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Abstract: Background/Objectives: Complex regional pain syndrome (CRPS) is character-
ized by severe pain and reduced functionality, which can significantly affect an individual’s
quality of life. The current treatment of CRPS is challenging. However, recent advances in
diagnostic and treatment methods show promise for improving patient outcomes. This
review aims to place the question of CRPS in a broader context and highlight the objectives
of the research for future directions in the management of CRPS. Methods: This study
involved a comprehensive literature review. Results: Research has identified three primary
pathophysiological pathways that may explain the clinical variability observed in CRPS:
inflammatory mechanisms, vasomotor dysfunction, and maladaptive neuroplasticity. In-
vestigations into these pathways have spurred the development of novel diagnostic and
treatment strategies focused on N-Methyl-D-aspartate Receptor Antagonists (NMDA),
Toll-like receptor 4 (TLR-4), α1 and α2 adrenoreceptors, as well as the identification of
microRNA (miRNA) biomarkers. Treatment methods being explored include immune
and glial-modulating agents, intravenous immunoglobulin (IVIG) therapy, plasma ex-
change therapy, and neuromodulation techniques. Additionally, there is ongoing debate
regarding the efficacy of other treatments, such as free radical scavengers, alpha-lipoic
acid (ALA), dimethyl fumarate (DMF), adenosine monophosphate-activated protein kinase
(AMPK) activators such as metformin, and phosphodiesterase-5 inhibitors such as tadalafil.
Conclusions: The controversies surrounding the mechanisms, diagnosis, and treatment
of CRPS have prompted researchers to investigate new approaches aimed at enhancing
understanding and management of the condition, with the goal of alleviating symptoms
and reducing associated disabilities.

Keywords: CRPS; ketamine; low dose naltrexone; glial-modulating agents; miRNA;
neuromodulation; peripheral nerve stimulation; spinal cord stimulation; dorsal root ganglia
stimulation; repetitive transcranial magnetic stimulation

1. Introduction
Complex Regional Pain Syndrome (CRPS) is a debilitating condition marked by severe

chronic pain that is often accompanied by changes in sensory, motor, autonomic, and
inflammatory functions [1]. Despite years of research, the underlying mechanisms of CRPS
remain poorly understood, leading to ongoing controversies regarding its diagnosis and
treatment [2]. This uncertainty complicates clinical management and results in significant
physical and emotional burdens for those affected by the condition.
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CRPS primarily affects the extremities and is often triggered by events such as trauma,
fractures, or surgery [3–5]. Patients may experience intense pain and heightened sensitivity
to touch alongside various sensory, motor, autonomic, skin, or bone abnormalities. The
clinical presentation of CRPS can vary significantly. Clinically, acute (warm) CRPS (charac-
terized by pain, redness, warmth, and swelling) may sometimes transition to chronic (cold)
CRPS (characterized by motor dysfunction, stiffness, and abnormal changes in the skin and
nails), reflecting shifts in symptom patterns as the condition evolves [6,7].

Recently, new subtypes of CRPS have been introduced to recognize patients with
partially resolved symptoms [8,9]:

• CRPS with remission of some features: Patients who previously met CRPS criteria but
currently do not have enough features to be classified as having CRPS.

• CRPS Not Otherwise Specified (NOS): Patients displaying some, but not all, features
of CRPS required for a formal diagnosis, and when no other diagnosis better explains
the clinical features.

Marinus et al. proposed three main pathophysiological pathways to explain this
clinical variability: inflammatory mechanisms, vasomotor dysfunction, and maladaptive
neuroplasticity [10]. Inflammation is well documented in CRPS, with elevated levels of
biomarkers such as substance P (SP), calcitonin gene-related peptide (CGRP), interleukin-6
(IL-6), and tumor necrosis factor (TNF-α), though their reliability remains uncertain [11,12].
There are currently no objective laboratory tests for the diagnosis of CRPS. Inflamma-
tory profiles also differ between acute and chronic CRPS [11]. Additionally, emerging
evidence suggests a role for autoimmunity in CRPS, although research in this area is still
developing [13–17].

Mechanism-based treatment has been a longstanding objective in the management
of CRPS [18]. Researchers are investigating new methods to better understand the patho-
physiology of CRPS and to develop more effective therapies. These efforts aim to relieve
symptoms, reduce disabilities, and enhance the quality of life for patients. Some emerging
areas of interest include the following:

1. N-Methyl-D-aspartate (NMDA) Receptor Antagonists: Agents such as ketamine target
central sensitization mechanisms by blocking NMDA receptors. These receptors
play a critical role in amplifying pain signals in the central nervous system and
have a significant effect on the development of central sensitization, spontaneous
pain, and hyperalgesia [19]. By blocking these receptors, there is potential to reduce
hyperalgesia, allodynia, and chronic neuropathic pain [20].

2. Low-Dose Naltrexone (LDN): Toll-like receptor 4 (TLR4) receptors present in glial cells
enhance the release of pro-inflammatory cytokines in the central nervous system [19].
By modulating Toll-like receptor 4 (TLR4) activity in glial cells, LDN has the potential
to reduce neuroinflammation and neuropathic pain [21].

3. Immune and Glial-Modulating Agents: These approaches aim to regulate glial cell
activity, addressing their role in central sensitization and inflammation. Targeting
glial cell function may help manage pain and inflammation in CRPS [11].

4. Alpha-Adrenergic Modulators: Evidence suggests an upregulation of α-adrenergic
receptors in the skin of CRPS patients, and activation of these receptors leads to
increased noradrenaline release, which hyperstimulates nociceptive fibers, resulting
in pain and hyperalgesia [22]. By targeting α1 and α2 adrenoreceptors, adrenergic
agonists and antagonists offer new opportunities for managing adrenergic sensitivity
and its contribution to pain and inflammation.

5. IV Immunoglobulin and Plasma Exchange Therapy: Evidence suggests an autoim-
mune component in CRPS. Treatments such as intravenous immunoglobulin (IVIG)
and plasma exchange show promise in addressing this condition [16].
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6. Neuromodulation Techniques: Advanced neurostimulation methods, including pe-
ripheral nerve stimulation, spinal cord stimulation, dorsal root ganglia stimulation,
and transcranial magnetic stimulation, offer minimally invasive options for modulat-
ing pain and neuroinflammation [23].

7. Biomarker Identification: The identification of biomarkers such as microRNAs (miR-
NAs) could enhance early diagnosis and prognosis prediction, aiding in personalized
treatment strategies [24,25].

Tables 1 and 2 present newly investigated treatment methods based on their mech-
anisms of action, while Figure 1 illustrates these methods according to their target areas
of effect.

Table 1. Treatment protocols for targeting the peripheral nervous system.

Type Treatment Protocol Treatment Mechanism

Medical
treatments

Alpha-adrenergic antagonists
(Prazosin, Phenoxybezamine)

• Decreasing adrenergic sensitivity in the
nociceptive afferents

Glial-modulating agents
• Decreasing glial cell activation
• Inhibiting pro-inflammatory cytokine synthesis
• Antagonism of pro-inflammatory cytokines

Immune-modulating agents

• TNF-α Antagonists: Reduces elevated TNF-α levels in
patients with neuroinflammation during acute CRPS

• Recombinant IL-10 (rIL-10): Alleviates mechanical allodynia
by modulating microglial activation in the early phase
of CRPS

IV immunoglobulin (IVIG)
Therapies

• Downregulation of autoantibody production by B cells
• Inhibition of cytotoxic T cells
• Elimination of autoantibodies
• Elimination of pro-inflammatory cytokines
• Anti-inflammatory action

Plasma exchange therapies

• Elimination of autoantibodies
• Elimination of pro-inflammatory cytokines
• The treatment has specific benefits, especially for patients

with small fiber neuropathy and CRPS

Free radical scavengers
• Reduce the risk of developing CRPS by lowering

proinflammatory cytokines and oxidative stress
• Show potential as a preventive treatment

Alpha-lipoic acid (ALA)

• Reduce oxidative stress and enhance blood flow to
the nerves

• Neutralize various reactive oxygen species, inhibit
generators of these reactive molecules, and repair damage
caused by oxidants

Dimethyl fumarate (DMF)

• Prevent nociceptive sensitization and reduce the
accumulation of oxidative stress markers

• Inhibit the development of pro-nociceptive serum
antibodies and diminish innate inflammatory responses

AMPK activators—Metformin • Influence nociceptive processing
• Decrease the excitability of sensory neurons

Tadalafil (phosphodiesterase-5
inhibitor)

• Improve microcirculation
• Decrease temperature difference between affected and

unaffected feet

Interventional peripheral nerve stimulation
(PNS) treatments

• It applies electrical current to the myelinated fibers of
peripheral nerves, thereby suppressing synaptic activity



Diagnostics 2025, 15, 353 4 of 38

Table 2. Treatment protocols for targeting the central nervous system.

Type Treatment Protocol Treatment Mechanism

Medical
treatments

Ketamine

• The antagonism of NMDA receptors results in pain relief
• Blocking NMDA receptors downregulates heightened NMDA

receptor activity in the CNS
• It reduces the temporal summation of pain and

modulates antinociception
• Prevents central sensitization in dorsal horn neurons

Low-dose
naltrexone (LDN)

• Regulation of glial cell function to reduce the release of
inflammatory cytokines in the CNS

• Effects on neuropathic pain modulation by antagonizing TLR4
receptor, which blocks TLR4 signaling and potentially prevents
and reverses central neuroinflammation and neuropathic pain.

Glial-modulating agents

• Disruption of glial activation
• Disrupting pro-inflammatory cytokine signaling and synthesis
• Inhibition of pro-inflammatory cytokine synthesis
• Antagonism of pro-inflammatory cytokines

AMPK activators
(e.g., Metformin)

• Influence nociceptive processing
• Inhibit pathological pain signaling and reduce the excitability of

dorsal root ganglion (DRG) neurons

Interventional
treatments

Spinal cord
stimulation (SCS)

• Electric stimulation on the dorsal column inhibits pain sensation
• Suppressing ascending nociceptive signals
• Enhancing descending inhibitory pathways
• Stimulating supraspinal brain regions

Dorsal root ganglion
(DRG) stimulation

• Modulate pain signaling more directly at the site of
pain transmission

Repetitive transcranial
magnetic
stimulation (rTMS)

• Stimulating the brain cortex by magnetic pulses can induce
cortical excitability, leading to a pain-reducing effect by altering
pain perception
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This review aims to enhance our understanding of CRPS and outline potential therapy
options for managing it.
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2. Methods
This review focuses on studies that provide high levels of evidence, such as random-

ized controlled trials (RCTs), systematic reviews, and cohort studies with adequate sample
sizes published in peer-reviewed journals. In contexts where experimental data are not
available, observational studies are also included. Recent studies, particularly in areas with
significant advancements, were prioritized; however, older studies were also included if
they contributed essential foundational knowledge. A literature survey was conducted
primarily among peer-reviewed studies published in English on PubMed. A systematic
screening process was conducted, beginning with title and abstract screening to promptly
exclude irrelevant studies, followed by a thorough full-text review to identify studies that
met the established criteria.

