce inter-observer variability, enhancing diagnosis
precision and allowing physicians to make the best clinical decision [58]. AI can access
EHRs and interpret symptoms and signs, which could benefit urogynecology with the aid
of NLP, WD, and the integration with IE, enabling earlier cancer detection and decreasing
missed diagnoses [59].

4. Chapter 3: AI in Treatment and Management
4.1. Personalized Treatment Plans

Treatment planning in urogynecology could greatly benefit from AI as it has the
capacity to review the extensive medical literature and databases, integrate its findings
with the patient’s data, and recommend the most appropriate treatment based on its
findings and the patient’s profile [8].

In PFDs, AI can help physiotherapists by providing clinical decision support and
data analysis, creating personalized interventions for each patient, and offering remote
monitoring through WDs. This way, AI can improve performance and results, engage
patients, and educate them [15].

4.2. Surgical Interventions

AI can help surgeons with pre-operative planning and with intraoperative guidance.
AI and augmented reality (AR) can make a significant impact in both surgical planning
and training as surgeons wear a headset that superimposes their real-world vision with
digital images, not isolating them from the world [53]. CV is also of great importance
for analyzing and interpreting visual data using DL and CNNs, enabling better decision-
making processes, safer surgeries, and better outcomes [60].
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AR with CV can help surgeons to perform precise and intrinsic movements during
the operation. It provides real-time feedback throughout the surgery like alerts to prevent
risks or errors [8,60]. Moreover, it offers data analysis, decision support, and precision
control, enhancing the surgeon’s performance and allowing them to learn from previous
cases [15,60]. ML can predict pre- and post-operative complications, blood loss, post-
operative mortality, pain, and more. Furthermore, ML and CV can recognize critical
surgery steps in videos and warn surgeons of deviations and omissions of critical steps,
reducing errors and offering better guidance [60,61]. Additionally, the superimposition of
previous IEs onto the operative field enables better guidance, identification of anatomical
structures, and avoidance of complications by highlighting fragile structures [53].

CV has many uses in the operating room (OR): assessing a case’s difficulty, warning
surgeons against incising in the wrong place, guiding safer dissections, and improving OR
communication and OR staff awareness [60].

The ureter is prone to injuries during surgeries, possibly leading to fistulas and even
loss of renal function [62]. This happens because during laparoscopies surgeons cannot
rely on tactile senses, only on visual information. With that in mind, Serban et al. created
ensembles of binary semantic segmentation networks to distinguish and detect the uterine
artery, the ureter, and nerves during laparoscopy. Their binary U-Net model for the
ureter presented a Jaccard score of 81.92% and a Dice score of 89.28% [63]. Narihiro et al.
developed a DL-based semantic segmentation algorithm called UreterNet to recognize
the ureter with a precision of 71.2%, a recall of 72.2%, and a Dice coefficient of 71.6%;
however, it is necessary to assess if this model reduces iatrogenic ureteral injuries [64].
Additionally, Kitaguchi et al. developed real-time automatic ureter and autonomic nerve
recognition models for colorectal laparoscopic surgeries: UreterNet and NerveNet, both
DL-based CV models. Their success rate was ≥89% in correlation with the surgeon and
could recognize structures faster than surgeons 75% of the time. Their ureter recognition
rate was 95%; however, this study presents several limitations, needing further studies
such as randomized controlled trials and multicentric studies to demonstrate its clinical
benefits [65]. Chen et al. created three models with ML using neural networks, RF, and XGB
to predict the risk of ureter injury during colorectal surgery. Their XGB model presented the
best results with an AUROC score of 77.4% (95% CI 0.742–0.807) helping surgeons decide if
the patient could benefit or not from a ureter stent [66]. Yu et al. designed an image-guided
endoscope system able to capture coeliac imaging and detect the ureteral position with a
true positive rate of 93.8% and a positive predictive value of 90.6%, making it possible to
decrease iatrogenic ureter injury; however, this model is yet to be tested on humans [67].

