
Academic Editor: Redha Taiar

Received: 3 October 2024

Revised: 5 January 2025

Accepted: 27 January 2025

Published: 31 January 2025

Citation: Chun, D.-I.; Cho, J.; Won,

S.H.; Nomkhondorj, O.; Kim, J.; An,

C.Y.; Yi, Y. Weight-Bearing CT:

Advancing the Diagnosis and

Treatment of Hallux Valgus, Midfoot

Pathology, and Progressive Collapsing

Foot Deformity. Diagnostics 2025, 15,

343. https://doi.org/10.3390/

diagnostics15030343

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Weight-Bearing CT: Advancing the Diagnosis and Treatment of
Hallux Valgus, Midfoot Pathology, and Progressive Collapsing
Foot Deformity
Dong-Il Chun 1,† , Jaeho Cho 2,† , Sung Hun Won 1 , Otgonsaikhan Nomkhondorj 3, Jahyung Kim 4 ,
Chi Young An 1 and Young Yi 5,6,*

1 Department of Orthopaedic Surgery, Soonchunhyang University Seoul Hospital, 59, Daesagwan-ro,
Yongsan-gu, Seoul 04401, Republic of Korea; orthochun@gmail.com (D.-I.C.); orthowon@gmail.com (S.H.W.);
132523@schmc.ac.kr (C.Y.A.)

2 Department of Orthopaedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, 77, Sakju-ro,
Chuncheon-si 24253, Republic of Korea; hohotoy@nate.com

3 Institute for Skeletal Aging and Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University,
77, Sakju-ro, Chuncheon-si 24253, Republic of Korea; otgonsaikhan0899@gmail.com

4 Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul National University College
of Medicine, Seoul 03080, Republic of Korea; hpsyndrome@naver.com

5 Department of Orthopaedic Surgery, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757,
Republic of Korea

6 Department of Orthopaedic Surgery and Rehabilitation, Yale School of Medicine, New Haven, CT 06510, USA
* Correspondence: y.yi@yale.edu; Tel.: +82-2-2270-0236 or +1-203-500-4636
† These authors contributed equally to this work.

Abstract: Since its introduction, weight-bearing computed tomography (WBCT) has gained
prominence due to its ability to produce accurate three-dimensional images under natural
loading conditions, making it particularly useful for assessing complex foot deformities.
This review aimed to focus on the diseases of the foot and categorized the pathological
conditions into forefoot disease (hallux valgus), midfoot disease (Lisfranc injuries and
midfoot osteoarthritis), and progressive collapsing foot deformity. For each category, the
authors detail how WBCT enhances diagnostic accuracy and informs treatment strategies.
In hallux valgus, WBCT allows for more precise measurement of established parameters
and reveals crucial information about metatarsal pronation and ray instability. For midfoot
pathologies, WBCT’s superiority in detecting subtle Lisfranc injuries and characterizing
midfoot osteoarthritis is emphasized, highlighting the development of novel measurement
techniques. The review extensively covers the application of WBCT in assessing the com-
plex three-dimensional features of PCFD, including hindfoot valgus, midfoot/forefoot
abduction, medial column instability, peritalar subluxation, and valgus tilting, presenting
several WBCT-specific measurements and the use of distance mapping to quantify joint
surface interaction. The authors conclude that WBCT, potentially enhanced through inte-
gration with artificial intelligence (AI), represents a significant advancement in foot and
ankle care, promising improved diagnostic accuracy, streamlined treatment planning, and,
ultimately, better patient outcomes.

Keywords: weight bearing; CT; hallux valgus; lisfranc injury; midfoot osteoarthritis;
progressive collapsing foot deformity

1. Introduction
Over the past decade, accurate assessment of complex foot deformities remains chal-

lenging, often hampered by the limitations of conventional radiography, which provides
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only two-dimensional projections. The inherent limitations of planar imaging, includ-
ing superimposition of bony structures and the inability to visualize deformities under
weight-bearing conditions, frequently lead to misdiagnosis and suboptimal treatment
planning. While weight-bearing radiographs offer some improvement, they still lack the
three-dimensional (3D) spatial resolution necessary for a complete understanding of com-
plex anatomical relationships. Past approaches focused primarily on two-dimensional
analysis of weight-bearing radiographs using conventional parameters [1].