3. New Approach and Research Areas
3.1. New Approaches for Identifying Risk Factors and Developing Treatment Strategies
3.1.1. Biomarker Identification

Biomarkers provide a valuable opportunity to identify the potential for disease devel-
opment, measure disease progression, and predict prognosis. Bharwani et al. suggested
several potential applications of biomarkers in CRPS [26], including the following:

a. Diagnosing CRPS in patients
b. Supporting phenotypic characterization to identify underlying inflammatory mechanisms
c. Stratifying patients to determine who may or may not benefit from anti-

inflammatory therapies.
d. Monitoring the therapeutic effects of these treatments

A reliable biomarker for CRPS has not been identified. Given the complex, multi-
mechanistic nature of CRPS pathophysiology, Bharwani et al. noted that they do not expect
a single biomarker to be specific to this disease [26]. Since early treatment of CRPS is crucial
for achieving positive outcomes, establishing biomarkers for both diagnosis and outcome
prediction remains a key objective.

Role of miRNAs as Biomarkers for CRPS

Recent studies suggest that microRNAs (miRNAs) may serve as promising novel
biomarkers for CRPS, aiding both its diagnosis and treatment [27]. Discovered in recent
decades, miRNAs are a class of small non-coding RNAs, and their altered expression
has been linked to both physiological conditions, such as pregnancy, and pathological
conditions, including cancer and heart disease [28,29]. This aberrant expression of circu-
lating miRNAs could indicate disruptions in cellular homeostasis that underlie various
diseases [30].

Alterations in miRNA expression in the dorsal root ganglia (DRG) and other tissues
occur alongside peripheral nerve injury, which is associated with neuropathic pain. Several
studies have demonstrated the significant role of these miRNA changes in peripheral
neuropathy and axon regeneration, contributing to hypersensitivity and the development
of chronic pain [24,31,32].

Overall, miRNAs have been identified as ’emerging biomarkers’ for CRPS [9,24],
and there is growing interest in research within this field. Present studies have indicated
the following:

• Elevated levels of miRNAs in serum can be useful for classifying patients and may
serve as effective novel biomarkers for conditions such as CRPS [28,29,33].

• Circulating miRNA signatures can be useful as biomarkers for predicting treatment
responses [34].
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• Identified miRNAs can be valuable in elucidating the molecular mechanisms underly-
ing CRPS [34]

• miRNAs can be useful as a strategy for patient stratification to optimize treatment
outcomes [35]

In an enlightening study, researchers identified 18 microRNAs (miRNAs) with differ-
ential expression in patients with CRPS compared to non-CRPS patients [33]. Orlova et al.
suggested that these differentially expressed miRNAs could provide valuable molecular
insights into gene regulation, potentially leading to new therapeutic strategies for CRPS.

It has been found that miRNAs (e.g., miR-939 and miR-223) are downregulated in
CRPS patients [33,36,37]. These miRNAs are predicted to target and regulate multiple
pro-inflammatory genes; thus, their downregulation in CRPS patients may contribute to
increased inflammation and pain. Therefore, changes in circulating miRNA levels could
influence target gene expression, ultimately playing a role in the development of CRPS.
In a study supporting this perspective, McDonald et al. demonstrated, through pathway
analysis, that miR-939 plays a crucial role in a network of inflammatory signals [36]. The
study suggested that miR-939 may regulate several pro-inflammatory genes. Lower levels
of miR-939 observed in patients with CRPS could lead to increased expression of these
genes, which may intensify the inflammatory pain pathway. Additionally, McDonald et al.
pointed out that circulating miRNAs could serve as important signaling molecules, where
even minor fluctuations in their levels might affect target gene expression and influence
disease progression.

Other studies have explored the potential of using circulating miRNAs as a tool to dis-
tinguish between good and poor treatment responses among CRPS patients [34,38]. These
studies indicate that differences in miRNA signatures can help differentiate responders
from non-responders. Specifically, inadequate response to ketamine treatment in CRPS
patients has been associated with alterations in miRNA levels. The findings showed that
CRPS patients who did not respond well to ketamine treatment had lower pretreatment
levels of miR-605 and miR-548d-5p in their whole blood [34,38].

Another study examining exosomal miRNA before and after physical exercise (PE)
suggested that this approach could effectively identify a molecular signature for predicting
treatment responses [35]. In their research, Ramanathan et al. proposed that lower pretreat-
ment levels of miR-338-5p in poor responders are associated with elevated IL-6 levels and
increased inflammation in CRPS.

Further research is needed to investigate the role of circulating miRNAs in the diagno-
sis and prognosis of patients with CRPS.

Role of Other Biomarkers

Additional biomarkers that have been investigated are outlined below:

• Biochemical analyses have shown increased bone turnover in patients with complex
regional pain syndrome type 1 (CRPS-1), characterized by higher bone resorption
(elevated urinary deoxypyridinoline) and increased bone formation (notable increases
in serum calcitonin, osteoprotegerin, and alkaline phosphatase) [39]. Histological
examinations have revealed bone changes in both acute and chronic CRPS-1 [39].
A recent study indicates that the bone involvement seen in early CRPS-1 may be
unrelated to increased osteoclast activity. Instead, elevated serum markers of bone
formation have been observed, accompanied by decreased levels of Sclerostin and
DKK1, which likely indicate widespread osteocyte dysfunction [40]. Supporting
this understanding, osteoprotegerin (OPG), a critical regulator of bone remodeling,
may play a role in the pathophysiology of CRPS. The persistent elevation of OPG
levels in CRPS suggests increased osteoblastic activity [41]. These findings propose
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potential biomarkers for identifying patients who may benefit from treatments aimed
at modulating bone turnover, highlighting important areas for future research.

• In another study, researchers noted significant reductions in serum IL-37 and trypto-
phan (TRP) levels in participants with CRPS. Additionally, a subset of these individuals
exhibited notably elevated GM-CSF levels, suggesting the involvement of various
inflammatory markers in the pathogenesis of CRPS [42].

• Another study suggests that, in the absence of other biomarkers for CRPS type 1,
P29ING4 autoantibodies may assist in its diagnostic evaluation [43].

3.1.2. Role of Genetic Factors

Even though the role of genetic factors is still not well known, the possibility of the
human leukocyte antigen (HLA) system being associated with CRPS has been described,
especially in CRPS patients with dystonia [44,45]. It is known that there are “CRPS families”
with more than one case of CRPS in some families [46].

In a recent study, Shaikh et al. suggest an underlying genetic predisposition to
CRPS-1 in up to one-third of cases, with this effect being most pronounced in males [47].
Shaikh et al. also indicate that although CRPS-1 is less prevalent in males, they are more
likely to display genetic markers, pointing to the possibility of sex-specific etiological fac-
tors in CRPS development. Polymorphisms in human leukocyte antigen (HLA) and tumor
necrosis factor-alpha (TNF-α) have been implicated in CRPS, potentially contributing to
an earlier onset and more severe symptoms [48]. Genes from the HLA family, includ-
ing HLA-DQB1 and HLA-DRB1, may serve as potential biomarkers for the diagnosis of
CRPS [49].

3.1.3. Role of Autoimmunity

Recent study findings suggest that autoimmunity may play a role in the development
of CRPS [14,16,49–52]. The improvement of symptoms in patients with CRPS who were
treated with intravenous immunoglobulin (IVIG) for unrelated conditions has prompted
discussions about the potential role of autoimmunity in CRPS [16]. Several studies have
suggested autoimmune pathophysiology in CRPS. For instance, Goebel found that most
CRPS patients have IgG serum autoantibodies that target and activate autonomic receptors.
When CRPS serum IgG was transferred to mice, it led to abnormal behavior, indicating
that, in some cases, CRPS may be associated with an autoantibody-mediated autoimmune
process [50]. Based on these findings, the researcher proposed that CRPS could serve as a
prototype for a new autoimmune disease.

Keratin 16 (KRT16) plays a pivotal role in regulating inflammation and innate im-
munity following damage to the skin barrier. Additionally, it is believed to contribute to
cellular defense against oxidative stress by helping to maintain the normal redox balance
within cells, which is essential for maintaining proper cellular function and preventing
damage [53]. In their study, Tajerian et al. proposed that identifying autoantibodies against
KRT16 could serve as a biomarker for CRPS in both mice and humans. This finding
supports the notion of redefining CRPS as having an autoimmune etiology [54].

In a related animal study, the transfer of immunoglobulin G (IgG) from patients
with chronic CRPS resulted in abnormal behavior and motor function in rodents. This
evidence further supports the idea that CRPS serum IgG plays a role in the condition’s
pathophysiology, suggesting an autoimmune component in some cases [55]. However, in
the absence of limb trauma, transferring IgG does not replicate the typical symptoms of
CRPS, indicating that this model may not be suitable for studying the condition.

In an animal model, Cuhadar et al. reported that autoantibodies sensitizing A and
C nociceptors caused painful hypersensitivity [14]. Additionally, Kohr et al. discovered
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autoantibodies in a subset of CRPS patients that exhibited agonistic effects on the β2
adrenergic and muscarinic-2 receptors [51]. Dubuis et al. further demonstrated that
patients with longstanding CRPS have serum antibodies directed against α1a receptors [52].
These findings support the theory of autoimmune pathophysiology in CRPS and highlight
the potential benefits of intravenous immunoglobulin and plasma exchange therapy for
these patients, which are discussed below.

3.1.4. Role of Patient Education

Patients should be educated on two key factors that significantly improve outcomes in
CRPS: psychological management and physiotherapy. Effective psychological management,
such as addressing stress, anxiety, and anger, plays a crucial role in controlling chronic
pain [56]. Early physical therapy is essential to maintain the range of motion in the affected
limb. Engaging in a tolerable range of motion exercises can help alleviate symptoms and
prevent further damage or contractures. It is vital to educate patients on the impact of these
interventions for effective treatment, which will be explored in more detail below.

