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Abstract: An estimated 60,000 people die annually from skin cancer, predominantly
melanoma. The diagnosis of skin lesions primarily relies on visual inspection, but around
half of lesions pose diagnostic challenges, often necessitating a biopsy. Non-invasive de-
tection methods like Computer-Aided Diagnosis (CAD) using Deep Learning (DL) are
becoming more prominent. This study focuses on the use of multispectral (MS) imaging
to improve skin lesion classification of DL models. We trained two convolutional neural
networks (CNNs)—a simple CNN with six two-dimensional (2D) convolutional layers
and a custom VGG-16 model with three-dimensional (3D) convolutional layers—using a
dataset of MS images. The dataset included spectral cubes from 327 nevi, 112 melanomas,
and 70 basal cell carcinomas (BCCs). We compared the performance of the CNNs trained
with full spectral cubes versus using only three spectral bands closest to RGB wavelengths.
The custom VGG-16 model achieved a classification accuracy of 71% with full spectral
cubes and 45% with RGB-simulated images. The simple CNN achieved an accuracy of
83% with full spectral cubes and 36% with RGB-simulated images, demonstrating the
added value of spectral information. These results confirm that MS imaging provides
complementary information beyond traditional RGB images, contributing to improved
classification performance. Although the dataset size remains a limitation, the findings
indicate that MS imaging has significant potential for enhancing skin lesion diagnosis,
paving the way for further advancements as larger datasets become available.

Keywords: skin cancer; multispectral imaging; deep learning; non-invasive diagnosis;
melanoma; convolutional neural network

1. Introduction
The use of learning algorithms for Computer-Aided Diagnosis (CAD) in the field

of medical imaging is becoming increasingly more popular. Dermatologists are already
taking advantage of CAD to complement their diagnostic skills. But there is still a complex
problem to solve: the automated and non-invasive etymological classification of skin
lesions. To date, the only way to unequivocally determine the etiology of a lesion is a
biopsy. Under the first-response gold-standard step in diagnosis, which is visual inspection
to outline the warning signs of malignancy (asymmetry, border irregularity, changes in
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color, and changes in diameter and evolution) [1], approximately 50% of lesions appear
as equivocal to expert physicians. Consequently, histological examination remains the
definitive standard for lesion classification, which is both time-consuming and costly [2].

This is a significant problem due to the progressive trend in the rising incidence and
mortality of skin cancer, with an estimated 60,000 people dying annually, 48,000 from
melanoma (MM) and 12,000 from other non-melanocytic skin cancers [3]. Melanoma
is the most aggressive form, originating from pigment-making cells called melanocytes,
and is likely to grow and spread if left untreated, having a five-year survival rate if not
treated early [4]. Non-melanoma skin cancers, including Basal Cell Carcinomas (BCCs) and
Squamous Cell Carcinomas (SCCs), grow more slowly and usually do not spread. BCCs
are the most common type (8 out of 10), while SCCs are more likely to grow into deeper
layers of skin [5]. The prognosis for non-melanocytic types of cancer is excellent; however,
if left untreated, they can result in significant morbidity and cosmetic disfigurement.

2. Recent Literature
Authors prioritize the detection of melanoma, and more specifically its distinction

from other pigmented lesions, such as the melanocytic nevus [6], a benign (not cancerous)
growth on the skin that is formed of a cluster of melanocytes. They sometimes present a
very similar appearance and attributes, so they are particularly hard to differentiate for
physicians. A second type of benign lesions, Seborrheic Keratoses (SK), are often included
in the lesion classification challenges [7–10]; BCCs are usually included as well [11–14].

To address the non-invasive detection of skin cancer, CAD algorithms, based on
Deep Learning (DL) architectures such as generative adversarial networks (GANs) or
convolutional neural networks (CNNs), are gaining prominence [6]. CNNs have proven to
be highly effective in medical image analysis due to their ability to perform convolutions on
input images and extracting spatial features for image recognition [15]. Some are designed
to take care of the image pre-processing steps like digital hair removal and segmentation
from the surrounding skin [16]; others contribute to the automated feature extraction and
subsequent classification with a Fully Connected (FC) layer [7,17–19] or with a combination
of traditional ML classifiers such as Support Vector Machines (SVM), k-Nearest Neighbor
(KNN), and Random Forest (RF) [8,20,21]. Several advanced CNN architectures have
been developed and adapted for skin lesion classification. For instance, architectures
such as Inception, VGGNet, and ResNet have been employed with success in various
studies [22–25]. Some researchers have customized these architectures or designed new
ensembles of models to improve classification accuracy [8,9,26–28].

The majority of works that train CNNs to perform lesion classification use high-quality
medical Red-Green-Blue (RGB) images, like the ones provided by large data repositories
such as ISIC with 71,023 dermoscopic images [29], PH2 [16], DermQuest, DermIS [30],
HAM10000 [31], etc. These repositories contain vast amounts of data that help train DL
models robustly. However, despite achieving very high classification accuracies (Xception
trained with HAM10000: 90.48% [32], VGG hybrid trained with PH2: 93.3% [33], and
NASNet trained with ISIC 2020: 97.7% [34]), they are not good enough to replace the
gold standard. In Table 1, there are more details about some of these works from the
recent literature.

Therefore, it is important to exploit other imaging modalities that can provide more
information [37], such as confocal laser scanning microscopy (CLSM) [38] and optical
coherence tomography (OCT) [35] regarding tissue structure and multispectral (MS) or
hyperspectral (HS) imaging [39–41] regarding substance content.
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Table 1. State-of-the-art works on training DL architectures for the automated classification of
skin lesions. A: atypical; B: benign; C: congenital; H: healthy; M: malignant; MM: melanoma;
non-MMC: non-melanocytic cancer; SCC: squamous cell carcinoma; SK: seborrheic keratosis;
MLP: multilayer perceptron; WT: wavelet transform; FT: Fourier transform; FF-OCT: Fast Fourier
OCT; HSV: Hue Saturation Value; AUC: Area Under the Curve; SE: Sensitivity, SP: Specificity.

Dataset
Samples Model Approach Data Splitting

(%) Accuracy AUC SE SP

Harangi et al.,
2018 [9]

ISIC 2017
(2600): MM
(491), Nevi
(1765), SK

(344).

Ensembled
CNN out of

AlexNet,
VGGNet,

GoogLeNet.

1. Aggregation of robust
CNNs. 2. Feature

extraction.

Training,
validation
(80%). Test

(20%).

0.85 MM,
0.88 SK

0.85 MM,
0.93 SK

0.40 MM,
0.71 SK

0.72 MM,
0.85 SK

Mahbod et al.,
2018 [8]

ISIC 2016 +
2017 (2787):

MM (518), SK
(396), B. lesions

(2389).

Pre-trained
ensembled

CNNs.

1. Color normalization +
Mean RGB value

subtraction + Data
augmentation. 2.

Ensembled CNNs for
feature extraction and

SVM as classifier.

Training,
validation
(80%). Test

(20%).

-

0.73 MM,
0.93 SK (for
pre-trained)
| 0.87 MM,
0.96 SK (for
fine-tuned)

- -

Mandache
et al.,

2018 [12]

FF-OCT
images

(40–108,082
patches): BCC

(48,970), H.
skin (59,112).

VGG-16 and
InceptionV3

pre-trained on
ImageNet.
CNN of 10

layers (trained
from scratch).

Feature extraction and
classification.

Training,
validation
(80%): Test

(20%).

0.96
(proposed
CNN)-0.89
(VGG-16)-

0.91
(Incep-
tionV3)

- - -

Refianti
et al.,

2019 [18]

ISIC 2017 (198):
MM (99),

non-MMC (99).
LeNet-5.

1. Data augmentation. 2.
Feature extraction with

CNN.