Recent advancements in imaging technology, specifically the development of weight-
bearing computed tomography (WBCT), have been actively utilized in the field of foot
and ankle surgery. In fact, with the development of digitally reconstructed radiographs
(DRRs), three-dimensional (3D) processing, and the introduction of artificial intelligence
(AI) technologies, WBCT may completely replace conventional radiographs in the near
future (Figure 1) [2]. The advantages of WBCT include high accuracy, owing to its 3D
imaging that is not affected by bone superimposition or projection angles, low radiation
doses, and reduced image acquisition time due to automated processing programs [3].
However, WBCT is not without its limitations. The technology is costly and requires
specialized equipment and expertise, which limits its accessibility to a select number
of centers. Additionally, the increased radiation exposure, although minimized with
modern systems, remains a consideration, particularly in younger or more vulnerable
patient populations [2]. Patient comfort during imaging and the need for precise weight-
bearing positioning can also pose challenges, especially for individuals with severe pain or
mobility issues. These drawbacks highlight the need for ongoing research to enhance the
affordability, accessibility, and user-friendliness of WBCT technology.
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Recently, Kim et al. reviewed the use of weight-bearing CT for diseases of the ankle
joint [3]. In this review, we aimed to focus on the diseases of the foot and categorized
the pathologic conditions into forefoot disease (hallux valgus), midfoot disease (Lisfranc
injuries and midfoot instability), and progressive collapsing foot deformity (PCFD). By
critically evaluating existing studies employing WBCT, we will highlight its strengths and
limitations, identify areas needing further research, and ultimately demonstrate WBCT’s
role in improving the diagnosis and treatment of complex foot deformities.

2. Forefoot Diseases (Hallux Valgus)
Studies on WBCT in hallux valgus deformity can be classified into the following

categories: application of WBCT for conventional parameters used in weight-bearing
radiographs, measurement of the first metatarsal pronation, and evaluation of the first
ray instability.

2.1. Application of Conventional Radiographic Parameters

Collan et al. were the first to apply the conventional parameters used in weight-
bearing radiographs on WBCT [4]. The authors compared the hallux valgus angle (HVA)
and 1–2 intermetatarsal angles (IMA) on plain radiographs with 2D and 3D angles on
WBCT and found a strong correlation between the measurement methods. From this
finding, the authors concluded that WBCT can be used as a primary diagnostic measure for
hallux valgus because conventional data can be obtained accurately, along with the three-
dimensional rotational status of the first ray. Also, while non-weight-bearing CT (NWBCT)
has been traditionally used for its ability to provide detailed anatomical images without
external pressure on the foot, WBCT offers unique insights into the biomechanical and func-
tional aspects of the foot under physiological loading conditions. NWBCT provides precise
anatomical details of the metatarsal bones, but WBCT offers additional information about
the rotational component and first ray instability under physiological conditions [4]. With
the development of technology, numerous approaches have been made to more accurately
and handily identify the pathological characteristics of hallux valgus. Lalevee et al. adopted
a computerized postprocessing method on the distal metatarsal articular angle (DMAA)
and reported that conventional radiographs overestimate DMAA by 14 degrees [5]. They
suggested that computerized pronation correction of the first metatarsal bone (M1) using
WBCT would be needed to objectively evaluate the valgus status of the M1 distal articular
surface. Similarly, Zhong et al. developed an innovative computer-aided design method,
which showed comparable measurement reliability with conventional radiographs in terms
of HVA and IMA, along with better accuracy for DMAA [6].

Moreover, research aimed at automating the measurements for hallux valgus is also be-
ing actively conducted. De Carvalho compared semi-automatic and manual measurements
for radiographic parameters (HVA, IMA, and IPA (interphalangeal angle) using WBCT in
hallux valgus [7]. Following manual bone segmentation by a user, the software automat-
ically registered a mathematical model, which computed the anatomical landmarks for
measurement and longitudinal axes of the selected bones. Using this method, the authors
concluded that semi-automatic measurements demonstrated reproducible and comparable
results to manual measurements. In a multicenter study including 128 feet from 93 pa-
tients who underwent WBCT, Day et al. compared automatically measured IMA using AI
software with manually measured IMA on DRRs [8]. The authors reported that AI-based
automatic measurements showed strong correlations with manual measurements, with
near-perfect reproducibility. If applicable in the clinical setting, automatic measurements
would enable an intuitive identification of WBCT data and prompt the development of
therapeutic strategies for hallux valgus.
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2.2. First Metatarsal Pronation

Traditionally, hallux valgus has been understood as a two-dimensional deformity, that
is, a varus deviation of the first metatarsal bone (M1) and valgus orientation of the great
toe [9]. As a result, classic radiographic parameters (i.e., HVA, IMA, and DMAA) that define
the horizontal relationship between metatarsals and phalanges have been considered an
important reference to establish a treatment strategy in hallux valgus deformity [10]. With
the development in diagnostic modalities, however, a consensus has been reached that the
deformity also involves a coronal component, namely, the pronation of the M1 [11]. Conse-
quently, a three-dimensional approach should now be made to enhance the understanding
of the complex triplanar deformity of hallux valgus.