One of pelvic floor surgery’s main challenges is to comprehend the pelvic anatomy
from a three-dimensional point of view, including musculature relationships, ligamentous
supports, and nearby neurovascular structures. Learning these concepts is hard, which
is why AI could have an important role in this domain. Siff et al. created an interactive
holographic curriculum with an AR headset for uterosacral ligament suspension and
sacrospinous ligament fixation, aiming to teach trainees anatomy, procedural steps, and
recognition and management of these. A total of 88% of trainees found the training with
AR “much” or “very much better” than the usual self-study, while 81% were “likely” or
“very much likely” to use AR to prepare for surgery [68].

AR is very present in robotic surgery, being able to be applied in minimally invasive
procedures. In urogynecology, it can be used in robot-assisted sacrocolpopexy, hysterec-
tomy, or sling placement, identifying the mesh anchorage points’ correct placement and
highlighting blood vessels, ureters, and other structures. Its advantages are the decrease in
many procedures’ learning curves, human error, and operative times, enhancing safety and
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outcomes [15]. This way, AI can have a big impact on urogynecological surgeries, especially
on those who use fiber optic cameras like hysteroscopies and laparoscopies.

4.3. Pharmacological Management

Precision medicine predicts which treatment protocol will have the best results on a
patient based on their characteristics. This is achieved by analyzing the patient’s data, ge-
netics, lifestyle, and environmental factors via unsupervised ML, which finds undiscovered
relationships and patterns in their data, assesses their condition, and recommends the most
appropriate treatment in a cost-effective manner [4,6,14,69].

UI is managed with anticholinergics and beta-agonists. AI can play a big role in drug
selection according to the patient’s characteristics, symptoms, and treatment steps to select
the most adequate drug. AI can analyze drug databases to anticipate their therapeutic
potential and favor target prioritization. By doing this, AI also considers drug interactions
with the patient’s medication and drug-target interactions. Antimuscarinics like Oxybu-
tynin are prescribed for urge incontinence and some patients develop side effects. In this
case, AI can help select a better drug for them and reduce the number of urogynecology
appointments a patient might have just to adjust their medication. Therefore, it is possible
for AI to optimize treatment protocols [15].

Sheyn et al. developed an ML prediction model with RF for anticholinergic response
in patients with overactive bladder (OAB) with a sensibility of 80.4% and specificity of
77.4%. This model allows patients likely to benefit from this treatment to receive it, sparing
others from unwanted side effects from the medication [16,70].

5. Chapter 4: AI in Patient Monitoring and Follow-Up
5.1. Remote Monitoring Tools

Remote monitoring tools like WDs with AI allow continuous virtual monitoring,
tracking, and management of a patient’s condition, allowing physicians to remotely access
their collected data [71]. They also empower patients to collect their own health data,
allowing quick medical interventions if needed [4]. This makes healthcare more accessible
for patients who live far away and for those with limited mobility. When it comes to
urogynecology, WDs can be used for UI monitoring and to monitor post-void residual
bladder volume scanners [71].

Kuru et al. created a WD to monitor the bladder with ultrasounds combined with
ML, with a sensitivity of 89% and a specificity of 93% to determine imminent voiding
need in children with nocturnal enuresis. This system’s data were analyzed with three ML
techniques: SMO, LR, and EB, and the bladder volume data acquired from the ultrasound
with a pre-trained model, being able to process the volume and trigger an alarm to warn
patients that their bladder is almost full. ML training models enable personalization by
considering different variables like sex, age, and bladder morphology, which increases
its accuracy [72,73].