Psychological issues such as persistent life stress, generalized anxiety disorder, post-
traumatic stress disorder (PTSD) [57], major depression, and panic disorders are commonly
seen in CRPS patients [58]. Research by Brinker et al. found that CRPS patients expe-
rience higher rates of depression compared to the general population [59]. Similarly,
Bruehl et al. [56] showed that anger regulation significantly impacts chronic pain intensity,
suggesting that managing behavioral anger can reduce pain. Additionally, stressful events
such as stroke [60] and brain injury [61] may trigger CRPS, particularly in patients with
pre-existing psychiatric conditions [62].

Physiotherapy offers significant benefits for CRPS patients, regardless of symptom
duration. Both early- and late-stage patients show similar improvements with rehabil-
itation [63]. Early mobilization is essential for achieving better outcomes through pain
control and physical therapy [64,65]. The mechanisms through which exercise aids CRPS
include remodeling of abnormal brain structures, reduction of sensitization, reorganization
of central and peripheral nervous system activity, modulation of vasodilation, adrenaline
levels, endogenous opioid release, and increased anti-inflammatory cytokines [66]. Thus,
physiotherapy should begin as early as possible, with evidence supporting the effectiveness
of combined physiotherapy and rehabilitation interventions [67].

4. Future Treatment Options for CRPS
4.1. NMDA Receptor Antagonist (Ketamine)
4.1.1. Overview and Mechanism of Action

There is moderate evidence suggesting that ketamine infusions can provide pain relief
for up to 12 weeks in patients with CRPS [68]. Research indicates that NMDA receptors
and glial cells in the central nervous system (CNS) are involved in the pathophysiology of
CRPS. The activation of NMDA receptors and glial cells plays a significant role in central
sensitization, resulting in hyperalgesia, allodynia, and chronic neuropathic pain [19,20].
Therefore, blocking NMDA receptors could play an important role in the treatment of
central sensitization and neuropathic pain in CRPS [19,20]. Ketamine is one of the clinically
available NMDA antagonists with non-competitive NMDA receptor-blocking properties
and presents a promising treatment option for chronic neuropathic pain [68–70].

4.1.2. Role in Central Sensitization and Pain Relief

The activation and upregulation of dorsal horn excitatory NMDA receptors play a vital
role in neuropathic pain developing hyperalgesia and allodynia [69]. Increased excitability
of dorsal horn neurons amplifies nociceptive input to the CNS, a hallmark of central
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sensitization [71]. The analgesic effects of ketamine are mainly due to its ability to block
NMDA receptors and downregulate heightened NMDA receptor activity in the CNS [70].
This NMDA receptor antagonism produces analgesia and prevents central sensitization
in dorsal horn neurons [72] by reducing the temporal summation of pain and modulating
antinociception [73]. Even low doses of ketamine can offer potent analgesia in neuropathic
pain states, primarily by inhibiting the NMDA receptor. Additional mechanisms may also
contribute to pain relief, including the enhancement of descending inhibitory pathways
and anti-inflammatory effects at central sites [70]. However, ketamine treatment may lead
to adverse effects, such as psychedelic symptoms (e.g., hallucinations, memory defects,
and panic attacks), nausea, vomiting, somnolence, cardiovascular stimulation, and, in a
minority of cases, hepatotoxicity [70].

4.1.3. Administration Routes and Bioavailability

The administration of ketamine can occur through various routes: oral, topical, or
parenteral (intramuscular or intravenous). The bioavailability of ketamine when taken
orally is variable, which limits its effectiveness via the enteral route [74]. When administered
orally, ketamine experiences decreased bioavailability due to hepatic metabolism [74]. It
undergoes substantial first-pass metabolism, with an oral bioavailability of only 17–29% [69].
Therefore, parenteral administration is preferred in clinical settings.

However, there are off-label uses for transdermal (topical creams) and transmucosal
(intranasal spray and sublingual drops/troches) formulations of ketamine, which can be
compounded to treat neuropathic pain and complex regional pain syndrome (CRPS). These
routes, particularly intranasal and sublingual, may bypass liver metabolism and, therefore,
may be more effective than oral administration. Due to its lipid and water solubility,
ketamine can also be administered intravenously, intramuscularly, and subcutaneously [75].
Research involving animals has shown that intrathecal administration of ketamine can be
toxic to the spinal cord [76].

4.1.4. Clinical Evidence of Ketamine’s Effectiveness

Many studies emphasize the effectiveness of ketamine in treating CRPS. Some studies
suggest that higher total infused doses of ketamine, along with prolonged infusion, are
associated with an increased duration of relief from neuropathic pain [77,78]. One meta-
analysis indicated that ketamine may effectively relieve pain for up to 12 weeks after the
initiation of treatment [79].

Another meta-analysis indicated a modest yet statistically significant reduction in the
incidence of chronic pain following surgery when ketamine was used [80]. Gorlin’s review
highlighted that ketamine could blunt central pain sensitization and improve pain scores
at sub-anesthetic doses (0.3 mg/kg or less). This improvement in pain with ketamine also
leads to reduced opioid consumption during perioperatively [81].

In a study involving 48 CRPS patients with refractory pain, Mangnus et al. reported
that low-dose intravenous S-ketamine infusion provided effective pain relief [82]. The
researchers noted that responder patients experienced pain relief within two days. They
suggested a median effective dose of S-ketamine of 6 mg/h. According to their findings,
approximately half of the patients remained responders around four weeks post-infusion.

In a double-blind, randomized, placebo-controlled study, Sigtermans et al. [83] investi-
gated the effects of low-dose ketamine infusion in sixty patients with CRPS experiencing
severe pain. The treatment lasted for four days, and at the 12-week follow-up, the pain
scores in the ketamine group were significantly lower than in the placebo group. How-
ever, no functional improvement was noted. Mild to moderate psychomimetic side effects
occurred during the ketamine infusion, but these were deemed acceptable by most patients.
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Another study by Schwartzman et al. examined the effects of intravenous ketamine
infusion in CRPS patients in an outpatient setting [84]. Patients received either intravenous
ketamine or normal saline over four hours daily for ten days, with a maximum infusion
rate of 0.35 mg/kg/h. The results indicated that intravenous ketamine administration led
to statistically significant reductions in various pain parameters.

In a case series, Schwartzman et al. also reported the benefits of ketamine for severe
refractory CRPS patients undergoing surgical procedures. In a sample of twenty-five
patients, ketamine was used as adjunctive anesthesia in combination with clonidine and
midazolam. Notably, none of the patients experienced worsening CRPS symptoms, nor did
the syndrome spread to other areas [85].

Finch et al. aimed to investigate the effects of topical ketamine in twenty subjects
suffering from CRPS [86]. They sought to demonstrate the potential benefits of topical
ketamine treatment, which might minimize undesirable side effects. The application
of ketamine to the symptomatic limb effectively inhibited allodynia and hyperalgesia,
highlighting the promising effects of topical ketamine.

Corell et al. studied the effects of low-dose ketamine infusion in patients with
CRPS [87]. In a retrospective analysis involving 33 CRPS patients undergoing ketamine
treatment (initially at 10 mg/h and escalating to 15–50 mg/h), it was found that 12 patients
required a second course of treatment, while two patients needed a third course due to a
relapse of symptoms. The authors reported that 25 patients (76%) experienced complete
pain relief, six patients (18%) had partial relief, and two patients (6%) reported no relief.
The study suggested that low-dose ketamine infusion might be beneficial for managing
intolerable CRPS when conventional treatment options fail.

Everett et al. indicated that both central and peripheral sensitization, alongside
autonomic dysregulation, contribute to the pathogenesis of CRPS. They recommend more
aggressive treatment protocols that address both peripheral and central components of the
condition [88]. Their case report highlighted a synergistic effect of combining a continuous
peripheral nerve block with parenteral ketamine, which led to a complete and rapid
resolution of the patient’s pain and symptoms. Additionally, ketamine can serve as an
adjunct to sympathetic block to alleviate allodynia symptoms in CRPS patients with nerve
injury [89].

4.1.5. Side Effects and Safety Concerns

The primary concern with ketamine treatment is its side effects, which can include
nausea, vomiting, elevated blood pressure, psychomimetic effects, nystagmus, and double
vision. The incidence of these side effects is lower at sub-anesthetic doses. Previous
experiences suggest that a bolus dose of less than 0.5 mg/kg is unlikely to cause significant
psychomimetic side effects. Similarly, ketamine infusions at 0.12–0.2 mg/kg/h over a
24–72 h period have been shown not to increase the incidence of psychomimetic problems
significantly [81].

Additionally, to mitigate these side effects, it is suggested to use premedication either
before or during the infusion, which may include clonidine, midazolam, and antiemetic
medications [90]. Villanueva-Perez et al. proposed that off-label oral administration of
ketamine could reduce side effects compared to the parenteral route [91].

Another concern regarding ketamine use in patients with CRPS is the potential accu-
mulation of the drug or its metabolites in individuals with renal and hepatic dysfunction.
Liver toxicity has been observed in ketamine abusers [92], and thus, renal and hepatic
dysfunction may be considered relative contraindications for its use [81]. Additionally,
long-term frequent administration of ketamine is associated with short- and long-term
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memory loss, urinary tract symptoms (known as ‘ketamine-induced vesicopathy’), transient
elevation of liver enzymes, and potential dependence [93].

Ketamine is an anesthetic agent that should be administered under the supervision of
trained anesthesia personnel, ensuring full monitoring of electrocardiogram (ECG), blood
pressure, pulse oximetry, and respiration status [74].

4.1.6. Relative Contraindications

Ketamine infusion may not be suitable for certain patients. Relative contraindications
can be specified as follows [77,81]:

1. Poorly controlled cardiovascular disease and uncontrolled hypertension
2. Severe hepatic disease (avoid) and moderate hepatic disease (use caution)
3. Recent liver transplantation
4. Elevated intracranial pressure
5. Elevated intraocular pressure
6. Eye injuries
7. Active psychiatric issues
8. Active substance abuse
9. Sympathomimetic syndrome
10. Porphyria
11. Pregnancy

4.1.7. Need for Further Research

Ketamine has demonstrated rapid-acting antidepressant effects, making it a valuable
option for addressing both pain and depression simultaneously [94]. The S-enantiomer of
ketamine, referred to as S-ketamine, is approved for treating depression [95]. However, it is
not currently approved for the treatment of neuropathic pain or CRPS.

In the U.S., the S-enantiomer is available as an intranasal treatment for depression [96],
and has a potency that is four times greater than the R-enantiomer and twice that of the
combination of both enantiomers [72].