Training,
validation
(80%): Test

(20%)

0.95 - 0.91 -

Saba
et al.,

2019 [16]

ISIC 2016 +
2017 + PH2

(4229): B.
lesions, Nevi,

MM.

InceptionV3.

1. Contrast enhancement
+ HSV color

transformation + lesion
boundary extraction

(segmentation). 2.
Feature extraction with

Inception V3

Cross-
validation
kfold = 20.
Training,

validation
(70%): Test

(30%).

0.98
(averaged-
PH2), 0.95
(ISIC 2016),
0.95 (ISIC
2017-best)

0.98 (ISIC
2017-best)

0.95 (ISIC
2017-best)

0.98 (ISIC
2017-best)

Serte
et al.,

2019 [10]

ISIC 2017
(2750): MM,
SK, M. Nevi.

Pre-trained
ensemble of

ResNet-18 and
ResNet50.

1. Gray-scale
transformation. 2.
Implementation of

wavelet transform (WT =
FT) + Data augmentation

of MM and SK. 3.
Fine-tuning with WT
and images + Model

fusing.

Training and
validation
(80%): Test

(20%).

0.84 MM,
0.79 SK - 0.96 MM,

0.81 SK -

Adegun
et al.,

2020 [28]

ISIC 2017 +
PH2 (2860):

MM,
non-MMC.

Encoder-
decoder
network.

1. Remove of noise (hair,
artifacts) + Zero mean

unit variance
normalization + Data

augmentation. 2.
Multi-stage and

multi-scale pixel-wise
classification of lesions.

Training,
validation
(80%): Test

(20%): 600 ISIC
+ 60 PH2.

0.92 ISIC,
0.93 PH2 - - -

Maiti
et al.,

2020 [19]

ISIC 2017 +
MED

NODE-(2170):
MM (1070),
Nevi (1100).

AlexNet, VGG
custom CNN.

1. Contrast enhancement
+ Segmentation. 2.

Feature extraction with
CNNs.

Training and
validation

(100%) No test
set.

0.72
(AlexNet),

0.68
(VGGNet),

0.97 (custom
CNN-best)

- - -

Rodrigues
et al.,

2020 [21]

ISIC 2017 +
PH2-(1100):
MM (174),
Nevi (726),
MM (40), C.
Nevi (80), A.

Nevi (80).

Pre-trained
VGG,

Inception,
ResNet,

Inception-
ResNet,

Xception,
MobileNet,
DenseNet,
NASNet.

1. Fine-tuning for feature
extraction. 2. Use of

classic classifiers: Bayes,
MLP, SVM, KNN, and

RF. 3. IoT system.

5 instances for
each

combination of
CNN and
classifier.
Training,

validation
(90%): Test

(10%).

0.97 ISIC,
0.93 PH2

(DenseNet20
and

KNN-best)

- 0.97 ISIC,
0.93 PH2 -

Ho et al.,
2021 [35]

FF-OCT
tomograms-

(297–130,383):
SCC (43,900),

Dysplasia
(42,583), H.

skin (43,900).

ResNet-18 1. Model training. 2.
Heat map extraction.

10-fold cross-
validation.
Training,

validation
(85%). Test

(15%).

0.81 - - -
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Table 1. Cont.

Dataset
Samples Model Approach Data Splitting

(%) Accuracy AUC SE SP

Jojoa-Acosta
et al.,

2021 [36]

ISIC
2017-(2742): B.
lesions (2220),

M. lesions
(522).

ResNet152

1. ROI extraction using
the Mask and

Region-based CNN. 2.
Data augmentation

balancing lesion ratio. 3.
Fine-tuning of

ResNet152 for feature
extraction and
classification.

Training,
validation
(90%). Test

(10%).

0.91 . 0.87 (over
MM) -

Mendes et al.,
2021 [14]

MED-NODE +
Edinburgh +
Atlas-(3816):

12 lesions
classes

including MM,
Nevi, BCC and

SCC.

Pre-trained
ResNet-152

1. Data augmentation
over training and

validation. 2.
Fine-tuning of the

model.

Training,
validation
(80%). Test

(20%).

0.78 - - -

Abbas and
Gul,

2022 [34]

ISIC 2020
(30,000+

images, subset
of 4000 images

used:
Melanoma:
584, Nevus:

2000, Others:
1416).

NASNet
(Modified)
with global

average
pooling,

fine-tuned.

1. Transfer learning from
NASNet pre-trained on

ImageNet. 2.
Label-preserving

augmentations applied
(rotation, flipping). 3.
Data pre-processing

includes ROI cropping
and artifact removal.

Training: 75%,
Testing: 25% 0.98 - 0.98 0.98

MS imaging provides images of skin lesions through several spectral bands with high
spatial resolution, capturing pixel-wise spectral features that reflect the absorption proper-
ties of skin substances like hemoglobin, melanin, bilirubin, and tissue oxygenation [42–46].
Previous studies have shown that MS imaging can be useful in distinguishing different
types of skin lesions, for example, malignant melanoma from benign melanocytic nevi,
which often present similar visual characteristics [7,47]. Despite the limited number of MS
images available, these studies indicate that incorporating spectral information can improve
the performance of DL models in skin lesion classification tasks (RetinaNet trained with
35 SWIR images: 68.8% sensitivity over melanoma [48]; custom model trained with 1304 MS
images: 72.0% sensitivity over melanoma [39]; ResNet trained with 76 hyperspectral images:
50.0% sensitivity over melanoma and 88.0% sensitivity over other malignant lesions [49]).
In Table 2, there are all of the details about these works from the recent literature.

In this study, we trained two CNNs—a simple CNN and a custom VGG-16 model—
using a dataset of MS images that included nevi, melanomas, and BCCs. Additionally, we
trained the CNNs using only three images from the MS set—the ones closest to the RGB
spectral bands traditionally used in color cameras—to compare classification performance
when training with RGB versus MS information. By doing so, we achieved significantly
higher precision in classification for both models when trained with the full MS cubes,
thereby demonstrating the added value of spectral information over conventional RGB
imaging. Currently, algorithms are trained with collaborative RGB datasets, and their
accuracy plateaued at around 98%. Hence, the findings in this work provide valuable
insights into improving the precision of DL systems for skin lesion classification.
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Table 2. State-of-the-art works on training DL architectures with MS/HSI imaging datasets
for the automated classification of skin lesions. BE: benign epithelial; BM: benign melanocytic;
D: dysplastic; H: healthy; HK: hyperkeratotic; non-MMC: non-melanocytic cancer; ME: malignant
epithelial; MM: melanoma; MM-like: melanoma-like; PB: pigmented benign; AF: auto-fluorescence;
exNIR: extended near-infrared; DARTS: differential architecture search; IR: infrared; SWIR: short-
wave infrared; VIS: visible.

Authors Dataset
Samples

MS
Sensitivity Model Approach Data

Splitting (%) Accuracy AUC SE SP

de Lucena
et al.,

2020 [48]

SWIR
spectroscopy
images (35):

MM (12
samples, 34

parts), D.
nevi (72

parts), H.
skin (17
parts).

IR: 900
nm–2500 nm
(256 spectral

bands).

RetinaNet
(Resnet50
model on

backbone).

1. Reduction
in the

spectral
dimension of
each SWIR. 2.

Feature
extraction

and
classification

with
RetinaNet.

Training,
validation
and test.

0.688 MM,
0.725 Nevi - - -

La Salvia
et al.,

2022 [49]

HS images
(76–125
bands):

MM-like
lesions, ME
lesions, BM
lesions, BE

lesions.

VIS-exNIR:
450 nm–950

nm (76
spectral
bands).

Pre-trained
ResNet-18,
ResNet-50,
ResNet-101,

and a
ResNet-50

variant,
which

exploits 3D
convolu-

tions.

1. Segmenta-
tion with

U-Net,
U-Net++,
and two

other
networks. 2.