UI is often tracked by voiding diaries, which face challenges like children and the
elderly not being able to record all variables, leading to inaccuracies and varying levels
of compliance. Kim et al. created a system using RNN and CNN to replicate the voiding
diary’s function, with an average accuracy of 94.2% in recognizing urinary tract activity and
83% for preventing neurogenic bladder with a motion-analysis technology. This system,
integrated with smartphones and WDs, collects signal information like visual and motion
data and enables automatic recording. This way, by analyzing data from a smart band,
they enabled AI to monitor urination [74]. Similarly, Eun et al. developed an RNN-based
LSTM method with WDs that recognizes urination time and spacing based on the patient’s
posture and its changes with 95.8% accuracy [75].
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Many health apps are available for urogynecology; however, only a few are accurate
concerning information and clinical decision-making [76]. An example is the app Tät® for
pelvic floor muscle training, which, according to Nyström et al. has short and long-term
effects on the patient’s symptoms and quality of life (QoL). This way, the self-management
of UI is possible through an app, can reach larger demographics, and includes features like
lifestyle advice, reminders, and graphics [77]. Another of their use is to educate patients, as
seen by Han et al. with the app Bwom© version 2.5.8, which educates patients about pelvic
floor exercises with personalized plans based on risk factors [78]. Overall, health apps
allow patients to track symptoms and medication adherence, create personalized treatment
plans, and empower patients to monitor their health [79].

5.2. Telemedicine and AI

By having a patient’s EHR, software can automate their schedules, care, and treatment
plans, and alert them for follow-ups. Besides that, WDs can be applied for remote moni-
toring. Thus, virtual consultations in urogynecology could benefit from AI as physicians
would be able to evaluate patients who live far away or who have restricted mobility and
would have all the data needed to be collected from WDs, without troubling the patient
and reducing wait times [16].

Additionally, AI systems can be available for patients, helping them to find available
physicians in their area, scheduling appointments, and answering questions. Doctors can
access such systems through mobile apps to search for protocols, available clinical tools,
and drugs in the hospital [4].

Lucas et al. revealed that post-traumatic stress disorder patients were more likely to
talk to chatbots than to humans due to fear of judgment, resulting in honest answers from
patients, which allowed doctors to better diagnose and treat them [4,80]. This is important
in urogynecology because UI and OAB are still considered taboo. An Austrian female
population study revealed that 60.6% considered UI as taboo, leading to isolation, reduction
in QoL, and low rates of consultation and treatment [81]. A recent OAB population study
showed that women felt embarrassed, invalidated, and dismissed by physicians because of
OAB [82]. Thus, AI could help elevate urogynecology consultation rates for these conditions
through chatbots that allow patients to express their concerns, describe their symptoms,
and provide them with personalized information and options for scheduling consultations.

5.3. Predictive Maintenance of Health

POP surgery is not exempt from complications. Sometimes, pelvic anatomy reconstruc-
tion surgery might not improve women’s QoL, highlighting the importance of predicting
which patients will benefit from it and which ones from targeted therapies. By including
QoL scales and symptoms in AI systems, POP patients might benefit from a more accurate
and effective analysis of their diagnosis and follow-up after treatment, leading to better
management of PFD [16].

Trebeschi et al. created a PAM model that predicts the prognosis of metastatic urothe-
lial cancer in patients receiving immunotherapy. This model assesses follow-up chest
and abdominal CTs for tumor morphological changes, spread, and side effects, and links
them to the patient’s 1-year survival, reaching an AUC of 67% for chest and 73% for ab-
dominal CTs [83]. These applications enable urogynecologists to better predict treatment
outcomes, prevent complications better comprehend patients’ conditions, and provide a
clinical decision support system.
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6. Chapter 5: Quality of Life and Psychosocial Impact
6.1. Improving Patient Outcomes

Patients’ safety might be compromised due to drug adverse side effects (DASEs),
surgical complications, infections, decompensation, and diagnostic errors. AI can identify
patients at risk through their EHR, vitals, and data collected by sensors, test results, and
IEs enabling early prevention, and improving diagnostic accuracy and infection control.
DASEs can be predicted using DL, identifying the molecular substances at cause and
offering personalized treatment options and risk estimations. Regarding decompensation,
with WDs, AI can recognize its early signs, avoiding life-threatening complications like
sepsis. Finally, AI can reduce diagnostic errors by helping with classifications, imaging
interpretation, and enabling early detection [61].

AI can be applied to predict which medication patients are taking but are not in
their EHRs and to monitor medication intake [84]. With those applications, AI can have
a positive impact on QoL. However, these algorithms have not been validated externally
yet and come from retrospective studies, so they might be biased, and their generalization
might be limited [61].