Using semi-weight-bearing CT, Kim et al. devised the alpha angle to evaluate the
pronation of the M1 [12]. It was determined on the axial view by measuring the angle
between the line bisecting the M1 and the vertical line perpendicular to the horizontal
ground axis (Figure 2). The authors reported that 87.3% of the patients with hallux valgus
had a more pronated M1 than the control group, with a greater alpha angle. Similarly,
Campbell et al. measured the M1 rotation with 3D geometrically determined angles and
found that M1 pronation relative to the second metatarsal was 8.2 degrees greater in the
hallux valgus group than in the control group [13]. Furthermore, Mansur et al. used WBCT
to verify the round sign, an indirect sign of M1 pronation in conventional radiographs,
and concluded that the round sign weakly correlated with the alpha angle measured on
WBCT [14]. Overall, these findings suggest that it is challenging to fully recognize the
complex 3D deformities of hallux valgus using only conventional radiographs and the
incorporation of WBCT would be beneficial.
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Figure 2. To obtain the alpha (α) angle, first, an inferior line is drawn between the lateral edge of the
lateral sulcus and the medial edge of the medial sulcus (a). Subsequently, a superior line is drawn
between the point of the medial and lateral corners of the first metatarsal head (b). Second, bisections
of the above 2 lines are connected to a straight line perpendicular to the horizontal ground axis (c).
Third, the angle is measured between the straight line (c) and the vertical line perpendicular to the
ground axis (d) that is obtained from the first step.

Several studies focused on the impact of M1 pronation after hallux surgery. Conti et al.
conducted a study to determine if a postoperative decrease in M1 pronation observed
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in WBCT would be associated with changes in patient-reported outcomes [15]. Patients
who underwent a modified Lapidus procedure for hallux valgus were divided into two
groups with regards to the amount of postoperative M1 pronation change, and the Patient
Reported Outcomes Measurement Information System (PROMIS) scores were compared
between groups. At 2 years postoperatively, patients who had a significant decrease
in M1 pronation after the modified Lapidus procedure showed greater improvement in
the PROMIS physical function domain. Choi et al. utilized simulated weight-bearing
CT to evaluate the association between preoperative M1 pronation and postoperative
recurrence after proximal chevron osteotomy [16]. To quantify the amount of preoperative
M1 pronation, the authors measured the M1 pronation angle (M1PA) (Figure 3). They
reported that patients who had significant correction loss 1 year after surgery exhibited
higher preoperative M1PA, with a 28.4-degree threshold. These results show the importance
of recognizing preoperative M1 pronation through WBCT because the rotational component
of the hallux valgus deformity would impact postoperative outcomes and recurrence rates
after surgery.
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2.3. First Ray Instability

Extensive research has demonstrated that hypermobility of the first ray is strongly
involved in the pathogenesis of hallux valgus [17,18]. Previously, only the two-dimensional,
sagittal component of the first ray mobility could be measured with conventional radio-
graphs [19]. With WBCT, however, 3D components of the first ray hypermobility in hallux
valgus could also be considered (Figure 4).

Kimura et al. used simulated WBCT and evaluated details regarding the instability
of the first ray [18]. They reported that first ray instability occurs at every single joint
that composes the first ray, and each joint demonstrates unique 3D motion. For instance,
the hallux valgus group showed greater dorsiflexion, inversion, and adduction of the
first metatarsal compared with medial cuneiform at the first tarsometatarsal (TMT) joint,
along with greater eversion and abduction of the medial cuneiform than navicular bone
at the medial cuneonavicular joint. Furthermore, they also evaluated displacement of the
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first–second intercuneiform joint in a separate study and concluded that patients with
hallux valgus had greater dorsiflexion, inversion, and abduction relative to the medial
cuneiform [20]. Lee et al. also investigated signs of instability of the first TMT joint on
WBCT and concluded that the hallux valgus group demonstrated instability predominantly
in the sagittal and axial planes [21]. Based on the results of the aforementioned studies,
WBCT could be regarded as a valuable tool to accurately capture the 3D instability of the
first ray in hallux valgus and to determine the necessity of surgical intervention.
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2.4. Summary