The best
results are

fed to
ResNets for

feature
extraction

and
classification
+ Data aug-
mentation.

Both binary
classification

(B. vs. M.
lesions) and
multiclass.

10-fold cross-
validation.
Results are
calculated

over
validation
folds and
averaged.

-

0.46 MM,
0.16 ME,
0.46 BM,

0.35 BE | 0.91
(binary

0.50 MM,
0.88 ME,
0.79 BM,
0.75 BE |

0.88 (binary)

0.98 MM,
0.83 ME,
0.90 BM,
0.93 BE |

0.89 (binary)

Lihacova
et al.,

2022 [39]

MS images
(1304–4
images):
MM-like

lesions (74),
PB lesions
(405), HK

lesions (323),
non-MMC

(172), other B.
lesions (330).

VIS-exNIR:
526 nm, 663
nm and 994

nm (3
spectral

bands) + AF
image under

405 nm.

Pre-trained
InceptionV3,
VGG-16 and
ResNet-50.

DARTS
custom
model

trained from
scratch.

1. Data aug-
mentation. 2.
Fine-tuning
pre-trained
models and

training from
scratch
DARTS

architecture.

5-fold cross-
validation
Results are
calculated

over
validation
folds and
averaged.

- -

0.72 MM,
0.83 PB, 0.61

HK, 0.57
non-MMC,
0.84 other

benign
(DARTS-

best)

0.97 MM,
0.90 PB, 0.91

HK, 0.95
non-MMC,
0.93 other

benign
(DARTS-

best)

Lin et al.,
2024 [41]

878 images:
Acral

Lentiginous
Melanoma

(342),
Superficial
Spreading
Melanoma

(253),
Nodular

Melanoma
(100),

Melanoma in
situ (183).

SAVE: HSI
synthesized
from RGB.

Band
selection of
415 nm, 540
nm, 600 nm,
700 nm, and

780 nm;

YOLO (v5,
v8, v9), SAVE

algorithm
integration.

1. RGB to
HSI

conversion
using SAVE.
2. Training

on
augmented

dataset (7:2:1
split). 3.

Comparison
across YOLO
versions with
metrics like
precision,

recall, mAP,
and F1-score.

Training:
70%,

Validation:
20%, Testing:

10%.

- -

YOLO
v8-SAVE:

Precision >
90%, Recall
71%, mAP

0.801; YOLO
v8-RGB:

Precision >
84%, Recall
76%, Map

0.81
Superficial
Spreading
Melanoma:
Precision

decreases 7%
in YOLO
v5-SAVE,

increases 1%
in YOLO
v8-SAVE.

3. Methods
3.1. Multispectral System and Dataset

Chromophores in the skin, such as melanin, hemoglobin, water, beta-carotene, colla-
gen, and bilirubin, differ among skin lesions of different etiologies. MS imaging systems
can sequentially illuminate skin with light at different spectral bands and collect the re-
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flected light that contains information on these chromophores. In a previous work [45],
we developed an LED-based, low-cost, and portable MS system that was able to cap-
ture reflectance and color features in the VIS-NIR range. The camera integrated in the
head of the hand-held instrument is a CCD sensor with 12-bit depth and resolution of
1280 pixels × 960 pixels (Sony ICX445ALA, Sony Corporation, Tokio, Japan). A lens is
coupled to the camera to focus the skin at 40 mm with a field of view of 15 mm × 20 mm
(Cinegon, Schneider-Kreuznach, Bad Kreuznach, Germany). A ring of LEDs with peaks
at eight different spectral bands (414, 447, 477, 524, 671, 735, 890, and 995 nm) was used
to illuminate the skin and obtain a spectral cube for each analyzed lesion. A couple of
crossed polarizers were incorporated to eliminate specular reflection from the sweat and
grease of the skin. With this device, the spectral cubes of +700 equivocal lesions were
acquired from patients that attended the outcare patient clinic in the Melanoma Unit of the
Dermatology Department from the Hospital Clinic i Provincial de Barcelona (Spain) and
the Skin Cancer Unit from the Policlinico di Modena-University of Modena and Reggio
Emilia (Italy). Some spectral cubes had to be discarded due to lack of pigmentation of the
lesion, a greater size than the field of view of the lesion, motion artifacts, or hair growth.
Finally, the number of lesions from each etiology that were included were 592, from which
332 (56.1%) corresponded to nevi (melanocytic, dysplastic, blue, junctional, and Spitz nevi),
112 (18.6%) were MMs (including MM in situ and lentigo), 70 (11.6%) were BCCs, 33 (5.4%)
were SK, 43 (7.1%) were other benign lesions, such as, angiomas, dermatofibromas, and
actinic keratosis, and 7 (1.2%) corresponded to SCCs. In order to be left with a comparable
and sufficiently high number of lesions for each class, nevus (327), MM (112), and BCC
(70) were the three classes used to feed the DL architectures. The MS system, spectral cube
content, and samples of dermoscopic images out of the three lesion classes are illustrated
in Figure 1. The diagnosis of the different lesions in the dataset stated by physicians in the
dataset are presented in Table 3.
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Figure 1. From left to right: ring of LEDs, camera, and objective lens; external view of the MS system;
spectral cube of a lesion; 8 spectral wavelengths included in the MS system and corresponding
information on the absorption of skin chromophores, and examples of dermoscopic images out of the
three lesion classes.

All patients provided written informed consent before any examination, and ethical
committee approval was obtained. This study complies with the tenets of the 1975 Declara-
tion of Helsinki (Tokyo revision, 2004). The lesions were diagnosed by dermatologists (S.P.,
J.M., and G.P.) using a commercial dermoscope and the confocal laser scanning microscope
VivaScope® 1500 (MAVIG GmbH, Munich, Germany). When malignancy was suspected,
the lesion was excised and a histological analysis was carried out.
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Table 3. Principal lesion etiologies in the dataset, the number of reflectance cubes, the number of
reflectance images, and the identification labels.

Reflectance Cubes ID Diagnostic Benign/Malignant Reflectance Images

112

1 Melanoma M

81 MIS (melanoma in situ) M

1 Lentigo M

327

2 Dermic Nevus B

82 Dysplastic Nevus B

2 Blue Nevus B

70 3 BCC M 8

3.2. Data Preprocessing and Augmentation

The dataset was highly imbalanced, even down to the three main classes (nevi, MM,
and BCC), having a ratio of 4:1 for nevi images to images containing malignant lesions.
The authors resolved this issue by either undersampling, selectively performing data
augmentation over some classes, or by weighting the loss function during training [7,47].
We selected a custom function [50] to generate class weights for weighting the loss, detailed
in Section 3.3. Nevertheless, this imbalance was still likely to produce bias in the learning
models, so a balanced subset of the training and test data were created by downsampling
the data to 70 nevi, 70 melanomas, and 70 BCC spectral cubes.

The images in the spectral cubes were not preprocessed to become normalized to zero-
mean and unit variance, since the images had been previously calibrated (Equation (1))
with a standard neutral gray sample (Neutral 5, X-Rite ColorChecker®, X-Rite Inc., Grand
Rapids, MI, USA) and with images captured in the dark to compensate for straylight noise,
providing high-contrast images with normalized values (reflectance images).