6.2. Ethical and Psychosocial Considerations

“AI anxiety” refers to the fear of AI’s quick integration into our daily lives, creating
doubts about job security, privacy, biases in data, and more [85]. Claims that AI will replace
physicians in the future are commonly heard but this is not what AI is intended for, and
neither is a possible scenario as doctors are fundamental for the human part of medicine
and needed to critically assess AI tools’ decisions. AI should be viewed as a complementary
tool that can be integrated into clinical practice and help clinicians by freeing their time to
make room for more patients, helping them notice new unexplored patterns, and offering
support for interpretations and decision-making [86].

A study by Wang et al. aimed to outline patients’ perception of AI being integrated
into healthcare systems, revealing optimism in patients for the adoption of AI in healthcare,
with 70% agreeing or strongly agreeing that AI in healthcare will be a general trend in
the future. However, over 60% of patients presented concerns over AI being misused due
to security risks, lack of knowledge, and regulation flaws, possibly leading to negative
outcomes [87]. Similarly, a study by Tran et al. aimed to understand how patients perceived
AI and WDs in healthcare in a French population with chronic conditions. A total of
20% of patients considered that the benefits of AI outweighed the dangers while only 3%
considered the opposite. A total of 47% considered AI and WDs a great opportunity and
identified 47 benefits of their use such as improvement in follow-up and reactivity of care
(55%), reduction in their treatment burden (23%), and helping physicians’ work (21%). On
the other hand, 11% considered AI and WDs a great danger, identifying 31 potential risks
such as fear of replacing human intelligence in care (28%), misuse of private information
(14%), and hacking (13%). Finally, 13% of patients were globally against any use of AI or
WDs in their care while 22% would refuse AI and WDs in one presented scenario and 65%
would agree with their integration in their care in all presented scenarios [88].

These tools require extensive amounts of data to be trained, and this might put
patients’ privacy at risk since anonymization and re-identification are time-consuming
and hard to execute [3]. Safeguarding medical data is becoming increasingly challenging
due to cyberattacks, data vulnerability to manipulation and remote access, and the fact
that electronic data are easily reproduced. Blockchain technologies offer a solution to
these concerns, providing safer and traceable handling and storage of data, assuring its
immutability. However, patients are required to consent to their data being used to train
these tools and can choose what they want to share [4,86].
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7. Chapter 6: AI in Research and Development
7.1. Accelerating Research

Concerning big data, databases like urogynecological care cloud platforms can receive,
record, and analyze patients’ data and match them with diseases in the database. WDs and
hospital systems’ data are uploaded into the cloud and AI allows the automated integration
of EHR with images and other data, improving decision support [36,89].

Such databases are important for data storage and backup and use data mining, AI,
and other techniques to improve treatment options for conditions like PFDs, improving re-
habilitation and patient management by giving physicians feedback from urogynecological
centers and offering suggestions. This platform improves data-sharing by promoting inter-
actions with other medical departments and urogynecology centers and enables patients to
access their data anytime [89].

7.2. Clinical Trials and AI

Doctors are aware of clinical trial opportunities, but most do not have the time to go
through each patient’s EHR to evaluate which trial is ideal for them. A total of 20% of clinical
trials fail to complete enrollment and >40% are terminated due to low enrollment [90].
AI can help in patient recruitment using ML and NLP in datasets like EHRs and medical
literature to better select and match patients to the most suitable trial, leading to higher
recruitment rates in less time, better compliance control, and more effective and reliable
endpoint evaluations. Additionally, AI allows patients’ data monitoring and analysis,
improving measurements and results interpretation [91]. This way, AI in clinical trials
can improve their efficiency, and reduce costs and their likelihood of failure by recruiting
suitable patients [90,92].

AI can predict potential dropouts based on the participant’s data, enabling a timely
intervention by physicians to try to retain them [91,93]. Conversely, it can predict which
patients might reach endpoints earlier, shortening trial durations [91].