In conclusion, WBCT offers significant advantages over conventional radiography in
the diagnosis and management of hallux valgus (Table 1). Its ability to provide detailed
3D visualization, coupled with automated measurement techniques and AI integration,
allows for a more precise assessment of the deformity’s complexity, including hallux valgus
angle, intermetatarsal angle, and metatarsal pronation. This improved diagnostic accuracy
facilitates better surgical planning and potentially leads to improved patient outcomes.
Further research is needed to fully standardize WBCT measurement protocols and optimize
the clinical application of AI-assisted analysis.

Table 1. Advantages of WBCT measurement parameters in hallux valgus.

Measurement Parameter Advantages

HVA More precise measurement in 3D
IMA More precise and less affected by superimposition

DMAA More accuracy in 3D (conventional radiographs overestimate DMAA)
M1PA Captures a key component of the deformity not visible on 2D images

HVA, hallux valgus angle; IMA, intermetatarsal angle; DMAA, distal metatarsal articular angle; M1PA, first
metatarsal pronation angle.

3. Midfoot Disease
3.1. Lisfranc Injuries

Lisfranc injury indicates injuries on the tarsometatarsal joint of the foot resulting
from low-energy-induced ligamentous injury to high-energy-induced fracture or dislo-
cation [22]. Among the injury spectrum, low-energy-induced subtle Lisfranc injuries are
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often misdiagnosed initially because these are presented without substantial radiographic
abnormality on the weight-bearing radiographs [23]. In fact, owing to the biomechanical
importance of the Lisfranc joint as a keystone in the foot arch, even a subtle injury should
be diagnosed precisely and managed properly [24]. Although conventional CT or MRI can
be accompanied to overcome the relatively low sensitivity, the unloaded condition may
not fully demonstrate the physiologic property of the midfoot [25,26]. Sripanich Y. et al.
reported that subtle Lisfranc injuries, which are often missed on NWBCT, can be diagnosed
with greater sensitivity using WBCT due to its ability to reveal ligamentous instability and
joint widening under stress [27].

Recently, multiple studies have reported the use of WBCT in Lisfranc injuries. Sri-
panich et al. conducted an experiment on 24 intact cadaveric feet to investigate the amount
of Lisfranc ligamentous complex (LLC) joint widening after injury under different loading
conditions [28]. They found that Lisfranc joint widening greater than 1.5 mm under partial
weight-bearing conditions on WBCT could be regarded as a complete Lisfranc injury. In
fact, additional adjacent ligament injury was needed for Lisfranc joint widening to be
greater than 2 mm, which is a well-known diagnostic cutoff value on conventional radio-
graphs. This finding indicates that isolated Lisfranc ligament injury could be overlooked in
conventional radiographs if a 2 mm widening was used as a radiographic threshold.

To enhance the diagnostic accuracy, Campbell et al. proposed an augmented stress
weight-bearing CT to detect subtle, dynamically unstable Lisfranc injuries [29]. With weight
bearing on both feet facing forward, the patient was asked to raise both heels from the
scanner platform. This plantarflexion force on the midfoot provides augmented stress on
the midfoot, which improves the sensitivity in identifying subtle Lisfranc injuries.

Instead of conventional axial measurement of the Lisfranc joint, some novel WBCT
parameters have been developed and introduced for use in the clinical setting. Sripanich
evaluated 96 cadaveric specimens and designed a WBCT protocol to enhance the reliability
of Lisfranc joint measurements [29]. They found that measuring the distance between the
medial cuneiform and second metatarsal with coronal WBCT imaging would be a repro-
ducible way to localize the interosseous Lisfranc ligament injury. Similarly, Bhimani et al.
evaluated the Lisfranc joint complex using one-dimensional (1D), two-dimensional (2D),
and 3D measurements on WBCT scans among operatively confirmed Lisfranc instability
(Figure 5) [30]. They concluded that coronal 3D volumetric measurement had higher sensi-
tivity and specificity than 2D and 1D measurements because the second metatarsal tends
to displace both laterally and superiorly in Lisfranc injury. Despite its inherent limitation
in being actively used in acute conditions, WBCT may enhance diagnostic accuracy for
suspicious Lisfranc injuries with uncertain conventional radiograph findings.
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3.2. Midfoot Osteoarthritis