Rλ
Lesion(i, j) = k

Sλ
Lesion(i, j)− Sλ

Dark(i, j)
Sλ

Neutral(i, j)− Sλ
Dark(i, j)

(1)

where Rλ
Lesion(i, j) is the reflectance value of each pixel (i, j) on the images taken at each

spectral band λ, calculated as the spectral value Sλ
Lesion(i, j) for each pixel on every spectral

image λ, calibrated with Sλ
Dark(i, j) and Sλ

Neutral(i, j), which are the intensity of the pixels
of the λth image taken in the dark and of the λth image of the neutral gray sample,
respectively; and k is the calibrated reflectance of the neutral gray sample measured with a
spectrometer. All images Sλ

Lesion(i, j) were taken with the same settings and fixed position.
The images in the reflectance cubes were formatted appropriately to be squared

images of resolution 128 pixels × 128 pixels as an input into the neural networks. Bigger
image resolutions were tested, but no improvement in the accuracy over the inference was
obtained; rather, improvements out of memory errors were retrieved when the resolution
was too big. Lesions were not segmented from background healthy skin. No further
preprocessing steps were required, like digital hair removal or artifact correction, since
images of this kind were discarded in the previous steps by visual inspection.

In some training instances, an additional preprocessing step was implemented to
choose only three images from the reflectance cube at the spectral bands 447, 524, and
671 nm, which were the ones closer to the peak wavelengths of the RGB channels of a
conventional camera. In Figure 2, there is the full MS set of images and these three images.

The balanced training dataset contained a total of only 210 images, so a robust data
augmentation scheme was implemented. This scheme included rotations and random flips
applied to the training set. Keras’ experimental preprocessing layers were used to construct
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the aforementioned data augmentation pipeline. A layer for image augmentation was
added after the input layer within the Deep Learning architectures to facilitate synchronous
training on the GPU. Approximately, the total number of reflectance cubes was augmented
by a factor of 50.
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3.3. Training Strategy Selection

To select the training strategy, we launched different training instances on four models
using the reflectance cubes containing the eight images of normalized values described in
Section 3.2.

To train our models, in all instances we chose a training scheme commonly used in
the literature which involved dividing our data into training/validation and test sets with
an 80–20% ratio. The training/validation set (80%) was varied, swapping images between
training and validation using a 5-fold cross-validation scheme, with a proportional number
of samples from each class using the Scikit Learn StratifiedKFold class. The remaining set
(20%) was used to test how well the models could classify unseen lesion images.

Initially, we trained with the entire dataset and, since it was highly imbalanced, a
custom function [50] based on Python’s compute_class_weight was used to generate class
weights (Equation (3)) for weighting the loss function (Equation (2)) during training.

CE = −∑
i∈C

tilog(si) (2)

where ti and si are the ground truth and the model score for each class i in C, respectively.
Softmax activation function is applied to the scores before the categorical cross-entropy
(CE) computation. The loss weighting function was also applied to categorical CE when
using the whole unbalanced dataset. The weights for the loss function are calculated as
shown below:

wi = −
m

∑
j=1

Yi (3)

where Yij is the value of class i in example j and m is the number of examples in the original
training set. Since Yj is a one-hot vector, the value of Yij is either 0 or 1. The mean of this
along the number of examples gives the frequency of class i in the dataset.

Also, a balanced subset was created by downsampling the dataset. Despite containing
a total of only 210 images (70 nevi, 70 MMs, and 70 BCCs), the models used to test the dif-
ferent training strategies showed a better performance when trained with the proportional
sample set.

Lastly, two types of training instances were conducted. In the first type, the model
was declared and trained from scratch every time a new fold of data was used in cross-
validation. In the second type of instance, the model was further trained with every fold of
new data. We found that the performance of the models trained with the second type of
instance was better.

The models used for testing were four different CNN architectures: a simple CNN
with six two-dimensional (2D) convolutional layers, a custom VGG-16 model with three-
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dimensional (3D) convolutional layers, a custom ResNet-34 that also performs 3D convolu-
tions to extract features from the whole reflectance cube at once, and ResNet50 imported
from Keras applications [51] with 2D convolutional layers.

The models were trained from scratch with the dataset of reflectance cubes. Transfer
learning was not considered (with models trained with datasets such as ImageNet [52]),
as it is not recommended when working with images with very different attributes than
the objects of the real world, in addition to a very high intra-class variance and very low
inter-class variance [12,27,53,54].

Figure 3 shows the performance of these models that were trained with the different
strategies explained here.
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Figure 3. Top 1 accuracy (%) obtained with the models when trained with the different strategies.

It was determined that the best strategy was to use the balanced set and further train
the model with every fold of data, and that the CNNs that achieved the best performance
in terms of top 1 accuracy and the most consistent results for different training instances
were the simplest CNN and the VGG-16 model. Table 4 show the performance of these
models with the selected training strategy.

Table 4. Metrics accounting for classification performance over the unseen test set for the models
2D-CNN, 3D VGG-16, 3D ResNet34, and Keras ResNet50 when trained with the full reflectance
cube (414, 447, 477, 524, 671, 735, 890, and 995 nm). Acc.: accuracy; SE: sensitivity; SP: specificity;
P: precision; F1: F1 score.

Model Top 1 Acc. SE SP P F1

2D-CNN

Nevus

0.83

0.86 0.88 0.80 0.83

Melanoma 0.79 0.96 0.92 0.85

BCC 0.86 0.88 0.86 0.86

Malignant vs. Benign 0.88 0.89 0.86 0.93 0.91

3D VGG-16

Nevus

0.71

0.71 0.83 0.71 0.66

Melanoma 0.64 0.81 0.64 0.57

BCC 0.79 0.86 0.79 0.75

Malignant vs. Benign 0.81 0.71 0.86 0.85 0.77
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Table 4. Cont.

Model Top 1 Acc. SE SP P F1

3D ResNet34

Nevus

0.74

0.79 0.77 0.65 0.71

Melanoma 0.50 1.00 1.00 0.67

BCC 0.93 0.78 0.72 0.81

Malignant vs. Benign 0.79 0.79 0.79 0.88 0.83

Keras ResNet50

Nevus

0.55

0.64 0.67 0.56 0.60

Melanoma 0.79 0.50 0.48 0.59

BCC 0.21 1.00 1.00 0.35

Malignant vs. Benign 0.71 0.75 0.64 0.80 0.77

The simplest CNN and the VGG-16 model were trained with only three images from
the reflectance cube, the ones closest to the wavelengths of the images that would be
obtained with an RGB camera.

All instances were launched with a random set of 210 reflectance cubes extracted from
the total dataset, and the hyperparameters were varied following a random grid search
strategy [55] to try to achieve the highest performance: batch sizes from 2 to 10 and learning
rates (LR) from 10−5 to 10−6. One hundred epochs were set for every instance.

3.4. Deep Learning Architectures

Two architectures were chosen for our study: a simple CNN with six 2D convolutional
layers, and a custom VGG-16 model with 3D convolutional layers.

Simple custom 2D-CNN: It has an input layer ready to accept the reflectance cube
(128, 128, 8), followed by six convolutional layers with ReLu activation; 8, 16 and 32 filters,
with kernel size 3; stride 1 in the odd layers, and stride 2 in the even layers. In this case,
the features in the reflectance cube are extracted from each individual image, not from the
whole cube at once. It has a final dense layer with Softmax activation. The total number of
trainable parameters of the small customized 2D-CNN is 43,123. The model is represented
in Figure 4.

Customized VGG-16 with 3D convolutions: It has thirteen 3D convolutional layers,
five 3D max pooling layers, and three dense layers. The number of filters is 64 (from the
1st to 2nd convolutional layers); 128 (from the 3rd to 4th); 256 (from the 5th to 7th); 256
(from the 8th to 10th); and 512 (from the 11th to 13th); kernel size 3, stride set to 1, and
kernel initialization type He uniform. They all have ReLu activation. Softmax activation is
selected in the output layer. To prevent overfitting, a value of 0.5 was used for a dropout
regularization in the fully connected layers. The total number of trainable parameters of
the customized VGG-16 is 80,328,515. The full architecture is depicted in Figure 5.
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Both were trained with reflectance cubes containing the eight images and later with
reflectance cubes containing only three images, simulating RGB bands.