Based on the current understanding of the pathophysiology of CRPS, ketamine shows
promise as a treatment. Although clinical studies have yielded positive results, the evidence
is primarily limited to small randomized controlled trials (RCTs) with varying patient popu-
lations, treatment durations, and administration routes. As such, ketamine for neuropathic
pain is still considered an experimental therapy [74,97]. Therefore, further high-quality
clinical evidence is necessary to conclusively determine the efficacy of ketamine in treating
chronic neuropathic pain [69].

4.2. Low-Dose Naltrexone
4.2.1. Overview of Low-Dose Naltrexone

Naltrexone is typically prescribed in daily doses of at least 50 mg for the management
of opioid and alcohol abuse [98]. However, when used to treat chronic neuropathic pain, the
dosage is significantly lower than doses typically used, hence the term low-dose naltrexone
(LDN). Recommended dosages for LDN in chronic pain treatment range from 1 mg to 5 mg
per day [98,99].

In a case report involving two patients with CRPS and dystonic movement disor-
ders, Chopra and Cooper [100] utilized low-dose naltrexone (LDN) to reduce glial cell
inflammation alongside other CRPS therapies. Both patients experienced remission of their
symptoms. Consequently, they suggested that LDN should be considered a treatment
option for CRPS patients, particularly those with dystonic movement disorders.
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4.2.2. Mechanism of Action and Toll-like Receptor 4 (TLR4)

Low-dose naltrexone (LDN) is a therapeutic strategy for managing neuropathic pain
through the regulation of glial cell function. The mechanism of LDN involves modulating
glial cells to reduce the release of inflammatory cytokines in the central nervous system [21].
In addition to activating NMDA receptors, glial cell activation plays a crucial role in central
neuroinflammation and neuropathic pain. It is known that low-dose naltrexone acts as
a glial attenuator [100]. Milligan and Watkins discussed the role of glial cells in chronic
pain [101]. In response to a stimulus, pro-inflammatory cytokines and chemokines are
released from astrocytes and microglia in the spinal cord, leading to glial cell activation.
Once activated, glial cells release more pro-inflammatory cytokines, which contribute to
the development of pathological pain by stimulating neurons in the pain-responsive area.

Toll-like receptor 4 (TLR4) receptors present in glial cells enhance the release of pro-
inflammatory cytokines in the central nervous system. LDN can block TLR4 signaling,
potentially preventing and reversing central neuroinflammation and neuropathic pain.
Therefore, TLR4 receptors may play a significant role in central sensitization, and LDN
inhibits neuroinflammation by antagonizing TLR4 receptors [100,101].

4.2.3. Advantages and Disadvantages of LDN Therapy

Since LDN remains an experimental therapy for CRPS, clinicians should carefully
consider the potential implications of its use. In their study, Younger et al. outlined the
advantages and disadvantages of this treatment as follows [102]:

Advantages of LDN

• Low cost
• Minimal side effects
• No known potential for abuse

Disadvantages of LDN

• Self-Dosing Issues: LDN is not commercially available in the ideal 1.5–4.5 mg dosage
for chronic pain management. As a result, patients often resort to self-preparation
methods, such as splitting 50 mg tablets or creating liquid doses, which can lead to
dosing inconsistencies. Although this inconsistency poses a minimal risk of overdose,
self-dosing is suboptimal and raises concerns about the efficacy of the treatment.

• There is insufficient concrete evidence regarding the long-term safety of LDN.

4.2.4. Special Considerations: Interaction with Opioids

It is important to note that LDN treatment may influence the effectiveness of opioid
medication used for anesthesia and analgesia. Clinicians should be mindful to discontinue
LDN treatment at least 24 to 36 h prior to any planned surgery to avoid interference with
the efficacy of opioid medications [103].

4.3. Immune and Glial Modulating Agents

Immune cells and glial cells interact with neurons to influence pain sensitivity and
contribute to the transition from acute to chronic pain [104]. Together, they create a network
that coordinates immune responses and regulates the excitability of pain pathways. The
immune system also helps to reduce sensitization by producing analgesic, anti-inflammatory,
and pro-resolution agents [104]. Therefore, the roles of the immune system and glial cells in
pain processing and modulation highlight potential targets for advanced treatment of CRPS.
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4.3.1. Overview of Glial Cells in Neuroinflammation

Glial cells are widely distributed throughout the nervous system, interacting with neu-
rons, immune cells, and blood vessels. Glial cells in the CNS are integral to various neuronal
functions and play a crucial role in regulating pain signal processing [105]. Additionally,
they play a crucial role in the development of neuroinflammation [11]. Thus, microglial
inhibitors present a promising antinociceptive approach by suppressing pro-inflammatory
cytokine signaling. Modulating microglial activation through alterations in intracellular
pathways enhances the expression of anti-inflammatory factors, thereby influencing the
development and progression of neuropathic pain [106].

In detail, glial cells create a functional microenvironment that modulates signal trans-
duction, neuroplasticity, and synaptic pruning [107]. In response to nerve injury, significant
changes occur in the morphology, concentration, cellular signaling, receptor regulation,
and mediator release of glial cells [108]. During the onset of neuropathic pain, there is
well-documented uncontrolled activation of microglial cells, along with the presence of
proinflammatory cytokines in the central nervous system (CNS) and complement compo-
nents at the site of nerve injury. The activation of microglial cells results in the release of
proinflammatory mediators and cytokines, which activate immune cells [109–113] and may
lead to a generalized immune response [114]. Given this understanding, new treatment
options targeting the reduction of microglial activity and immune response may provide
alternative approaches for managing persistent neuropathic pain.

4.3.2. Mechanism of Action of Glial-Modulating Agents

Targeting glial cells to reduce neuroinflammation has emerged as a promising ap-
proach for managing chronic neuropathic pain, particularly in CRPS. Various agents, such
as fluoro-citrate [115], propentofylline [116,117], minocycline [118–122], and teriflunomide,
have shown efficacy in suppressing glial activation and reducing proinflammatory cytokine
release [110,111,123].

Glial modulating agents provide antinociceptive effects through multiple mecha-
nisms, including disrupting glial activation, inhibiting pro-inflammatory cytokine synthe-
sis, blocking pro-inflammatory cytokine signaling, and antagonizing pro-inflammatory
cytokines [106,110,121,124].

4.3.3. Promising Glial Activation Inhibitors

The glial activation inhibitors ibudilast and propentofylline show promise as treat-
ments for CRPS due to their antinociceptive effects. Both drugs have beneficial effects on
neurons and glial cells, but they operate through different mechanisms to reduce increased
glial activation [125]. Ibudilast acts as a toll-like receptor 4 (TLR4) signaling inhibitor [125]
while propentofylline inhibits the synthesis of proinflammatory cytokines [126]. Both drugs
are well tolerated, can cross the blood–brain barrier, and can be taken orally [118,125]. They
have been shown to reduce glial activation and alleviate pain symptoms in animal models
of neuropathic pain, effectively reversing allodynia [127].

Ibudilast: Ibudilast is a non-selective phosphodiesterase inhibitor that decreases
chronic neuropathic pain by suppressing activated microglia [118,128]. Animal studies
suggest that ibudilast can inhibit persistent allodynia, indicating that it may have beneficial
effects on chronic neuropathic pain resulting from both peripheral and central nerve
damage [128,129].

Propentofylline: Propentofylline is a powerful inhibitor of cyclic adenosine monophos-
phate (cAMP) and phosphodiesterases, exhibiting significant neuroprotective, antiprolif-
erative, and anti-inflammatory effects [116]. Due to its extensive protective properties,
propentofylline has therapeutic benefits for various chronic pain syndromes, addressing
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not only neuropathic pain but also the modulation of presynaptic and postsynaptic neurons,
astrocytes, and microglia. Possible mechanisms of action for propentofylline include direct
modulation of glial cells to reduce their reactive phenotype, decreasing the production
and release of harmful pro-inflammatory factors by glial cells, and enhancing the clear-
ance of glutamate by astrocytes [116]. Moreover, propentofylline can proactively reduce
the onset of nerve injury-induced allodynia by inhibiting the activation of astrocytes and
microglia [117]. In a preclinical model of neuropathic pain, daily systemic or intrathecal ad-
ministration of propentofylline, when initiated before nerve injury, successfully prevented
the development of mechanical allodynia [116].

Minocycline: Minocycline, a selective inhibitor of microglial activation, may alleviate
the development of mechanical allodynia and thermal hyperalgesia; however, it does not
impact existing cases of allodynia and hyperalgesia [118,119].

4.3.4. Implications for CRPS and Opioid Interaction

In CRPS, glial cells can become further activated due to repeated administration
of opioids [130], which may increase neuropathic pain intensity. Although opioids can
be considered for short-term use to manage pain and facilitate participation in physical
therapy during the early stages of CRPS, their long-term chronic use is not advisable.
Studies involving glial activation inhibitors, such as fluorocitrate, minocycline, or ibudilast,
have shown that these medications can enhance the analgesic effects of opioids [131–134].
Additionally, research indicates that they may help reduce the risk of opioid abuse by
decreasing cravings [134].

Some glial inhibitors have the potential to serve as future therapeutic agents for treat-
ing neuropathic pain. Studies suggest that these agents may also help prevent tolerance to
opioid analgesia [134]. In a review article, Mika explored the possibility of enhancing mor-
phine analgesia by modulating glial cells and neuroimmune activation. These promising
agents could also prevent tolerance to morphine when used regularly [123].

4.3.5. Cytokine Modulation for Neuropathic Pain Relief

The activation of microglial cells disrupts the balance between pro-inflammatory and
anti-inflammatory agents [110]. Pro-inflammatory cytokines, such as tumor necrosis factor
(TNF), interleukin-1 (IL-1), and IL-6, released by glial cells, play a crucial role in exacerbating
pain by activating the release of neuroexcitatory substances [135]. Consequently, these
cytokines facilitate central sensitization. In contrast, anti-inflammatory cytokines, such as
IL-10, can alleviate allodynia and hyperalgesia by suppressing the production and activity
of TNF-alpha, IL-1 beta, and IL-6 [123,125]. Agents such as propentofylline, fluorocitrate,
and minocycline can suppress the development of neuropathic pain by reducing microglial
activation and inhibiting pro-inflammatory cytokines [123]. Additionally, blocking the
actions of pro-inflammatory cytokines enhances the effectiveness of opioid analgesia [125].

Experimental Immunomodulatory Treatments:

1. Recombinant IL-10 (rIL-10): Intrathecal administration of recombinant IL-10 (rIL-10)
was investigated for its potential anti-allodynic effects during the acute stage of CRPS
using a rodent model [136]. The results showed that rIL-10 helps alleviate mechanical
allodynia by modulating microglial activation in this early phase of CRPS. However,
the researchers noted that while intrathecal rIL-10 can reduce allodynia in the acute
stage, it does not prevent progression to the chronic stage of CRPS.