In the midfoot, precise identification of associated articulations and osseous borders in
conventional weight-bearing radiographs may not be handy because they can be affected
by overlapping adjacent bones when viewed two-dimensionally [31] (Figure 6). For this
reason, WBCT is an alternative, as it enables clear joint space visualization and enhanced
bony landmark identification under physiological weight-bearing conditions. Steadman
et al. compared weight-bearing radiographs and WBCT with regard to diagnostic accuracy
in midfoot osteoarthritis [32]. They found that weight-bearing radiography demonstrated
61.5 to 72.5% sensitivity and 87.9 to 96.1% specificity in identifying midfoot osteoarthritis.
It also showed less accurate localization of degenerative changes and a greater tendency
to underestimate disease severity compared to WBCT. These findings indicate that WBCT
would be a better diagnostic option in midfoot osteoarthritis as it provides an earlier and
more reliable diagnosis.
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With the support of such high accuracies achieved by WBCT, Kim et al. aimed to
re-establish the prevalence of midfoot arthritis [33]. Analyzing 606 patients who underwent
WBCT for foot and ankle problems, the authors detected that 57.9% of the patients had
midfoot arthritis, which is higher than previous studies that were based on surveys, physical
examination, and conventional radiographs. The authors also confirmed the related factors
associated with medical history and comorbid foot deformities for midfoot arthritis, which
was previously determined based on conventional radiographs [34]. They concluded
that older age, right sidedness, increased body mass index (BMI), PCFD, and lateral toe
deformities contribute to higher possibilities of midfoot arthritis, based on WBCT. Given
the significant differences compared to previous results, we believe that WBCT should be
more actively used in the clinical assessment of patients presenting with dorsal foot pain.

3.3. Summary

The findings presented here clearly demonstrate the superiority of WBCT in iden-
tifying subtle Lisfranc injuries and characterizing midfoot osteoarthritis compared to
conventional methods (Table 2). The use of stress WBCT and novel measurement tech-
niques, combined with the increased spatial resolution of WBCT, substantially improves
diagnostic accuracy and allows for the early detection and appropriate management of
these conditions. Further studies focusing on the standardization of WBCT protocols and
the development of predictive models based on WBCT data are warranted.

Table 2. Advantages of WBCT in midfoot diseases.

Midfoot Diseases Measurement Parameter Advantages

Lisfranc injury Lisfranc joint widening,
3D displacement

Detection of subtle injuries
under weight-bearing

conditions, assessment of
ligamentous injury

Midfoot osteoarthritis Joint space width at
various joints

Improved visualization of joint
space, assessment of articular

cartilage, accurate measurement
of joint space narrowing

4. Progressive Collapsing Foot Deformity
In 2020, Myerson et al. proposed the term “Progressive Collapsing Foot Deformity

(PCFD)” and a new classification system to summarize the adult-acquired flatfoot defor-
mity [35]. The new system includes the terms “progressive” and collapsing” to give a better
idea of the worsening and evolving nature of the complexity of the 3D deformity. It covers
varying degrees of hindfoot valgus (Class A), mid/forefoot abduction (Class B), medial
column instability (Class C), peritalar subluxation (Class D), and ankle instability (Class E).
Given these points, WBCT could be a highly effective tool for interpreting and classifying a
complex 3D deformity within PCFD.

4.1. Hindfoot Valgus Deformity (Class A)

As in plain radiographs, the hindfoot alignment angle (HAA) and hindfoot moment
arm (HMA) are commonly used measurements in WBCT as indicators for assessing hind-
foot valgus in PCFD [36]. de Cesar Netto et al. reported that clinical examination of the
HAA tends to underestimate the extent of hindfoot valgus and suggested that WBCT
measurements would be more reliable and repeatable [37]. These parameters, however,
are limited in that they cannot account for the fact that forefoot deformity can act as a
contributor to hindfoot deformity [38].
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As an alternative, FAO is considered a validated measurement demonstrating the
relationship between the center of the ankle joint and the center of the tripod of the
foot, which can be calculated semiautomatically using WBCT (Figure 7) [39]. Because it
simultaneously reflects the alignment of the hindfoot, midfoot, and forefoot, FAO is being
widely used to measure overall 3D foot deformities. Lintz et al. reported that FAO values
greater than 4.6% have a specificity of 100% and a sensitivity of 89.2% for the diagnosis
of PCFD [40]. Day et al. compared the FAO values before and after surgery in the feet
of 20 PCFD patients, showing a significant difference from 9.8% before surgery to 1.3%
after surgery [41]. Consequently, FAO is considered a critical measurement modality
in evaluating the overall PCFD before surgery and predicting the extent of correction
after surgery.
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Figure 7. Foot–ankle offset (FAO). First, the most plantar aspect of the M1, the most plantar aspect
of the M5, and the most plantar aspect of the calcaneal tuberosity (C) are marked to create the foot
tripod. Then, the talar dome center (T1) is established on the foot tripod. The FAO represents the
percentage of ankle deviation from the tripod’s center (C1) (Figure 2).