3.5. Performance Metrics

The metrics to evaluate the classification performance of the two models were
the following:

Confusion matrix: Three-class CM. Each entry denotes the number of predictions
made by the model, where it classified the classes correctly or incorrectly. It was cus-
tomized as a Keras metric to monitor results during validation and the final classification
performance during testing. TP: true positives; TN: true negatives; FP: false positives;
FN: false negatives.

CM =


Class 1 Class 2 Class 3

c11 c12 c13

c21 c22 c23

c31 c32 c33


TN

(c22 + c33)

(c11 + c33)

(c11 + c22)

FN
(c12 + c13)

(c21 + c23)

(c31 + c32)

TP c11 c22 c33

FP (c 21 + c31) (c 12 + c32) (c 13 + c32)

(4)

Accuracy: The function categorical accuracy from Keras metrics was selected. The
accuracy accounting for final classification performance over the test set was derived from
the CM and averaged among the lesion classes.

Sensitivity (SE)/Specificity (SP): TP/TN divided by the total number of lesions for
each class.

Precision (P): derived from the CM as TP divided by the total number of positive
cases (TP and FP) for each lesion class.

F1 score: the harmonic mean of SE and P, calculated for each of the three classes from
the CM.

Accuracy and loss were also monitored during training and validation. Similarly, the
saliency or attention maps of the models were inspected. In Figure 6, the learning curves
and saliency maps for the 3D VGG-16 model are represented.

We were able to verify that, in the last folds, learning was more stable, with less abrupt
changes in the graphs, but overlearning began to appear and was more pronounced. In the
images of the saliency maps, we could see how the pixels with the highest intensity fall on
the area of the lesions, indicating that the attention of the models is focused on the lesions
and not particularly on the surrounding skin. Trained models will be made available as
Supplementary Materials (GitHub link at the Supplementary Materials Section).
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3.6. Implementation

A state-of-the-art computer with an AMD Ryzen 9 3950X 16-Core processor (Advanced
Micro Devices, Inc., Santa Clara, CA, USA), 64GB of RAM (Kingston Technology Europe
Co LLP, Sunbury-on-Thames, UK), and a Quadro RTX 4000 GPU (Nvidia, Santa Clara, CA,
USA) was used to implement the trainings. The operative system installed was Windows
10 Pro. Anaconda with Python 3.8.12 and TensorFlow GPU 2.4 release, together with Cuda
v. 10.8 libraries, were used to perform training on the GPU. Keras 2.4.3 was used as an API.

4. Results
The test set—20% of the images not seen by the models during training—was used to

evaluate their classification performance. The classification performance of the 2D-CNN
and 3D VGG-16 models was evaluated when trained with all reflectance information versus
the classification performance when trained only with images corresponding to the spectral
bands 447, 524, and 671 nm. The results (in terms of the metrics described in Section 3.5 are
presented in Table 5 below.

It was found that the classification accuracy obtained in the first case was much
higher, obtaining 71% for the 3D VGG-16 model and 83% for the 2D-CNN model. In the
second type of training instances, 45% was obtained for 3D VGG-16 and 36% for 2D-CNN.
Therefore, we can conclude that spectral information does provide something more than
just using color or morphological information, so that the training of the CNNs is better.

The best results were retrieved by the simple custom 2D-CNN, but, in general, from
Figure 3, it is clear that the model that retrieved the most consistent outcomes is custom 3D
VGG-16 model, being the one that has more trainable parameters.
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Table 5. Metrics accounting for classification performance over the unseen test set for the models
2D-CNN and 3D VGG-16 when trained with the full reflectance cube (414, 447, 477, 524, 671, 735, 890,
and 995 nm) in comparison to their classification performance when trained with RGB images (447,
524, and 671 nm). Acc.: accuracy; SE: sensitivity; SP: specificity; P: precision: F1: F1 score.

Model Top 1 Acc. SE SP P F1

2D-CNN (Reflectance Cube)

Nevus

0.83

0.86 0.88 0.80 0.83

Melanoma 0.79 0.96 0.92 0.85

BCC 0.86 0.88 0.86 0.86

Malignant vs. Benign 0.88 0.89 0.86 0.93 0.91

2D-CNN (RGB bands)

Nevus

0.36

0.07 0.89 0.25 0.11

Melanoma 0.93 0.18 0.36 0.52

BCC 0.07 0.96 0.50 0.13

Malignant vs. Benign 0.62 0.07 0.89 0.25 0.11

3D VGG-16 (Reflectance Cube)

Nevus

0.71

0.71 0.83 0.71 0.66

Melanoma 0.64 0.81 0.64 0.57

BCC 0.79 0.86 0.79 0.75

Malignant vs. Benign 0.81 0.71 0.86 0.85 0.77

3D VGG-16 (RGB bands)

Nevus

0.45

0.43 0.62 0.43 0.43

Melanoma 0.43 0.87 0.75 0.55

BCC 0.50 0.48 0.35 0.41

Malignant vs. Benign 0.62 0.43 0.71 0.43 0.43

5. Discussion
The primary limitation remains the access to a sufficient number of images for training

DL models. This challenge is especially pronounced when using images from emerg-
ing imaging technologies, such as MS imaging, where, like other researchers, we face
constraints due to the limited number of available MS images. These are nowhere near
the volume of extensive datasets like ISIC, HAM10000, PH2, etc., which only include
color/monochromatic images. Additionally, images acquired through various systems
often exhibit significant differences in resolution, contrast, and reference marks, complicat-
ing the unification of images and the creation of large public MS image repositories, even
though they share the same imaging modality.

Despite the limited dataset size, the results of this study have been remarkably positive.
The four models deployed were capable of distinguishing between three different lesion
classes, learning these distinctions, and accurately classifying an unseen test set comprising
20% of the data. Beyond demonstrating that MS images are effective for training DL archi-
tectures, we confirmed that the spectral information they contain is not made redundant
by the data provided by traditional RGB images, which typically teach neural networks to
recognize morphology and color. According to our findings, neural networks are also adept
at detecting and learning the spectral differences among lesions. In addition to discerning
between malignant and benign lesions, they are capable of recognizing variations among
different etiologies.
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Training with the complete spectral cube, we achieved accuracy rates exceeding 80%
for multiclass classification of the three etiologies and nearly 90% for binary classification
of malignant (MM and BCC) versus benign (nevus) lesions, proving valuable for clinical
screening. Sometimes, as noted by some works in the literature [39], a simpler model
may be more effective for classifying a small dataset. It is often best to customize a
model or find one completely tailored to your dataset using techniques like Differentiable
Architecture Search (DARTS). However, the results obtained with the 3D VGG-16 were
generally stable across all instances, likely because this model processes the spectral cube
in its entirety, thus correlating significant traits found in one channel with those in others.
Some studies [49] have already demonstrated the efficacy of neural networks with 3D
convolutions in classifying MS images of skin cancer lesions.

Regarding the selection of hyperparameters, we opted for the grid search method
due to its exhaustive and systematic exploration of predefined values, ensuring thorough
evaluation and reproducibility. Although alternative optimization methods such as evolu-
tionary strategies, hill-climbing, and Adaptive Particle Swarm Optimization (APSO) have
been widely used for hyperparameter tuning in complex problems, they often introduce
additional computational overhead and require specialized expertise to fine-tune properly.
Given the relatively small dataset and the focus on interpretability, grid search provided a
practical balance between computational efficiency and effectiveness.

We found that the best strategy was to train with a balanced sample set and repeatedly
train the same model across different folds of data using a cross-validation scheme that
divides the training and validation sets into different partitions. The most effective division
was into partitions from eight to ten; however, to optimize computing time, we set five
folds. Previous studies typically used between five and ten folds. In the future, it might
be interesting to test U-Net and its variants to segment the lesions from the surrounding
healthy skin as a preliminary step to classification, as performed by previous authors,
although this has not been crucial others [39]. Our models’ attention maps (specifically, the
3D VGG-16 model in Figure 6) show hot pixels predominantly over the lesions rather than
the surrounding skin.