2. TNF-α Antagonists: TNFα, a pro-inflammatory cytokine, is elevated in CRPS-affected
tissues. Anti-TNF agents such as infliximab and adalimumab may help treat CRPS
but carry risks of severe infections [137,138]. The potential use of infliximab was
first reported in a case series involving two CRPS patients [139]. In a small study
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focusing on early intervention with a TNF-α antagonist (infliximab) to combat in-
flammation, the researchers identified a promising trend in reducing initially high
TNF-α concentrations in patients with neuroinflammation during acute CRPS [140].
They suggested that infliximab could be a treatment option for patients experiencing
regional inflammation at this early stage of CRPS. Additionally, a clinical case series
reported that another TNF-α antagonist, adalimumab, may also be valuable for CRPS
patients [141]. This study on adalimumab reported that 3 out of 10 CRPS patients
experienced a ≥2-point pain reduction at a 6-month follow-up. However, the potential
costs and side effects of this therapy must be taken into account. Side effects may
include injection site reactions, infusion reactions, neutropenia, and infections [138].

Currently, immunomodulatory agents are being considered as viable options for
reducing pain, disability, and other ramifications of CRPS, particularly when patients do
not respond to more conservative treatments [17].

4.4. Alpha-Adrenergic Modulators

Research indicates an upregulation of α-adrenergic receptors in the skin of CRPS pa-
tients, where activation of these receptors promotes increased noradrenaline release; this, in
turn, overstimulates nociceptive fibers, leading to pain and hyperalgesia [22]. Targeting α1
and α2 adrenoreceptors presents a promising approach to addressing adrenergic sensitivity
and its role in pain and inflammation.

Studies have shown that individuals with CRPS may have increased sympathetic
activity. In a recent study, findings indicate that elevated IL-6 levels may trigger α1
adrenoreceptor expression in CRPS peripheral blood mononuclear cells. These researchers
suggested that a reciprocal relationship between increased α1 adrenoreceptor expression in
peripheral blood mononuclear cells and IL-6 secretion could contribute to systemic inflam-
mation and antibody production in CRPS [142]. Research on animals has demonstrated
that mechanical hypersensitivity is increased through adrenergic stimulation of α1 and/or
α2 adrenoreceptors in the presence of neural inflammation [143–145]. Studies of patients
with CRPS have revealed that areas of hypersensitivity exhibit a high density of α1 adreno-
ceptors, and the presence of adrenergic agonists leads to increased pain [146,147]. The
α1 adrenoceptors, which are extensively expressed in immune cells, contribute to chronic
inflammation and pain in CRPS [148]. This information can help guide treatment options
for clinicians by utilizing α1 adrenergic antagonists [149,150], α2 adrenergic agonists [151],
and sympathetic nerve blockade to block the sympathetic outflow.

4.4.1. Alpha-Adrenergic Agonists

Alpha-adrenergic agonists have gained popularity due to their ability to reduce depen-
dence on opioids while providing analgesia. Clonidine, dexmedetomidine, and adenosine
function by acting on alpha-adrenergic receptors.

The primary site of their antinociceptive effect is the spinal dorsal horn. Therefore, they
can produce antinociception following systemic administration or neuraxial application
(epidural or intrathecal) to the spinal cord [152]. Alpha-adrenergic agonists mitigate sym-
pathetic activity by mimicking the inhibitory action of the neurotransmitter norepinephrine
and blocking preganglionic sympathetic neurons, which in turn decreases sympathetic
efferent activity. Therefore, they are particularly effective in treating pain conditions char-
acterized by heightened sympathetic nervous system activity, such as CRPS [151].

• Clonidine:

Clonidine can provide antinociceptive effects at various levels of pain transmission.
In addition to neuraxial administration for pain management, clonidine has been studied
through other routes, including oral, transdermal, and intravenous [153–156]. When
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added to local anesthetic solutions, clonidine demonstrates superior analgesic properties
compared to local anesthetics alone in peripheral nerve blocks, as well as during spinal
and epidural blocks [154].

Despite its significant pain-relieving effects, the systemic administration of clonidine
can be limited by centrally mediated side effects, such as sedation, bradycardia, hypoten-
sion, and rebound hypertension. Topical administration may be preferred to avoid these
central effects, as α2 adrenoceptors are present on both peripheral and central terminals of
nociceptive fibers. Topical application of clonidine can help relieve hyperalgesia caused by
sympathetically maintained pain [151].

• Dexmedetomidine:

Dexmedetomidine is a highly selective and potent α2 adrenergic receptor agonist,
with an α2:α1 ratio of 1620:1. Its analgesic effects are thought to be mediated through
binding to central and spinal cord α2 receptors [157]. The mechanism of action likely
involves the activation of inhibitory G proteins and the nitric oxide cGMP (cyclic guanosine
monophosphate) pathway, which produces effects consistent with agonist action on G
protein-coupled receptors. In addition to its potent analgesic properties, dexmedetomidine
is also approved as a sedative agent [158].

The advantages of dexmedetomidine for managing pain in perioperative patients can
be discussed in two main categories:

1. Opioid-Sparing Effect: Dexmedetomidine has an opioid-sparing effect, which may
help reduce the required dosage of opioids. This is particularly beneficial for patients
who are at risk for postoperative nausea, vomiting, or respiratory depression [157]. A
meta-analysis by Peng et al. compared the use of opioid–dexmedetomidine combi-
nations to opioids alone for intravenous patient-controlled analgesia (IV PCA). The
findings indicated that this combination is both safe and effective, making it a viable
option for postoperative IV PCA [159].

2. Adjuvant for Nerve Blocks: Research indicates that dexmedetomidine can be used
as an adjuvant to enhance the duration of spinal or peripheral nerve blocks. A meta-
analysis conducted by Abdallah et al. showed that intravenous dexmedetomidine can
prolong both the sensory and motor blocks, as well as extend the time until the first
analgesic is needed following spinal anesthesia [160].

Another meta-analysis assessed the efficacy and safety of neuraxial dexmedetomidine
as a local anesthetic adjuvant, finding it to be a favorable option that provides better and
longer-lasting analgesia, although there is a concern regarding the risk of bradycardia [161].

Furthermore, dexmedetomidine positively influences spinal or peripheral blocks
through both intravenous and neuraxial administration. However, the primary concern
associated with its use is bradycardia [157,161]. Hemodynamic changes can also occur,
including a biphasic blood pressure response, which consists of both hypertension and
hypotension. This response is caused by pre- and postsynaptic α2 receptor activation,
leading to vasoconstriction, vasodilation, and reflex bradycardia [162].

4.4.2. Alpha-Adrenergic Antagonists

In CRPS, involvement of the sympathetic nervous system leads to symptoms such as
sympathetically maintained pain, abnormal sweating, and cool skin [148]. Sympathetic
arousal can result in pain and hyperalgesia due to increased adrenergic sensitivity in
nociceptive afferents [163]. To address the pain caused by an overactive sympathetic
system, alpha-adrenergic antagonists may be beneficial. These include medications such
as prazosin (1 to 6 mg/day) and phenoxybenzamine (10 to 30 mg/day) [149]. In a case
series, the oral administration of phenoxybenzamine was evaluated for treating pain in
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CRPS [150]. Three out of four patients reported significant relief following treatment. The
authors hypothesized that the irreversible blockade of alpha-adrenergic receptors, which
are often increased in number, may help reduce the overstimulation of these receptors,
thereby preventing hyperalgesia.

Another option for an alpha-adrenergic antagonist is phentolamine; however, its high
cost and intravenous administration method limit its use [58]. While numerous alpha-
adrenoceptor blockers have been explored for managing sympathetically maintained pain,
a review by Casale et al. indicated that phentolamine, at a dosage of 1 mg/kg/day, is the
only drug that is clinically effective for this purpose [164]. The primary concern associated
with alpha-adrenergic antagonists is the risk of hypotension. Additional side effects may
include tachycardia, nausea, vomiting, headache, and dizziness, which, unfortunately,
contribute to the limited use of these agents in managing CRPS.

4.5. IV Immunoglobulin Therapies and Plasma Exchange Therapy
4.5.1. IVIG Therapies

The role of intravenous immunoglobulin (IVIG) in treating complex regional pain
syndrome (CRPS) is not fully understood, and the mechanisms through which IVIG may
alleviate pain remain an area of active investigation. Potential mechanisms include the
following [165]:

• Elimination of pro-inflammatory cytokines
• Increased breakdown of harmful autoantibodies
• Anti-inflammatory actions
• Downregulation of autoantibody production in B cells
• Inhibition of cytotoxic T cells

However, studies on IVIG in CRPS patients have produced mixed results. For instance,
a prospective study by Goebel et al., which involved 12 participants, suggested that low-
dose IVIG (0.5 g/kg) could improve pain in patients with refractory CRPS [166]. Following
these promising results, Goebel initiated a larger multicenter prospective, double-blind
study involving 111 CRPS patients to investigate further the efficacy of low-dose IVIG
(0.5 g/kg) [15]. Contrary to expectations, this larger study found that low-dose IVIG was
ineffective in patients with moderate to severe CRPS. Given the conflicting data and high
costs associated with IVIG treatment, further research is necessary. Future studies should
be designed to understand the treatment’s effectiveness better and to determine the optimal
dosage and duration of IVIG therapy.

4.5.2. Plasma Exchange Therapies

Plasma exchange (PE) therapy has emerged as a potential treatment for CRPS, par-
ticularly in cases where autoimmune mechanisms are suspected to play a role. Some
researchers have explored its benefits, particularly in patients with small fiber neuropathy
associated with CRPS [167].

Aradillas et al. studied the effects of PE therapy in CRPS patients with small fiber
neuropathy [167]. In a retrospective evaluation involving 33 CRPS patients, the results
showed that 30 of these patients experienced significant pain reduction, with a median
decrease of 64%. However, three patients did not respond to the treatment and showed
no improvement. Of the 30 patients who reported pain relief, 24 continued with weekly
maintenance therapy, which included either PE (15 patients), oral immune-modulating
agents (eight patients), or intravenous immunoglobulin (IVIG) for one patient. It was noted
that pain levels returned to pre-treatment levels in six patients who did not continue with
maintenance therapy. Based on these positive findings, Aradillas suggested that PE could
be an effective treatment option for patients with severe, long-standing CRPS.
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Despite these promising findings, the current evidence for PE therapy in CRPS is
primarily based on retrospective studies, and more prospective research is needed to
understand the mechanisms and effectiveness of PE in this context.