4.2. Midfoot/Forefoot Abduction (Class B)

The talonavicular coverage angle is also used in WBCT as an indicator to assess
midfoot abduction [36]. In fact, a new classification system for PCFD includes sinus
tarsi impingement as one of the findings of midfoot abduction. Sinus tarsi impingement,
which commonly causes lateral hindfoot pain, is caused by bony contact between the
talus and calcaneus and should be addressed when establishing a therapeutic strategy in
PCFD [42]. Because of superimposition effects, however, sinus tarsi impingement is difficult
to identify using conventional radiographs. Instead, WBCT allows for the identification
of bony impingement in a physiological standing position. Kim et al. devised a novel
method to measure the talocalcaneal distance, which features realignment of the coronal
and sagittal planes to directly trace the inferior border of the lateral process of the talus [43]
(Figure 8). The inferior border of the lateral process of the talus is chosen to reconstruct
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the coronal reference plane because it is a constant anatomical landmark to obtain minimal
talocalcaneal distance. Using this method, the authors investigated the correlation of
talocalcaneal distance narrowing with common radiographic parameters on standard
weight-bearing radiographs. They observed that talocalcaneal narrowing correlated most
with talonavicular coverage, with a cutoff value of 41.2 degrees. Andres et al. conducted
a comparative study to identify whether there is an association between WBCT-based
measurements and MRI findings [44]. They found that MRI findings overestimate the
presence of bony sinus tarsi impingement in approximately 42% of the included population
and concluded that WBCT would be a better diagnostic option to detect bony impingement
in PCFD.
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Figure 8. Talocalcaneal distance. (A) Using the sagittal view for reference, the most inferior point of
the lateral process is identified. (B) At this point, the narrowest distance between the inferior border
and the calcaneal floor is measured in the selected coronal slice (Asterisk).

Lastly, Kim et al. suggested that talar malrotation in the axial plane should be con-
sidered an underlying feature of abduction deformity in PCFD [45]. They detected that
the talus was significantly more internally rotated in reference to the lateral malleolus,
the ankle transmalleolar axis, and the lateral malleolus in PCFD patients compared to
controls (Figure 9). Moreover, the severe abduction group (talonavicular coverage an-
gle (TNC) > 40 degrees) showed more internal rotation compared with the moderated
abduction group (TNC 20 to 40 degrees). With the use of WBCT, surgeons can take axial
components of PCFD into consideration at the time of reconstructive surgery in PCFD.

4.3. Medial Column Instability (Class C)

Forefoot arch angle (FAA) and medial cuneiform-to-floor distance (MCFD) are the
measurements used to evaluate medial column instability in PCFD [36]. FFA is determined
in the coronal plane by establishing a line from the most plantar aspect of the medial
cuneiform to the fifth metatarsal. The angle between this line and the ground is defined as
FAA. MCFD is measured in the sagittal plane from the most plantar aspect of the medial
cuneiform to the ground plate (Figure 10). de Cessar Netto et al. reported that both FAA
and MCFD reflect medial column instability with almost perfect reliability [36]. In non-
weight-bearing and weight-bearing CT scans, the MCFD measured 29 mm and 18 mm,
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respectively, and the FFA measured 13 degrees and 3 degrees, respectively, indicating
medial column instability with differences observed under weight-bearing conditions.
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20-degree lateral Meary’s angle (B). The talus is internally rotated with regard to lateral malleolus on
the weight-bearing CT axial image (C).
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Figure 10. Forefoot arch angle (FFA) and medial cuneiform-to-floor distance (MCFD). (A) FFA is
defined as an angle between the floor (a) and the line connecting the most plantar aspect of the medial
cuneiform and 5th metatarsal (b). (B) MCFD is measured from the most plantar aspect of the medial
cuneiform to the floor (asterisk).
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4.4. Peritalar Subluxation (Class D)