On the contrary, we discovered that the data augmentation step was particularly criti-
cal in the process. Not all types of data augmentation yielded correct results; for instance,
random image cropping produced poor outcomes. While altering image intensities did
not produce negative results, we opted for caution with this type of augmentation. Even
though we performed data augmentation during training, this approach remains debatable,
as many suggest that, when a small dataset is available, it is preferable to perform aug-
mentation before training [56] (Neptune.ai). Another option to enhance our results could
involve testing this approach. There is also debate about whether to apply augmentation
only to the training set or to the validation set as well. Some claim that the best results
are achieved by also applying data augmentation to the validation set [57]; however, we
could not confirm this in our study. Others argue that this practice is incorrect, since
augmentation aims to ensure better model generalization [58,59].

We also believe it is crucial to calibrate images prior to training to ensure normalized
gray values across the dataset; if calibration is not performed as a preprocessing step to
obtain reflectance images from spectral ones, it is important to standardize images to zero-
mean and unit-variance. Contrary to expectations, using a smaller number of lesions by
undersampling the dataset to equalize numbers across each class yielded similar accuracy
results and improved discrimination of malignant lesions. Using the entire dataset would
have made a significant difference only if it substantially increased the number of images
(e.g., from 200 melanomas to 2000). Adjusting the loss function does not seem to be a
definitive solution; if effective, it would resolve the challenges of large datasets with a
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significant imbalance in lesion numbers. We observed that changes in image resolution,
batch size, or optimizer choice did not enhance classification results; the only critical
parameter was the learning rate (LR).

6. Conclusions
This study effectively demonstrates the superior capabilities of MS images compared

to traditional RGB images in training DL models for skin lesion classification. Our findings
emphasize that spectral information not only enhances the accuracy of such models, but
also introduces critical non-redundant data closely related to the absorption peaks of tissue
chromophores and components, enabling more nuanced distinctions between lesion types.

Our study also highlights the importance of training strategies, particularly the benefits
of using a balanced sample set and applying cross-validation with optimal partitions to
improve model performance.

Nevertheless, challenges remain, particularly regarding the accessibility and unifor-
mity of MS images needed to train these models effectively. Achieving 100% accuracy
remains absolutely crucial. For this reason, state-of-the-art DL algorithms have not yet
been fully integrated into healthcare systems. Currently, CAD algorithms, along with
emerging imaging modalities, are primarily able to assist professionals in confirming their
assessments after visually examining a lesion.

Preferred imaging modalities for dermatological assistance include CLSM and OCT.
However, both have limitations. CLSM provides high cellular resolution, but has restricted
penetration depth, which can result in false-negative diagnoses for tumors located below
the papillary dermis. OCT, on the other hand, offers a resolution that cannot determine
cellular types, but is limited to detecting significant structural changes.

Today, DL algorithms are still primarily used in clinical settings for tasks that do not
demand perfect precision. For instance, they are trained with electronic medical records
to predict in-hospital mortality, optimize hospital management (e.g., reducing patient
no-shows), and, in radiology, to detect and segment tumors in images, thereby improving
diagnostic accuracy and efficiency.

Our results are a promising step forward, demonstrating that the use of new imaging
modalities to train DL algorithms could significantly enhance their classification capabilities,
paving the way to achieving non-invasive diagnostic solutions.

In conclusion, this research validates the significant role of spectral information in DL
and establishes a benchmark for future studies to build upon.

Supplementary Materials: Pre-trained models with our MS dataset of skin cancer lesions and other
supplementary data to this article can be found online at https://github.com/LauraReyBarroso93/
SkinCancerCNN.
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Glossary

Multispectral Imaging (MSI)

A technique that captures image data at different
wavelengths across the electromagnetic spectrum,
allowing for the analysis of the spectral information of
each pixel. In dermatology, MSI is used to enhance skin
lesion analysis by identifying chromophore variations.

Convolutional Neural Network (CNN)

A type of Deep Learning model particularly effective for
image recognition tasks. CNNs use convolutional layers
to extract spatial features, making them suitable for
medical image classification, such as distinguishing
between types of skin lesions.

VGG-16 Model

A specific CNN architecture with 16 layers, often used in
image classification. This model processes input images
with high spatial resolution, making it effective for detailed
medical image analysis.

Reflectance Cube

In MSI, a 3D dataset containing images captured at various
spectral bands. Each ’slice’ of the cube corresponds to a
different wavelength, providing detailed information on
how skin reflects light at each band.

Data Augmentation

A technique to artificially increase the size of a dataset by
applying transformations (such as rotation, flipping, etc.)
to existing images. This helps reduce overfitting and
improves model generalization, especially in small datasets.

Cross-Validation

A statistical method used to evaluate a model’s performance
by dividing the dataset into multiple subsets. The model
is trained on some subsets and validated on the remaining
ones, improving reliability and reducing bias in
performance metrics.

Spectral Bands

Specific wavelength ranges within the electromagnetic
spectrum used in MSI. For skin lesion analysis, spectral
bands capture the unique absorption properties of skin
chromophores (e.g., melanin, hemoglobin).

Attention Maps (Saliency Maps)

Visualizations that show which areas of an image a neural
network focuses on during classification. In skin lesion
analysis, attention maps highlight lesion regions over the
surrounding skin, validating the model’s attention.

Binary Classification
A classification task where the model assigns one of two
labels to an input. In this context, binary classification
refers to distinguishing between benign and malignant lesions.
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Categorical Cross-Entropy (CE)

A loss function used in classification tasks with multiple
classes, measuring the difference between predicted and
actual class probabilities. Lower CE indicates a better-
performing model.

Accuracy

A metric that represents the proportion of correctly
classified instances out of the total cases. It is a primary
metric in evaluating model performance for
lesion classification.

Sensitivity (SE)

Also known as recall, it measures the model’s ability to
correctly identify true positive cases (e.g., malignant lesions).
High sensitivity is crucial in medical diagnostics to avoid
missing critical cases.

Specificity (SP)

The ability of a model to correctly identify true negatives
(e.g., benign lesions). High specificity reduces the number
of false positives, which is important to prevent
unnecessary biopsies.

Precision (P)
A measure of how many of the model’s positive predictions
are actually correct. High precision indicates fewer false
positives, which is valuable for accurate diagnosis.

F1 Score
The harmonic mean of precision and sensitivity, providing
a balanced measure of a model’s accuracy in binary
classification tasks, particularly in imbalanced datasets.

Crossed Polarizers
Optical filters used in MSI to reduce specular reflections
from skin, enhancing the quality of the captured images
by minimizing the glare from sweat or skin oils.

Random Grid Search
A hyperparameter tuning method where values are
randomly selected within a specified range to optimize
model performance without an exhaustive search.

Transfer Learning

A Deep Learning technique where a pre-trained model is
fine-tuned on a new, smaller dataset. It is generally
avoided in MSI with skin images due to the unique
spectral characteristics of these data.

Learning Rate (LR)
A hyperparameter in Deep Learning that controls the step
size at each iteration of optimization. The learning rate is
crucial for model convergence and stability.

References
1. Goodson, A.G.; Grossman, D. Strategies for early melanoma detection: Approaches to the patient with nevi. J. Am. Acad. Dermatol.

2009, 60, 719–735. [CrossRef] [PubMed]
2. Guy, G.P.; Ekwueme, D.U.; Tangka, F.K.; Richardson, L.C. Melanoma Treatment Costs. Am. J. Prev. Med. 2012, 43, 537–545.

[CrossRef] [PubMed]
3. World Health Organization. Available online: https://www.who.int/en/ (accessed on 19 October 2020).
4. Wolff, K.; Allen, J.R. Fitzpatrick’s Color Atlas and Synopsis of Clinical Dermatology; McGraw-Hill Professional: New York, NY, USA,

2009; pp. 154–196.
5. American Cancer Society. Available online: https://www.cancer.org (accessed on 19 October 2020).
6. Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al.

Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma
recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [CrossRef]

7. Li, Y.; Shen, L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors 2018, 18, 556. [CrossRef]
8. Mahbod, A.; Schaefer, G.; Ellinger, I.; Ecker, R.; Pitiot, A.; Wang, C. Fusing fine-tuned deep features for skin lesion classification.

Comput. Med. Imaging Graph. 2019, 71, 19–29. [CrossRef]
9. Harangi, B. Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 2018, 86, 25–32.

[CrossRef]
10. Serte, S.; Demirel, H. Wavelet-based deep learning for skin lesion classification. IET Image Process. 2019, 14, 720–726. [CrossRef]

https://doi.org/10.1016/j.jaad.2008.10.065
https://www.ncbi.nlm.nih.gov/pubmed/19389517
https://doi.org/10.1016/j.amepre.2012.07.031
https://www.ncbi.nlm.nih.gov/pubmed/23079178
https://www.who.int/en/
https://www.cancer.org
https://doi.org/10.1093/annonc/mdy166
https://doi.org/10.3390/s18020556
https://doi.org/10.1016/j.compmedimag.2018.10.007
https://doi.org/10.1016/j.jbi.2018.08.006
https://doi.org/10.1049/iet-ipr.2019.0553


Diagnostics 2025, 15, 355 18 of 19

11. Dorj, U.O.; Lee, K.K.; Choi, J.Y.; Lee, M. The skin cancer classification using deep convolutional neural network. Multimed. Tools
Appl. 2018, 77, 9909–9924. [CrossRef]

12. Mandache, D.; Dalimier, E.; Durkin, J.R.; Boceara, C.; Olivo-Marin, J.-C.; Meas-Yedid, V. Basal cell carcinoma detection in full field
OCT images using convolutional neural networks. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 784–787. [CrossRef]

13. Milton, M.A.A. Automated Skin Lesion Classification Using Ensemble of Deep Neural Networks in ISIC 2018: Skin Lesion
Analysis Towards Melanoma Detection Challenge. arXiv 2019, arXiv:1901.10802. [CrossRef]

14. Mendes, D.B.; da Silva, N.C. Skin Lesions Classification Using Convolutional Neural Networks in Clinical Images. arXiv 2018,
arXiv:1812.02316. [CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

16. Saba, T.; Khan, M.A.; Rehman, A.; Marie-Sainte, S.L. Region Extraction and Classification of Skin Cancer: A Heterogeneous
framework of Deep CNN Features Fusion and Reduction. J. Med. Syst. 2019, 43, 289. [CrossRef] [PubMed]

17. Yuan, Y.; Chao, M.; Lo, Y.-C. Deep Fully Convolutional Networks with Jaccard Distance. IEEE Trans. Med. Imaging 2017, 36,
1876–1886. [CrossRef] [PubMed]

18. Refianti, R.; Mutiara, A.B.; Priyandini, R.P. Classification of melanoma skin cancer using convolutional neural network. Int. J. Adv.
Comput. Sci. Appl. 2019, 10, 409–417. [CrossRef]

19. Maiti, A.; Chatterjee, B. Improving detection of Melanoma and Naevus with deep neural networks. Multimed. Tools Appl. 2020, 79,
15635–15654. [CrossRef]

20. Premaladha, J.; Ravichandran, K.S. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep
Learning Algorithms. J. Med. Syst. 2016, 40, 96. [CrossRef]

21. Rodrigues, D.A.; Ivo, R.F.; Satapathy, S.C.; Wang, S.; Hemanth, J.; Filho, P.P.R. A new approach for classification skin lesion based
on transfer learning, deep learning, and IoT system. Pattern Recognit. Lett. 2020, 136, 8–15. [CrossRef]

22. Sagar, A.; Jacob, D. Convolutional Neural Networks for Classifying Melanoma Images. bioRxiv 2020. [CrossRef]
23. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

24. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
[CrossRef]

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

26. Codella, N.; Cai, J.; Abedini, M.; Garnavi, R.; Halpern, A.; Smith, J.R. Deep Learning, Sparse Coding, and SVM for Melanoma
Recognition in Dermoscopy Images. In International Workshop on Machine Learning in Medical Imaging; Springer International
Publishing: Cham, Switzerland, 2015; pp. 118–126. [CrossRef]

27. Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.-A. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual
Networks. IEEE Trans. Med. Imaging 2017, 36, 994–1004. [CrossRef]

28. Adegun, A.A.; Viriri, S. Deep learning-based system for automatic melanoma detection. IEEE Access 2020, 8, 7160–7172. [CrossRef]
29. The International Skin Imaging Collaboration (ISIC). Available online: https://www.isic-archive.com (accessed on 25 July 2022).
30. Jones, O.T.; Matin, R.N.; van der Schaar, M.; Bhayankaram, K.P.; Ranmuthu CK, I.; Islam, M.S.; Behiyat, D.; Boscott, R.; Calanzani,

N.; Emery, J.; et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and
primary care settings: A systematic review. Lancet Digit. Health 2022, 4, e466–e476. [CrossRef] [PubMed]

31. Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of
common pigmented skin lesions. Sci. Data 2018, 5, 180161. [CrossRef]

32. Jain, S.; Singhania, U.; Tripathy, B.; Nasr, E.A.; Aboudaif, M.K.; Kamrani, A.K. Deep learning-based transfer learning for
classification of skin cancer. Sensors 2021, 21, 8142. [CrossRef]

33. Maniraj, S.; Maran, P.S. A hybrid deep learning approach for skin cancer diagnosis using subband fusion of 3D wavelets.
J. Supercomput. 2022, 78, 12394–12409. [CrossRef]

34. Abbas, Q.; Gul, A. Detection and Classification of Malignant Melanoma Using Deep Features of NASNet. SN Comput. Sci. 2022, 4, 21.
[CrossRef]

35. Ho, C.; Calderon-Delgado, M.; Chan, C.; Lin, M.; Tjiu, J.; Huang, S.; Chen, H.H. Detecting mouse squamous cell carcinoma from
submicron full-field optical coherence tomography images by deep learning. J. Biophotonics 2021, 14, e202000271. [CrossRef]

36. Jojoa-Acosta, M.F.; Tovar LY, C.; Garcia-Zapirain, M.B.; Percybrooks, W.S. Melanoma diagnosis using deep learning techniques on
dermatoscopic images. BMC Med. Imaging 2021, 21, 6. [CrossRef]

37. Rey-Barroso, L.; Peña-Gutiérrez, S.; Yáñez, C.; Burgos-Fernández, F.J.; Vilaseca, M.; Royo, S. Optical technologies for the
improvement of skin cancer diagnosis: A review. Sensors 2021, 21, 252. [CrossRef]

https://doi.org/10.1007/s11042-018-5714-1
https://doi.org/10.1109/ISBI.2018.8363689
https://doi.org/10.48550/arXiv.1901.10802
https://doi.org/10.48550/arXiv.1812.02316
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s10916-019-1413-3
https://www.ncbi.nlm.nih.gov/pubmed/31327058
https://doi.org/10.1109/TMI.2017.2695227
https://www.ncbi.nlm.nih.gov/pubmed/28436853
https://doi.org/10.14569/IJACSA.2019.0100353
https://doi.org/10.1007/s11042-019-07814-8
https://doi.org/10.1007/s10916-016-0460-2
https://doi.org/10.1016/j.patrec.2020.05.019
https://doi.org/10.1101/2020.05.22.110973
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-24888-2_15
https://doi.org/10.1109/TMI.2016.2642839
https://doi.org/10.1109/ACCESS.2019.2962812
https://www.isic-archive.com
https://doi.org/10.1016/S2589-7500(22)00023-1
https://www.ncbi.nlm.nih.gov/pubmed/35623799
https://doi.org/10.1038/sdata.2018.161
https://doi.org/10.3390/s21238142
https://doi.org/10.1007/s11227-022-04371-0
https://doi.org/10.1007/s42979-022-01439-9
https://doi.org/10.1002/jbio.202000271
https://doi.org/10.1186/s12880-020-00534-8
https://doi.org/10.3390/s21010252