Additionally, several case reports suggest that PE may assist in managing CRPS
symptoms. For instance, in a refractory case involving a 14-year-old patient with CRPS
and dysautonomia, the presence of serum anti-β2-adrenergic and muscarinic M2 receptor
autoantibodies was observed. This patient achieved long-term remission following periodic
PE treatment combined with immunosuppression [168]. Another case report described two
CRPS patients with β2 adrenergic receptor autoantibodies who also showed substantial
improvement in pain and autonomic symptoms after receiving PE therapy [169].

Beyond pain relief, PE may offer additional advantages, such as improving mood.
Goebel et al. suggested that PE might be beneficial for patients with long-standing CRPS,
not only for alleviating pain but also for enhancing mood, as serum factors that contribute
to low mood and fatigue could be managed by PE [170]. Thus, PE might also aid in
enhancing their overall mood.

4.6. Neuromodulation Techniques

There is an increasing body of evidence supporting the role of neuroinflammation
in the pathophysiology of complex regional pain syndrome (CRPS). Minimally invasive
techniques that may have immunomodulatory effects, such as neurostimulation methods,
offer new therapeutic options. Neuroinflammation is a compelling reason to consider
neurostimulation techniques for managing pain in CRPS patients [171].

Spinal cord neurostimulation techniques are based on the gate control theory, which
Melzack and Wall described in 1965 [172]. The dorsal horn of the spinal cord plays a crucial
role in regulating pain signals during their transmission between the peripheral and central
nervous systems [173]. The main concept behind neurostimulation is to deliver electrical
stimulation to the dorsal column, effectively masking the pain sensation by simultaneously
blocking smaller C and A-delta nerve fibers [174].

Spinal cord stimulation (SCS) refers to the neurostimulation and inhibition of noci-
ceptive pathways at the level of the spinal cord’s dorsal column. In contrast, dorsal root
ganglia (DRG) neurostimulation targets the dorsal root ganglia themselves [174]. Peripheral
nerve stimulation (PNS) is a less invasive technique for treating peripheral nerves [175].
Additionally, repetitive transcranial magnetic stimulation (rTMS) is a new, noninvasive,
and promising approach for managing various painful conditions [176].

4.6.1. Peripheral Nerve Stimulation (PNS)

Among the minimally invasive techniques available for pain management, peripheral
nerve stimulation (PNS) is recognized as one of the easiest and safest options. PNS effec-
tively uses electrical currents to target peripheral myelinated nerve fibers with the goal of
reducing synaptic currents [175]. The sciatic and femoral nerves are most targeted, particu-
larly in cases of post-amputation pain and CRPS [177]. The evidence for lower limb PNS
ranges from levels II to V (according to the Oxford Centre for Evidence), demonstrating
positive outcomes in terms of pain reduction, opioid use, and improved quality of life [177].

The advantages of PNS include its reversibility, testability, adjustability, and low
invasiveness, making it a preferable choice for pain management in patients with medically
refractory conditions. PNS also provides several advantages over SCS, including a lower
risk of infection, minimal impact on physical movement, cost efficiency, less invasiveness,
longer placement duration, and avoidance of risks associated with central nervous system
injury [178].
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PNS stimulators are categorized into two types: temporary (lasting up to 60 days)
and permanent systems. These devices use leads to deliver electrical currents that target
the afferent nerve fibers in the area affected by pain. The leads should be positioned
approximately 0.3 to 0.5 cm from the identified nerve for optimal effectiveness [177].
Therefore, a thorough understanding of the peripheral nervous system and its innervation
of various body regions is crucial for successful PNS treatment. The effectiveness of the
treatment relies on accurately stimulating the targeted nerve [179]. Effective lead placement
requires either fluoroscopy or ultrasound for percutaneous techniques, while surgical skill
is vital for open dissection and implantation [179].

Like other neuromodulation techniques, a thorough psychological evaluation and trial
period results are essential when considering PNS implantation for patients with medically
refractory conditions [180].

Clinical Evidence Supporting PNS for CRPS

Several studies and case reports demonstrate the effectiveness of PNS in managing
pain in CRPS patients:

Mirone and Monti reported two cases demonstrating the efficacy of PNS for CRPS
pain, with long-lasting positive outcomes. In a case report by Mirone et al., the median
nerve PNS was applied to a patient suffering from iatrogenic CRPS whose visual analog
scale (VAS) score ranged from 8 to 10 [181]. After undergoing PNS treatment, the patient
experienced significant pain relief, with VAS scores dropping to 1 or 2 out of 10. Remarkably,
even 36 months after the procedure, the patient continued to report effective pain relief
without the need for additional treatments [182].

PNS of the brachial plexus for chronic refractory CRPS pain of the upper limb was stud-
ied in a case series. Frederico et al. aimed to capture full-limb CRPS with a single electrode
in a location that does not require spinal cord instrumentation [183]. Fourteen patients
considered refractory to optimized conservative treatment were recruited for the study.
After the trial follow-up period, ten patients had permanent implants. At the 12-month
follow-up, eight of the ten patients who underwent permanent device implantation showed
a pain reduction of 50% on the VAS scale, and two patients showed a 30% reduction in pain.
Their data suggest brachial plexus stimulation may help treat painful upper limb complex
regional pain syndrome. In a prospective study, Johnson et al. reported encouraging results
from the use of external noninvasive peripheral nerve stimulation (EN-PNS) for patients
with refractory neuropathic pain, including complex regional pain syndrome (CRPS) and
neuropathic pain following peripheral nerve injury [175]. In this study, the nerve stimula-
tion was tailored to the specific area of pain. Each patient received 10 min of stimulation
at a frequency of 2 Hz with a pulse width of 0.1 milliseconds. These parameters—low
frequency and narrow pulse width—were chosen to generate a focused electrical field with
high current density, promoting selective activation of the peripheral nerves. Johnson et al.
found that the EN-PNS technique significantly benefited some patients, leading to improve-
ments in their quality of life and overall functionality. In the same study, it was indicated
that EN-PNS offers more precise and effective chronic pain management compared to the
more general approach of TENS (Transcutaneous Electrical Nerve Stimulation) according
to the following points [175];

• PNS techniques use a more focused, targeted stimulation close to the peripheral
nerves with higher current density (via low frequency and short pulse width), making
it particularly effective for chronic and neuropathic pain by inducing lasting changes
in pain pathways. This method targets myelinated fibers more selectively, leading to a
reduction in chronic pain by inducing long-term suppression of synaptic activity [175].
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• TENS provides pain relief by delivering diffuse stimulation to underlying tissues using
larger pads placed on the skin, resulting in a broader effect [175].

Several studies have explored the role of low-frequency electrical stimulation in
promoting axon growth and nerve regeneration, which could also contribute to pain relief
through PNS [184–189]. These studies collectively emphasize the involvement of both
spinal and supraspinal mechanisms in the therapeutic effects of PNS.

The quality of the studies is limited, offering only Level IV evidence regarding the use
of PNS in CRPS management. There is a need for more robust and well-designed studies
to strengthen the evidence base on this subject [189].

Long-Term Efficacy of PNS

In clinical practice, PNS is typically trialed for two to ten days, and if effective, a
permanent system is implanted. Chmiela et al. shared findings from three decades of
experience with peripheral nerve stimulation (PNS) implantation, covering the period from
1990 to 2017, in a cohort of 165 CRPS patients. Their study indicated that PNS provided
significant long-term relief, as evidenced by reduced visual analog scale (VAS) scores, lower
opioid consumption, and improved functional outcomes. Furthermore, the complication
rates associated with PNS were comparable to those reported for dorsal-column spinal
cord stimulation (SCS) [190].

There are several potential limitations to permanent systems, as listed below [191]:

• Permanent systems may not be suitable for all CRPS patients, especially younger
or highly active individuals, due to common complications such as lead migration,
infection, and implant site pain.

• Short trials may not be adequate for patients who exhibit delayed responses to treat-
ment. A prolonged 60-day PNS treatment can help identify delayed responders,
offering the potential for sustained pain relief and expanding access to effective
PNS therapy.

To address these limitations, a 60-day PNS system has been developed. This system
offers targeted pain relief without the need for a permanent implant, utilizing percuta-
neously placed leads connected to an external pulse generator, providing up to 60 days of
treatment [192]. Gutierrez et al. demonstrated the effectiveness of a 60-day percutaneous
PNS treatment in three patients with Type I CRPS affecting the foot [191]. The technique
focused on the tibial and common peroneal nerves and involved the following steps:

• Percutaneous Placement: Electrodes were inserted through the skin to stimulate the
peripheral nerves near the injury site.

• Targeted Nerve Stimulation: The approach aimed to modulate pain signals and en-
hance functionality by concentrating on the tibial and common peroneal nerves.

• Duration: Stimulation was delivered continuously over 60 days.

In this treatment, the leads were attached to an external pulse generator that was
programmed to deliver stimulation at a frequency of 100 Hz. Throughout the 60-day
treatment period, patients had the option to adjust the intensity of the stimulation. They
could select current amplitudes of up to 30 mA and pulse widths ranging from 10 to 200 µs.
All three patients reported significant pain relief and a resolution of autonomic symptoms
such as swelling, edema, and erythema. The relief was sustained for 8 to 10 months in
two patients and lasted 34 months in the third [191].

4.6.2. Spinal Cord Stimulation (SCS)

Spinal cord stimulation (SCS) is a neuromodulation technique that involves the de-
livery of electrical stimulation to the dorsal column via electrodes placed in the epidural
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space [193]. This stimulation works by inhibiting the sensation of pain, offering a promising
option for patients suffering from chronic neuropathic pain conditions such as complex
regional pain syndrome (CRPS).

Mechanism of Action

According to Sun et al. [194], SCS may modulate nociceptive processing in both
peripheral and central sensory systems through the following mechanisms:

1. Suppressing Ascending Nociceptive Signals: SCS helps reduce the transmission of
pain signals by enhancing the release of analgesic neurotransmitters such as GABA
and endocannabinoids in the spinal dorsal horn.

2. Enhancing Descending Inhibitory Pathways: By stimulating the release of neurotrans-
mitters such as noradrenaline, dopamine, and serotonin, SCS activates descending
inhibitory pathways that block pain signals at the spinal level.

3. Stimulating Supraspinal Brain Regions: SCS can modulate brain areas involved in
pain perception and emotional regulation, offering a broader impact on both physical
pain and its psychological effects.

In the same study, Sun noted that a deeper understanding of these mechanisms has
facilitated the clinical approval of SCS for treating peripheral neuropathic pain condi-
tions, including complex regional pain syndrome (CRPS) [194]. It is recommended that
CRPS patients who do not achieve an adequate response to conventional treatment within
12 to 16 weeks should be considered for a trial of SCS following the treatment algorithm [195].