Peritalar subluxation is known to be a key pathological index in PCFD. It defines
the complex 3D distortion that occurs in PCFD and is characterized by subluxation of the
hindfoot through the triple joint complex [46]. The percentage of middle facet subluxation
(MFS) and incongruence angle are considered validated markers for peritalar subluxation
measured in WBCT [46]. Assessed at the midpoint of the subtalar joint middle facet in the
sagittal plane, uncoverage of the middle facet on a coronal plane image is measured. Then,
the percentage of MFS is measured by dividing the uncoverage of the middle facet by the
width of the talar middle facet. The incongruence angle is the angle between both articular
surfaces at the midpoint of the middle facet of the subtalar joint (Figure 11). De Cesar Netto
et al. reported that an incongruence angle of >8.4◦ and an MFS percentage of >17.9◦ were
found to be highly diagnostic for symptomatic stage II adult-acquired foot deformity [46].
The authors also compared the amount of subluxation of the middle and posterior facets of
the subtalar joint to identify the superior marker to detect early peritalar subluxation [47].
They reported significantly pronounced subluxation of the middle facet than that of the
posterior facet by an average of 17.7%, which implies that MFS may present an earlier and
more significant sign of progressive peritalar subluxation.
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Subfibular impingement is also one of the findings characterizing peritalar subluxa-
tion in PCFD. To address this, Jeng et al. devised a calcaneofibular distance measured on 

Figure 11. Middle facet subluxation. (A) Measurement of the incongruence angle of the middle
facet of the subtalar joint on a coronal-plane weight-bearing CT image, which is an angle between
both articular surfaces (a and b). (B) Measurement of the percentage of “uncoverage” of the middle
facet of the subtalar joint on a coronal-plane weight-bearing CT image. (c) = the width of the talar
middle facet, and (d) = the linear measurement of the middle facet uncoverage. The percentage of
uncoverage of the middle facet of the subtalar joint = (d/c).

Subfibular impingement is also one of the findings characterizing peritalar subluxation
in PCFD. To address this, Jeng et al. devised a calcaneofibular distance measured on the
WBCT coronal view (Figure 12) [48]. The calcaneofibular distance is defined as the closest
distance between the lateral aspect of the posterior facet of the calcaneus, which is the
most reproducible point to measure from the calcaneus lateral wall and the fibula. Using
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this method, Kim et al. observed that subfibular impingement detected on the WBCT
correlated best with HMA in the weight-bearing radiograph [43]. They also added that
HMA cutoff values of 25.4 mm and 38.1 mm would be useful for ruling out and diagnosing
calcaneofibular impingement, respectively.
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posterior facet of the calcaneus in the coronal image (asterisk).

4.5. Valgus Tilting (Class E)

Myerson et al. described ankle valgus deformity as a continuum of posterior tibial
tendon dysfunction (PTTD) and classified this condition as the final stage of PTTD, known
as stage IV [49]. However, ankle valgus is caused by the rupture of the deltoid ligament
rather than being a continuation of PTTD and can be considered an independent feature of
PCFD [50]. As a result, in a new classification, ankle valgus is described as Class E, one of
the five independent features of PCFD.
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Mansur et al. conducted a study to see if traditional hallmarks of peritalar subluxa-
tion could be adopted in patients with class E deformity in PCFD [51]. They detected a
paradoxical reduction of peritalar subluxation despite underlying peritalar ligamentous
incompetence. The authors interpreted that the deformity fulcrum would be changed
proximally in class E. They recommended using FAO as an imaging parameter in class E
and concluded that FAO greater than 12.14% is a strong predictor of ankle valgus deformity
in PCFD.

4.6. Transverse Arch Collapse

In addition to the collapse of the medial longitudinal arch, Schmidt et al. focused
on the transverse arch in PCFD [52]. They defined the transverse arch plantar (TAP)
angle to evaluate the angle formed between the first, second, and fifth metatarsals in the
coronal plane, which was significantly higher in PCFD. Furthermore, the authors measured
the distance between the bones composing the transverse arch and a line connecting the
most inferior aspect of the medial cuneiform and the fifth metatarsal. The location of
collapse along the transverse arch was most prominent at the second metatarsal and medial
cuneiform (Figure 13). In this way, WBCT proves to be useful with regard to converting
multiple points on the coronal plane into lines within a single plane and assessing the angles
formed by these lines to determine the amount of transverse arch collapse. Additionally, it
allows for the identification of the location of arch collapse in specific planes that may be
obscured by bone superimposition in conventional radiographs.
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Figure 13. (A) Transverse arch plantar (TAP) angle represented by the angle between the most plantar
parts of the 1st (a), 2nd (b), and 5th (c) TMT joints. (B) Location of collapse along the transverse arch
is determined by comparing the distance between the line connecting the most inferior aspect of the
medial cuneiform and the 5th metatarsal bone (d) and specific components of the transverse arch.