7.3. Innovative Research Methodologies

AI quickly processes similar studies, clinical data, and regulatory information and
interprets relevant data, processing big data in a shorter time and detecting new data
patterns, giving its integration with traditional research approaches an advantage [92,94].
This way, AI introduction in research can help with trial design, implementation, and
analysis, increase the identification and management of risks, and the research’s efficiency
due to its automated nature and predictive power via ML and NLP [93].

With healthcare data’s large volume, AI allows for a more accurate data-driven hy-
pothesis generation, analyzing the scientific literature, detecting insights and similarities
between datasets, and generating hypotheses from that [95,96]. These tools use resources
more efficiently as they focus on a targeted area of interest for a specific hypothesis, al-
lowing meaningful insights and more interpretable and explainable results. Additionally,
these tools also test and validate those hypotheses with AI [97]. This way, urogynecology
can benefit as AI would be able to hypothesize about tumor stages in cancer, possible risk
factors of urogynecological conditions, possible surgery and procedure complications, and
more, all based on the patient’s clinical data (Figure 2).
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8. Chapter 7: Challenges and Limitations
8.1. Technical Challenges

Besides requiring large data availability and its privacy implications, AI also faces
challenges like bias introduction during data training and tool designing, which compro-
mises algorithmic fairness, and spectrum bias, which occurs when a diagnostic test is run
in a different population, highlighting the importance of assessing if AI models are valid
and applicable to a new dataset before implementing them, and of assessing the models’
overfitting. These can be avoided by training models with larger datasets. Hence, programs
that ensure ethical AI development are required to prevent biases [86]. It is also important
to watch for biased data, preprocess collected data, select the best algorithm for a task, and
use the appropriate metrics for a problem [4].

AI tools might not perform well in a different environment, meaning their transferabil-
ity is not always guaranteed, possibly resulting in fragmented data between institutions.
Even if they are retrained for the new environment, they might not perform as well,
making it vital for each tool to be carefully designed, tested, and evaluated before its
implementation, and to be transparent about the data sources used in their design and
development and the data safety demands [4,86]. Furthermore, the digitalization of medical
records and data standardization by healthcare institutions is needed in order to enable
AI’s implementation [4].

It is important to make models more accessible and interpretable to ensure AI tools’
explainability to avoid black-box medicine and the break of trust in doctor-patient rela-
tionships. Additionally, it is important to address the responsibility and accountability
regarding AI tools’ decisions and adverse events that might arise from their use, as it could
fall into the hands of the physician, healthcare institution, or tool designer and can influence
the patients’ trust [4,86].
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8.2. Clinical Integration

With the increasing medical knowledge available, AI is needed to enable physicians to
apply this knowledge to their clinical practice [98]. However, many healthcare workers do
not have AI literacy, which hinders its implementation [99]. Consequently, it is important to
promote AI education in their formation, teaching the fundamentals of AI to benefit the health
system and create safe algorithms since one bad one can harm multiple patients [100,101].
This way, it is important that healthcare workers have comprehensive training and know how
to create a bias-free algorithm, use and critically analyze it, and know about the ethical and
legal aspects of AI [100–102]. Furthermore, physicians need to train emotional intelligence and
communication skills since AI lacks those when interacting with patients. Finally, AI brings
many advantages that must be taught like cost reduction, better quality, and healthcare access,
but on the other hand, it is equally important to know about its pitfalls like transparency and
liability [98]. To guarantee that algorithms are validated and reliable, it is important to have
experts from various fields like medicine, data science, law, ethics, and engineering, to fight
AI illiteracy and promote its safe implementation [8,100,101].

Integration with existing healthcare systems is very important as the information must
be shared across institutions and their software quickly and efficiently, making sure the AI
system can interoperate with the hospital’s system [103,104]. However, AI’s implementation
in healthcare is limited due to the continuous need to validate and test algorithms to check
their sensitivity and specificity and the need to ensure unbiased data, generalization, and
representative results. Moreover, it is necessary to ensure integration with clinical workflow since
models that are too complex or require additional work are less likely to be implemented [104].