Clinical SCS

After a trial period, a generator for electrical stimulation is implanted subcutaneously
for long-term therapy in chronic neuropathic pain syndromes, including failed back surgery
syndrome and complex regional pain syndrome (CRPS). Khabbass et al. found that patients
demonstrated notable improvements in health-related quality of life (HRQoL), which is
an important measure for evaluating the effectiveness of spinal cord stimulation (SCS) in
treating CRPS [196].

SCS has several advantages, including being a reversible and minimally invasive
approach to pain management. Additional benefits of this treatment include improved
mobility, reduced opioid use, and an overall enhancement in quality of life due to pain
relief [197]. However, spinal cord stimulation is primarily beneficial for CRPS patients
who do not respond to other traditional treatments due to its invasive nature. Harke et al.
proposed that SCS may serve as an alternative to pharmacological treatments in resistant
cases and can be offered to patients who are open to a more invasive treatment option [198].

Clinical Evidence and Outcomes

Numerous studies have demonstrated the efficacy of SCS for neuropathic pain. For
neuropathic limb pain, a positive outcome is achieved in 85% or more of cases [197].
Similarly, the use of SCS for CRPS is well documented, demonstrating benefits in reducing
pain, enhancing quality of life, and improving functional status [199–203]. Notably, its
therapeutic effects have been shown to persist even after 2 years of treatment in patients
with chronic CRPS I [199]. In cases of unilateral pain distribution, SCS tends to yield more
promising results compared to when the disease spreads to other regions of the body [204].
Combining SCS with other treatment modalities, such as physical therapy and medication
management, may lead to the best outcomes [197]. Achieving at least 50% pain relief one
week after the SCS therapy may be related to a higher probability of long-term treatment
success [205]. In a systematic review aimed at evaluating the effects of SCS on improving
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pain and quality of life in CRPS patients, Visnjevac et al. noted that SCS remains a favorable
and effective treatment modality with high-level evidence (1B+) [202].

According to Fontaine’s study presented at the 2021 International Meeting of the
French Society of Neurology, patients who underwent spinal cord stimulation (SCS) treat-
ment reported an average pain reduction of 3.5 points on the visual analog scale (VAS).
Furthermore, 36% of complex regional pain syndrome (CRPS) patients described them-
selves as ’very improved,’ and 95% expressed a willingness to undergo the procedure
again [206].

Limitations and Complications

Although SCS is commonly preferred for chronic neuropathic pain syndromes, this
technique has limitations in addressing pain in specific anatomical regions, which is often
seen in CRPS patients [207]. These limitations can contribute to unsuccessful SCS treatment
in individuals with CRPS. Dorsal root ganglia (DRG) stimulation has been developed as an
alternative neuromodulation technique for CRPS patients.

Potential complications of SCS include the following [208]:

• Epidural bleeding
• Epidural infection
• Post-dural puncture headaches
• Wound infection

These complications are rare but should be considered when evaluating SCS as a
treatment option.

Recommendations and Timing

Despite these strong endorsements, the NeuPSIG recommendations for neuropathic
pain by Dworkin et al. noted that no strong recommendations could be made due to the
lack of high-quality clinical trials. They provided a weak recommendation for SCS in CRPS
type 1 based on the available evidence regarding its efficacy and safety [209].

There is also a suggestion that when evaluating factors such as safety, efficacy, and
cost-effectiveness, SCS can be applied earlier in the treatment process, right after more
conservative therapies have failed, rather than being reserved as a last resort for CRPS [210].
Deer and Masone support this idea regarding the timing of SCS treatment. Early application
of SCS may enhance pain reduction and improve functional ability, which can, in turn, help
patients tolerate physical rehabilitation better and reduce muscle atrophy [204]. A recent
study suggests that SCS is an optimal alternative for patients with CRPS, recommending
its use promptly after the failure of conservative treatments [211].

4.6.3. Dorsal Root Ganglia Stimulation (DRG)

Dorsal root ganglia stimulation is an emerging and promising neuromodulation
technique for patients with refractory complex regional pain syndrome (CRPS). This method
involves delivering electrical stimulation directly to the dorsal root ganglion (DRG) rather
than to the dorsal column of the spinal cord. The DRG is a crucial area for pain perception,
as it contains the cell bodies of peripheral sensory nerves. Consequently, sensory afferent
pathways convey pain signals to the central nervous system through the dorsal root
ganglion. Therefore, stimulating the DRG may provide a more targeted approach to
addressing painful areas compared to spinal cord stimulation (SCS) [212].

Mechanisms of Action

By targeting the dorsal root ganglion, DRG stimulation aims to achieve the
following [212]:
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• Modulate pain signaling more directly at the site of pain transmission.
• Provide greater precision in addressing localized pain areas compared to the broader

stimulation of SCS.

Clinical Evidence

Several studies have demonstrated the efficacy of DRG stimulation for CRPS, offering
promising outcomes for patients with refractory pain.

ACCURATE Study (2017): In a prospective, multicenter, randomized trial, Deer
et al. studied 152 patients with complex regional pain syndrome and causalgia [207].
The researchers aimed to demonstrate the effectiveness of managing neuropathic pain
through dorsal root ganglion (DRG) stimulation. These patients were treated using either
neurostimulation of the DRG or spinal cord stimulation (SCS). The study compared short-
term and long-term outcomes (at 3 and 12 months) between the two treatment methods,
focusing on their efficacy, safety, and adverse events. In the short-term period of 3 months,
a greater percentage of patients in the DRG group achieved the desired treatment results
(≥50%) compared to those in the SCS group (81.2% vs. 55.7%). The authors noted that
DRG stimulation also contributed to improvements in quality of life and psychological
well-being, both in the short and long term. The findings suggested that DRG stimulation
may effectively alter pain signaling in the lower extremities. This could be attributed to
the more targeted coverage of painful areas provided by DRG stimulation, as it focuses on
specific dermatomes involved in pain transmission. In contrast, spinal cord stimulation
affects broader dermatomal areas in the dorsal column.

Van Buyten et al. (2017): In a prospective case series conducted by Van Buyten et al. [213],
dorsal root ganglion (DRG) stimulation was used as a treatment for eleven patients with
complex regional pain syndrome (CRPS). Out of these patients, eight experienced some degree
of pain relief and improvement in their functional abilities. Most of the patients reported
sustained pain relief and continued functional improvement by the twelfth month. Van
Buyten also noted that DRG stimulation might allow for more precise and consistent targeting
of painful areas compared to spinal cord stimulation (SCS).

Goebel et al. (2019): Goebel et al. proposed dorsal root ganglion (DRG) stimulation
as an alternative treatment to effectively target painful areas in certain clinical cases [214].
Their study focused on a patient with recurrent complex regional pain syndrome (CRPS) in
a previously amputated limb, which had been successfully managed with DRG stimulation.
The authors favored this treatment after previous attempts to alleviate pain with spinal
cord stimulation (SCS) had failed to cover the painful area adequately. Although there
is limited research on recurrent CRPS in amputated limbs, the researchers recommend
considering DRG stimulation even prior to any planned amputation for patients suffering
from CRPS pain, as well as for those experiencing CRPS recurrence post-amputation. The
goal is to ensure adequate pain coverage. Additionally, one study indicated that applying
sensory stimulation to nerve roots with a radiofrequency (RF) device could help identify
the specific DRG levels to target in cases of post-amputation pain syndrome [215].

This technique has the added benefit of significantly reducing pain levels and main-
taining these lower levels for up to 12 months in follow-up assessments, especially when
compared to SCS [207].

Ghosh and Gungor (2020): In a case series, Ghosh and Gungor [216] explored the
effectiveness of using dorsal root ganglion (DRG) stimulation alongside spinal cord stimu-
lation (SCS). They suggested that combining these two techniques could be beneficial for
patients with complex regional pain syndrome (CRPS). Initially, four CRPS patients were
implanted with SCS and reported some pain relief. However, they later indicated that the
coverage of painful areas was inadequate, leading to incomplete pain relief. As a result,
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these patients were also tested with DRG stimulation. After concurrently using both SCS
and DRG stimulation, all patients reported further improvement in their residual pain and
overall function. Ghosh and Gungor concluded that the combined treatment of these two
technologies might enhance pain relief and functional outcomes compared to using either
device alone.

Clinical Applications and Advantages

The effectiveness of DRG (dorsal root ganglion) stimulation has been widely recog-
nized in treating CRPS (complex regional pain syndrome) types I and II, demonstrating
better outcomes compared to spinal cord stimulation (SCS). It has received approval for use
at the T10 spinal level and lower [207,217]. However, more research is needed to evaluate
the use of DRG stimulation for managing upper extremity CRPS types I and II [207,217].

Limitations and Considerations

Although DRG stimulation has shown superior efficacy for CRPS compared to SCS,
there are limitations:

• Upper extremity CRPS: More research is needed to evaluate the effectiveness of
DRG stimulation for managing upper extremity CRPS, as its use has primarily been
validated for the lower extremities [207,217].

• Cost and access: As an emerging technology, access to DRG stimulation may be
limited, and treatment costs may be higher than those for SCS. The higher cost of DRG
is attributed to a higher conversion rate from trial to permanent implant and shorter
battery longevity [218].

4.6.4. Repetitive Transcranial Magnetic Stimulation (rTMS):

A new non-invasive clinical approach to managing CRPS is repetitive transcranial
magnetic stimulation (rTMS) [2]. The rTMS technique has shown promising results in
treating various pain conditions, including CRPS, neuropathic pain, central pain (such as
pain after a stroke or spinal cord injury), fibromyalgia, headaches, orofacial pain, phantom
pain, low back pain, and pelvic pain [176]. rTMS works by delivering brief magnetic pulses
to stimulate the brain cortex, which may induce changes in cortical excitability at the site of
stimulation [2,176]. Based on the limited studies available, rTMS may help reduce pain by
altering pain perception. However, research on the effects of rTMS specifically for CRPS
patients is scarce [176,219–221].

5. Controversial Therapies
5.1. Free Radical Scavengers

There are only a limited number of studies on free radical scavengers, which makes
it difficult to establish their effectiveness in managing CRPS [222–225]. To clarify their
benefits, further research is needed to determine how effective these treatments can be in
preventing and alleviating CRPS symptoms. However, topical DMSO (dimethyl sulfoxide)
and NAC (N-acetylcysteine) are considered low-risk treatment options. As a result, they
might be included in the treatment plans for CRPS patients, depending on whether they
have warm or cold CRPS type 1.