4.7. Distance Mapping in PCFD

Distance mapping is a recently validated technology to quantify and compare joint
surface interaction by postprocessing the WBCT data [53]. It visualizes the joint surface
distance distribution through a color-coded map and enables the identification of relative
positions between joint surfaces three-dimensionally. Since PCFD is characterized by
abnormal subluxation and impingement of bones around multiple joints within the foot,
distance mapping is being widely used to objectively quantify the amount of deformity [53].
Furthermore, the concept of coverage mapping has been suggested by Dibbern et al. to
better highlight areas of proper joint interaction, joint subluxation, and impingement [53].
This method distinguishes articular coverage, bony impingement, periarticular interaction,
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and the shadow of the talus using distinct colors, which would enhance the interpretability
and clinical utility of distance mapping in PCFD. Using coverage mapping, the authors
reported decreased articular coverage in articular regions and increased impingement in
nonarticular regions in patients with PCFD [54]. In detail, they found significantly increased
uncoverage in the middle facet, not in the anterior or posterior facets, and significantly
increased sinus tarsi coverage along with impingement. In a subsequent study, the authors
detected significantly decreased articular coverage of the anterior aspect of the ankle
gutters and talar dome in PCFD patients, which is consistent with early plantarflexion of
the talus within the ankle mortise. Through the advanced techniques processing WBCT
data, clinicians are now able to achieve a more objective understanding of the complex
three-dimensional deformities in PCFD.

4.8. Summary

In PCFD, the use of WBCT-specific measurements like FAO, coupled with innovative
techniques such as distance mapping, allows for a more precise characterization of the
deformity’s severity and its various components (Table 3). This improved understanding fa-
cilitates more accurate surgical planning and the potential for more personalized treatment
strategies tailored to the specific aspects of the individual patient’s deformity.

Table 3. Advantages of WBCT measurement parameters in PCFD.

PCFD Class Measurement Parameter Advantages

A (Hindfoot valgus) HAA, HMA, FAO assessment of 3D deformity, precise
measurement of hindfoot alignment

B (Midfoot/forefoot abduction) TNC, talocalcaneal distance assessment of midfoot abduction, detection of
sinus tarsi impingement

C (Medial column instability) MCFD, FAA assessment of medial column collapse
and instability

D (Peritalar subluxation) MFS, incongruence angle,
calcaneofibular distance

assessment of peritalar subluxation and
subfibular impingement, quantification of

middle facet subluxation

E (Ankle valgus) FAO (in advanced cases) assessment of ankle valgus and its
contribution to overall deformity

PCFD, progressive collapsing food deformity; HAA, hindfoot alignment angle; HMA, hindfoot moment arm;
FAO, foot–ankle offset; TNC, talonavicular coverage angle; MCFD, medial cuneiform-to-floor distance; FAA,
forefoot arch angle; MFS, percentage of middle facet subluxation.

5. Conclusions
WBCT is poised to become the gold standard in foot and ankle imaging due to its

unparalleled diagnostic capabilities. Its integration into clinical practice complements the
detailed anatomical imaging provided by NWBCT, offering a more holistic view of complex
pathologies. However, overcoming barriers such as cost and accessibility is crucial for its
broader adoption. Technological advancements in conventional imaging methods, includ-
ing the incorporation of AI and three-dimensional postprocessing algorithms, could bridge
the gap in settings where WBCT is unavailable, although they cannot yet fully replicate
its precision [55,56]. Future directions should focus on making WBCT more accessible
and cost-effective, potentially through the development of portable systems and stream-
lined protocols. Simultaneously, enhancing WBCT’s integration with AI could automate
diagnostics and improve accuracy. Expanding its applications in surgical planning, postop-
erative evaluations, and personalized treatment strategies has the potential to revolutionize
patient care.
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In conclusion, while WBCT offers the most comprehensive diagnostic insights for
complex deformities, complementary advancements in alternative imaging methods could
serve as valuable tools to address accessibility challenges. Ensuring the widespread avail-
ability of WBCT and refining supplementary technologies will ultimately lead to improved
diagnostic accuracy and better clinical outcomes for a broader patient population.
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