Diagnostics 2025, 15, 355 19 of 19

38. Campanella, G.; Navarrete-Dechent, C.; Liopyris, K.; Monnier, J.; Aleissa, S.; Minhas, B.; Scope, A.; Longo, C.; Guitera, P.;
Pellacani, G.; et al. Deep Learning for Basal Cell Carcinoma Detection for Reflectance Confocal Microscopy. J. Investig. Dermatol.
2022, 142, 97–103. [CrossRef]

39. Lihacova, I.; Bondarenko, A.; Chizhov, Y.; Uteshev, D.; Bliznuks, D.; Kiss, N.; Lihachev, A. Multi-Class CNN for Classification of
Multispectral and Autofluorescence Skin Lesion Clinical Images. J. Clin. Med. 2022, 11, 2833. [CrossRef] [PubMed]

40. Huang, H.-Y.; Hsiao, Y.-P.; Mukundan, A.; Tsao, Y.-M.; Chang, W.-Y.; Wang, H.-C. Classification of Skin Cancer Using Novel
Hyperspectral Imaging Engineering via YOLOv5. J. Clin. Med. 2023, 12, 1134. [CrossRef] [PubMed]

41. Lin, T.L.; Lu, C.T.; Karmakar, R.; Nampalley, K.; Mukundan, A.; Hsiao, Y.P.; Hsieh, S.C.; Wang, H.C. Assessing the efficacy of
the Spectrum-Aided Vision Enhancer (SAVE) to detect acral lentiginous melanoma, melanoma in situ, nodular melanoma, and
superficial spreading melanoma. Diagnostics 2024, 14, 1672. [CrossRef]

42. Li, L.; Zhang, Q.; Ding, Y.; Jiang, H.; Thiers, B.H.; Wang, J.Z. Automatic diagnosis of melanoma using machine learning methods
on a spectroscopic system. BMC Med. Imaging 2014, 14, 36. [CrossRef]

43. Godoy, S.E.; Ramirez, D.A.; Myers, S.A.; von Winckel, G.; Krishna, S.; Berwick, M.; Padilla, R.S.; Sen, P.; Krishna, S. Dynamic
infrared imaging for skin cancer screening. Infrared Phys. Technol. 2015, 70, 147–152. [CrossRef]

44. Kim, S.; Cho, D.; Kim, J.; Kim, M.; Youn, S.; Jang, J.E.; Je, M.; Lee, D.H.; Lee, B.; Farkas, D.L.; et al. Smartphone-based multi-spectral
imaging: System development and potential for mobile skin diagnosis. Biomed. Opt. Express 2016, 7, 5294. [CrossRef]

45. Delpueyo, X.; Vilaseca, M.; Royo, S.; Ares, M.; Rey-Barroso, L.; Sanabria, F.; Puig, S.; Malvehy, J.; Pellacani, G.; Noguero, F.; et al.
Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: A pilot
study. J. Biomed. Opt. 2017, 22, 065006. [CrossRef]

46. Rey-Barroso, L.; Burgos-Fernández, F.; Delpueyo, X.; Ares, M.; Royo, S.; Malvehy, J.; Puig, S.; Vilaseca, M. Visible and Extended
Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis. Sensors 2018, 18, 1441. [CrossRef]

47. Romero Lopez, A.; Giro-i-Nieto, X.; Burdick, J.; Marques, O. Skin lesion classification from dermoscopic images using deep
learning techniques. In Proceedings of the 2017 13th IASTED International Conference on Biomedical Engineering (BioMed),
Innsbruck, Austria, 20–21 February 2017; pp. 49–54. [CrossRef]

48. De Lucena, D.V.; da Silva Soares, A.; Coelho, C.J.; Wastowski, I.J.; Filho, A.R.G. Detection of Tumoral Epithelial Lesions Using
Hyperspectral Imaging and Deep Learning. In Proceedings of the Computational Science–ICCS 2020: 20th International Conference,
Amsterdam, The Netherlands, 3–5 June 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 599–612. [CrossRef]

49. La Salvia, M.; Torti, E.; Leon, R.; Fabelo, H.; Ortega, S.; Balea-Fernandez, F.; Martinez-Vega, B.; Castaño, I.; Almeida, P.; Carretero, G.; et al.
Neural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images. Sensors 2022, 22, 7139. [CrossRef]

50. Igareta, A. Method to Generate Class Weights Given a Multi-Class or Multi-Label Set of Classes Using Python, Supporting
One-Hot-Encoded Labels. 2021. Available online: https://gist.github.com/angeligareta/83d9024c5e72ac9ebc34c9f0b073c64c
(accessed on 10 July 2022).

51. Keras API Reference: Keras Applications ResNet and ResNetV2. Available online: https://keras.io/api/applications/resnet/
(accessed on 20 July 2022).

52. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

53. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez,
C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]

54. Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional neural networks for
medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [CrossRef] [PubMed]

55. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
56. Neptune.ai. Data Augmentation in Python: Everything You Need to Know by Vladimir Lyashenko. Available online: https:

//neptune.ai/blog/data-augmentation-in-python (accessed on 4 November 2023).
57. Perez, F.; Vasconcelos, C.; Avila, S.; Valle, E. Data Augmentation for Skin Lesion Analysis. In Proceedings of the 2018 Context-

Aware Operating Theaters 2018, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image
Analysis, Proceedings of the CARE CLIP OR 2.0 ISIC 2018, Granada, Spain, 16–20 September 2018; Springer: Cham, Switzerland,
2018; Volume 11041. [CrossRef]

58. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
59. Kaggle. Kaggle: Your Machine Learning and Data Science Community. Topic: Why No Augmentation Applied to Test or Validation Data

and Only to Train Data? Available online: https://www.kaggle.com/questions-and-answers/291581 (accessed on 5 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jid.2021.06.015
https://doi.org/10.3390/jcm11102833
https://www.ncbi.nlm.nih.gov/pubmed/35628958
https://doi.org/10.3390/jcm12031134
https://www.ncbi.nlm.nih.gov/pubmed/36769781
https://doi.org/10.3390/diagnostics14151672
https://doi.org/10.1186/1471-2342-14-36
https://doi.org/10.1016/j.infrared.2014.09.017
https://doi.org/10.1364/BOE.7.005294
https://doi.org/10.1117/1.JBO.22.6.065006
https://doi.org/10.3390/s18051441
https://doi.org/10.2316/P.2017.852-053
https://doi.org/10.1007/978-3-030-50420-5_45
https://doi.org/10.3390/s22197139
https://gist.github.com/angeligareta/83d9024c5e72ac9ebc34c9f0b073c64c
https://keras.io/api/applications/resnet/
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/TMI.2016.2535302
https://www.ncbi.nlm.nih.gov/pubmed/26978662
https://neptune.ai/blog/data-augmentation-in-python
https://neptune.ai/blog/data-augmentation-in-python
https://doi.org/10.1007/978-3-030-01201-4_33
https://doi.org/10.1186/s40537-019-0197-0
https://www.kaggle.com/questions-and-answers/291581

	Introduction 
	Recent Literature 
	Methods 
	Multispectral System and Dataset 
	Data Preprocessing and Augmentation 
	Training Strategy Selection 
	Deep Learning Architectures 
	Performance Metrics 
	Implementation 

	Results 
	Discussion 
	Conclusions 
	References