The symptoms of CRPS stem from an exaggerated inflammatory response linked to
the excessive production of toxic oxygen and hydroxyl free radicals. This leads to the
hypothesis that free radical scavengers, such as N-acetylcysteine (NAC), dimethyl sul-
foxide (DMSO), mannitol, and carnitine, may be beneficial in treating CRPS. A recent
study supporting the benefits of NAC found that it significantly reduced the risk of de-
veloping CRPS type 1 by lowering proinflammatory cytokines and oxidative stress. This
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suggests its potential as a preventive treatment and emphasizes the importance of early
intervention [226].

In a randomized, double-blind prospective study, Perez et al. compared the effects
of two free radical scavengers: a 50% DMSO cream and a 600 mg effervescent tablet of
NAC [222]. The research involved 146 cases studied over 24 months. The results indicated
that both DMSO and NAC are equally effective in treating CRPS type 1. However, their
effectiveness varies depending on the subtype of CRPS. DMSO treatment was found to
be more effective for patients with the warm subtype of CRPS type 1, while NAC was
preferred for those with the cold subtype.

Additionally, two separate studies on the efficacy of mannitol infusions for CRPS,
conducted by Perez [223] and Tan [224], found that mannitol does not provide significant
benefits for these patients.

5.2. Alpha-Lipoic Acid (ALA)

Alpha-lipoic acid (ALA) is an essential coenzyme involved in energy
production within mitochondria, and it possesses antioxidant and anti-inflammatory
properties [227–229], which are attributed to its ability to reduce oxidative stress and en-
hance both nerve conduction velocity and blood flow to the nerves. Studies in a mouse
model of complex regional pain syndrome type I (CRPS-I) have shown that repeated
administration of ALA can reduce nociception by decreasing oxidative stress and neuroin-
flammation [230]. In addition to its neuroprotective effects, ALA alleviates hyperalgesia,
making it a potential treatment option for conditions such as diabetic neuropathy [228]
and multiple sclerosis [231]. Its mechanism for alleviating neuropathic pain is largely due
to its antioxidant properties; ALA can neutralize various reactive oxygen species, inhibit
generators of these reactive molecules, and repair damage caused by oxidants [228,232].
Data suggest that ALA is well tolerated and can improve symptoms such as paresthesia,
numbness, sensory deficits, and muscle strength, in addition to alleviating neuropathic
pain. Its onset of action is reported to be relatively fast [228], and administration of ALA
has been associated with reduced neuropathic symptoms and an overall improved quality
of life [232].

Additionally, Joksimovic et al. evaluated the analgesic potential of ALA in a postsurgi-
cal pain model using rats [233]. Their results indicated that ALA is an effective analgesic
agent that alleviates both evoked postsurgical pain and spontaneous pain following surgery.
Consequently, Joksimovic suggested that ALA could provide adequate perioperative anal-
gesia and reduce the risk of hypersensitivity. Furthermore, ALA may help mitigate drug
addiction and tolerance associated with opioid overuse.

5.3. Dimethyl Fumarate (DMF)

Dimethyl fumarate (DMF) has been identified as a suitable alternative treatment for
several autoimmune diseases by downregulating immune responses. This includes its use
for conditions such as multiple sclerosis (MS) and psoriasis [234]. Additionally, DMF has
been studied for CRPS due to its strong antioxidant properties, which activate antioxidant
systems and suppress immune system activation [235]. Due to its antioxidant effects, it
has been used for the treatment of multiple sclerosis [236]. In an animal study involving a
limb fracture model, Guo et al. found that oral DMF treatment significantly helped prevent
nociceptive sensitization and reduced the accumulation of oxidative stress markers [235].
Their findings indicated that DMF could inhibit the development of pronociceptive serum
antibodies and diminish innate inflammatory responses.
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5.4. AMPK Activators—Metformin

Recent studies have focused on the antinociceptive effects of AMP-activated pro-
tein kinase (AMPK) activators, including metformin, in various painful conditions such
as nociceptive and neuropathic pain [237–240]. Metformin can exert its effects through
both AMPK-dependent and AMPK-independent mechanisms [241], with its antinocicep-
tive effects primarily mediated by the AMPK-dependent pathway. AMPK regulates the
nociceptive process through several cellular mechanisms, including protein translation,
the activity of other kinases, and mitochondrial metabolism. As a result, AMPK activa-
tors could influence nociceptive processing in both the central and peripheral nervous
systems [237,242,243]. Additionally, AMPK activators have been shown to decrease the
excitability of sensory neurons [242]. Metformin is a widely used and well-tolerated medi-
cation that acts as an AMPK activator. It inhibits pathological pain signaling and reduces
the excitability of dorsal root ganglion (DRG) neurons [243]. Research has demonstrated
its efficacy in treating chronic pain conditions, including neuropathy, diabetic neuropathy,
and fibromyalgia [238].

5.5. Tadalafil

Tadalafil is a phosphodiesterase-5 inhibitor that improves microcirculation, which
may benefit patients with cold-type CRPS. Groeneweg et al. conducted a study involv-
ing twenty-four CRPS patients who were given either tadalafil (20 mg) or a placebo for
12 weeks. The results demonstrated a significant and clinically meaningful reduction in
pain in the tadalafil group. Additionally, tadalafil notably decreased the temperature dif-
ference between the affected and unaffected feet. The researchers suggested that tadalafil
shows promise for treating cold CRPS but requires further investigation [244].

5.6. Psilocybin

Psychedelics, such as LSD and psilocybin, may serve as potential alternatives for
managing chronic pain when used under appropriate clinical supervision. However, their
classification as Schedule I substances limits both research and medical applications, which
in turn affects public perception, regulatory policies, and acceptance within healthcare
settings [245].

There are two notable case reports that demonstrate psilocybin’s potential as a treat-
ment for chronic pain. The positive outcomes from these cases suggest that psilocybin
could be a valuable addition to current treatment options, particularly for patients who
have not found relief with standard therapies for chronic pain [246,247]. The first case
report, published in 2023, documented the experiences of three individuals who used
low-dose psilocybin to manage chronic neuropathic pain [246]. A follow-up case report in
2024 highlighted psilocybin’s potential as a treatment for CRPS [247].

In the case report [247], a CRPS patient who had previously tried standard
therapies—including antiepileptic drugs (AEDs), antidepressants, opioids, spinal cord
stimulation (SCS), and ketamine—continued to experience pain rated at 4 out of 10. The
patient then ingested 2 g, 5.5 g, and 3.5 g of Psilocybe cubensis mushrooms, with the second
dose taken three days after the first and the third dose two days later. During a one-month
follow-up, the patient’s pain level significantly decreased to between 0 and 1 out of 10 and
remained at that level without ketamine use for nine months. Further research is essential
to fully assess the effectiveness of psychedelics such as psilocybin in managing chronic
pain and complex regional pain syndrome (CRPS). It is important to evaluate their efficacy,
safety, and mechanisms of action thoroughly. Additionally, the optimal dosing strategies
and long-term effects should be explored. Well-structured clinical trials must be conducted
while taking into account evolving regulations.
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6. Additional Research Areas
Biopsy Analysis

Serum and skin biopsies are being analyzed to understand the immune system changes
observed in post-traumatic CRPS. The identified biomarkers highlight several pathophysi-
ological processes associated with CRPS, including inflammation (involving interleukins
and TNF-α), vascular dysregulation (characterized by imbalances in ET-1 (Endothelin-1)
and Nox (nitric oxide derivatives), along with hypoxia-induced elevated lactate), and small
fiber neuropathy with hypersensitivity. Changes in skin morphology include neurite loss,
increased mast cell expression, migration abnormalities, and elevated α1 adrenoceptor
expression on keratinocytes [248].

In patients with early-stage CRPS, an increase in mast cell numbers and elevated levels
of immune mediators indicate immune activation in the affected skin. This immune cell
activation continues in late-stage CRPS, as evidenced by the altered density of epidermal
Langerhans cells and changes in the phenotype of tissue-resident T cells [249].

These findings may provide a foundation for future clinical trials involving treatments
such as intravenous immunoglobulin (IVIG), rituximab B-cell antibodies, and other FDA-
approved therapies for autoimmune diseases.

In a systematic review evaluating bone-related biochemical and histological biomark-
ers in CRPS type 1 [39], Kollmann et al. reported that biopsy histology showed distinct
changes: in acute CRPS 1, there was cortical bone thinning and resorption, trabecular
bone rarefaction and reduction, and vascular alterations in the bone marrow. In chronic
CRPS 1, dystrophic vessels were observed to replace the bone marrow. The review also
highlighted that biochemical analysis showed increased bone turnover, marked by elevated
bone resorption (indicated by higher urinary deoxypyridinoline levels) and enhanced bone
formation (reflected by increased serum levels of calcitonin, osteoprotegerin, and alkaline
phosphatase), along with heightened signaling of the proinflammatory tumor necrosis
factor four weeks post-fracture.

7. Conclusions
Advances in diagnostic and treatment techniques are transforming the management of

CRPS, offering hope for improved patient outcomes. Enhanced diagnostic tools and promis-
ing biomarkers—such as miRNAs, bone turnover markers, and autoantibodies—show
potential for early diagnosis, monitoring, and personalized therapies. These innovations
provide insights into the complex interplay of neuroinflammation, genetics, and autoim-
munity underlying CRPS.

Emerging treatments such as ketamine and low-dose naltrexone (LDN) offer significant
potential for alleviating pain and modulating neuroinflammation. Ketamine, particularly
through intravenous administration, demonstrates efficacy in reducing central sensitization.
Meanwhile, LDN offers a low-cost, minimally invasive option by modulating glial cells and
Toll-like receptor 4 (TLR4) signaling. However, both treatments require further research to
determine their long-term safety and optimal usage.

Neurostimulation techniques such as spinal cord stimulation (SCS), dorsal root ganglia
(DRG) stimulation, peripheral nerve stimulation (PNS), and repetitive transcranial magnetic
stimulation (rTMS) provide innovative approaches for pain management by targeting
specific neural pathways. While these therapies offer substantial relief, their long-term
effectiveness, cost-efficiency, and application protocols warrant further investigation.

A comprehensive approach that combines early diagnosis, personalized multimodal
treatments, and integrative therapies is essential for effectively managing CRPS. This strat-
egy addresses the physical, neurological, and emotional aspects of the condition, ultimately
enhancing patients’ quality of life. Continued research into biomarkers, therapeutic inno-
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vations, and patient-centered care holds the promise of standardized, accessible solutions
that can revolutionize CRPS management, bringing sustained relief and renewed hope
to patients.
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