8.3. Regulatory and Ethical Issues

Regarding regulatory frameworks, the European Union (EU) signed the AI Act in
2024 to guarantee these systems are transparent, safe, traceable, non-discriminatory, and
environmentally friendly. Healthcare-related AI is classified as high-risk, so before be-
ing applied, it must comply with EU requirements on risk management, testing, data
training and governance, technical robustness, transparency, cybersecurity, and human
oversight [105]. Due to AI’s disruptive native, new regulatory frameworks and guidelines
are expected to arise, being important to address the privacy of patients, data security and
bias, explainability, transferability, and responsibility before implementing an AI tool [8,86].

NASA has created the technology readiness level (TRL) scale which evaluates a technol-
ogy’s maturity level, ranging from 1 to 9 [106]. Currently, most AI tools in urogynecology are
at TRL5 and 6 as they are slowly tested in relevant settings. However, there is still a long way
to go, and more research is needed for them to reach TRL9 and be implemented (Figure 3).
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9. Chapter 8: Case Studies and Real-World Applications
Successful Implementations

AI in urogynecology has a huge potential and many thrilling opportunities await-
ing. As seen in this review, AI has been applied in urogynecology in IEs, UTs, surgery,
telemedicine, consultations, and research, highlighting its versatile potential for urogy-
necology and the advantages it can bring to patients and healthcare workers. With these
applications in mind, AI in urogynecology still has challenges to face before its clinical
implementation but has the potential to deliver patient-centered solutions [71].

For better future AI outcomes in urogynecology, it is important to note that most
studies conducted are retrospective and there are not enough prospective studies that
validate AI in clinical environments [107]. Additionally, it is important to address concerns
over AI training methodology and datasets, the biases they might carry, and the algorithmic
complexity that hinders its interpretation for physicians and patients [58]. As new knowl-
edge is gained, new types of errors might arise and it is important to always respect ethical
aspects and the patient’s privacy, highlighting the importance of developing regulatory
approval guidelines for AI tools aiming to protect patients and physicians [71]. Finally, it is
important that AI algorithms are developed by a multidisciplinary team to ensure their
best functioning.

10. Conclusions
10.1. Summary of Key Findings

AI will greatly benefit urogynecology in the next few years. Physicians will use AI
to better take anamneses, predict health risks and outcomes, better choose medication,
interpret IEs and UTs, better prepare surgical procedures, monitor patients, communicate
with patients, better refer patients, and better conduct clinical trials and research.

Patients always seek the best care and AI enables personalized medicine, allowing
doctors to find the best treatment and management plans for patients based on their medical
history, genetics, age, lifestyle, family history, laboratory and IEs, and medication. Most
urogynecology patients are older women who have many different conditions at the same
time and AI can help to detect them early, even when they might be difficult to detect.
Telemedicine’s rise with WDs and health apps also provides physicians with higher-quality
data from patients, which can improve their care experience.

Patient benefits include timely prevention of diseases and complications, more accurate
and earlier diagnoses, safer procedures, reduction in DASEs and diagnostic errors, bigger
access to healthcare, shorter wait times, better monitoring and follow-up, and better trial-
matching. As for urogynecologists, AI reduces the workload and time spent analyzing and
interpreting EHRs and exams, freeing more time in their agendas that can be dedicated to
seeing more patients. It can help with better decision-making processes by detecting unseen
patterns and risk factors, integrating real-time data into the patient’s EHR, predicting risks
and outcomes, improving communication with patients, and offering guidance during
surgeries. As for interns, AI can enhance their surgical education with surgical guidance
and performance evaluation.

10.2. Concluding Remarks

AI in urogynecology has only begun but is quickly maturing and pushing in many
directions. Due to its many advantages, AI is currently in the medical field’s spotlight
and can potentially play a central role in women’s pelvic floor health in the future. There
are increasing advancements being made in this field and many exciting developments
are expected to happen; however, there is still a long way to go and many barriers to be
overcome before AI’s clinical implementation. Urogynecologists will have to learn how
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to operate AI systems and more research studies addressing AI’s limitations and how to
overcome them are needed. Changes in the healthcare industry like the digitalization of
EHRs and standardization of data are also fundamental. Without this cooperation, AI’s
implementation in the clinical setting will remain a challenge.
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