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Abstract: This study represents a novel proof of concept of the clinical utility of miRNAs from
exhaled breath condensate (EBC) as biomarkers of lung cancer (LC). Genome-wide miRNA profiling
and machine learning analysis were performed on EBC from 21 healthy volunteers and 21 LC
patients. The levels of 12 miRNAs were significantly altered in EBC from LC patients where a specific
signature of miR-4507, miR-6777-5p and miR-451a distinguished these patients with high accuracy.
Besides, a distinctive miRNA profile between LC adenocarcinoma and squamous cell carcinoma was
observed, where a combined panel of miR-4529-3p, miR-8075 and miR-7704 enabling discrimination
between them. EBC levels of miR-6777-5p, 6780a-5p and miR-877-5p predicted clinical outcome at
500 days. Two additional miRNA signatures were also associated with other clinical features such
as stage and invasion status. Dysregulated EBC miRNAs showed potential target genes related to
LC pathogenesis, including CDKN2B, PTEN, TP53, BCL2, KRAS and EGFR. We conclude that EBC
miRNAs might allow the identification, stratification and monitorization of LC, which could lead to
the development of precision medicine in this and other respiratory diseases.

Keywords: exhaled breath condensate; microRNA; lung cancer; biomarkers; personalized medicine

1. Introduction

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer
death worldwide, with more than 1.8 million deaths in 2018, according to a GLOBOCAN
2018 estimate [1]. The average 5-year survival rate of lung cancer is disappointingly low
with a mortality rate of 85%. Most patients are diagnosed at an advanced stage, and half of
them will die within 1 year of diagnosis since at the time of diagnosis, only 15% of tumors
are still localized allowing surgical resection. The most common type of lung cancer is
non-small cell lung cancer (NSCLC), accounting for nearly 90% of all cases. The two main
types of NSLC are adenocarcinoma (AD) and squamous cell carcinoma (SCC, also known as
epidermoid carcinoma), which account for 30% and 25% of all lung cancers, respectively [2].
Although there have been recent advances in novel therapies for lung cancer, they are
not effective at an advanced stage of the disease and, therefore, these treatments have
not improved the prognosis for those patients [3]. Thus, an effective early screening
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test has been long sought to identify the disease in early stages, when treatments are
much more effective. Chest radiography and sputum cytology have been tested in early
screening trials, however, they were not effective in reducing lung cancer mortality rates [4].
More recently, screening with low-dose computed tomography (CT) has also been tested
in several clinical trials, but data from these studies are controversial since some studies
showed a reduction in mortality versus screening with standard chest X-rays [5,6] while
other smaller randomized controlled trials were inconclusive [7–9]. Apart from the fact that
false-positive results have been commonly detected in most of these screening trials, it is
also questionable whether low-dose CT could be translated into clinical practice because of
the resources and expertise required for the acquisition and interpretation of images. Thus,
it is crucial to develop accessible diagnostic tools to detect disease early, as well as the
type, the stage and the invasion capability of the tumor. We previously identified sensitive
biomarkers of lung adenocarcinoma through proteomic analysis of bronchoalveolar lavage
fluid [10]. However, this requires invasive sampling so it is not suitable for the screening
and early diagnosis of lung cancer. In contrast, exhaled breath condensate (EBC) contains
material from the lungs and the lower respiratory tract and can be collected non-invasively.
Therefore, it could be very useful in the diagnosis and prognosis of lung cancer [11].
There are several methods that can be applied to analyze the EBC for the identification
of volatile compounds emitted by tumor growth, including spectrographic techniques,
e-nose and trained dogs [12]. Thus, Philip et al. found a specific alteration of some volatile
organic compounds (VOCs) present in EBC that could be considered as a screen for lung
cancer in adult smokers [13]. Moreover, the combination of VOCs and chest CT even
potentially could improve the sensitivity and specificity of lung cancer diagnosis [14].

A number of other molecules have been reported to be present in EBC, includ-
ing polypeptides, proteins, and nucleic acids (DNA, mitochondrial DNA and microR-
NAs) [15]. In addition, mRNA isoforms of GATA6 (GATA-binding factor 6) and NKK2-1
(NK2 homeobox 1) in EBC have been proposed for lung cancer detection [16]. In this
scenario, we have recently reported that the proteomic analysis of EBC samples is an appro-
priate approach to develop biomarkers for the diagnosis of lung cancer [17]. MicroRNAs
(miRNAs) are small RNAs that by complementary sequence regulate gene expression
promoting the degradation of their mRNA target genes or repressing protein translation.
MiRNAs are key players in multiple cellular processes and their alteration has been associ-
ated with different diseases such as cancer [18]. The marked stability of cell-free miRNAs
in body fluids and the possibility of the detection of a small number of copies represent an
advantage of using miRNAs as biomarkers over other markers. Additionally, miRNAs lev-
els in the circulation change under pathological conditions as they can be passively and
actively secreted from diseased tissues. That detectable changes make cell-free miRNAs
promising non-invasive biomarkers for diagnosis and disease progression.

The utility of miRNAs as biomarkers in respiratory diseases has been widely re-
ported [19], however, their potential use as clinical tools in non-invasive samples such as
EBC has not yet been fully explored.

Here we report for the first time the genome-wide miRNA expression profile in EBC
samples from lung cancer patients as proof of concept of their potential clinical utility in the
diagnosis, prognosis and management of respiratory diseases (study design is displayed in
Figure 1).
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Figure 1. Overview of the study design. Genome-wide miRNA expression profiling was performed on exhaled breath
condensate (EBC) from 21 healthy volunteers and 21 lung cancer patients. The utility of EBC miRNAs as biomarkers of
diagnosis, type of tumor, stage, invasion capacity and prognosis was evaluated.

2. Materials and Methods
2.1. Subjects

This is a cross-sectional study including 42 subjects from the Respiratory Medicine
Department of the Reina Sofia Hospital (Córdoba, Spain).

The research was performed following the ethics code of the World Medical Asso-
ciation (Declaration of Helsinki). All participants signed the informed written consent.
The approval of the Ethics Committee of the Reina Sofia Hospital was obtained. The EBC
samples from 21 healthy donors and 21 patients diagnosed with lung cancer were collected
under fasting conditions and stored at −80 ◦C.

Lung cancer patients included 19 males and 2 females with an age of 62 ± 8 years,
while healthy donors were integrated by 20 males, 1 female with an age of 61 ± 9 years.
The type of lung cancer present in our cohort was AD (57%) and SCC (43%). Invasion was
present in 53% of lung cancer patients, while 60% showed metastatic cancer. Stage IV was
the most prevalent with 57%, following by stage III, II and I with 24, 14 and 5% respectively,
and the tumor size was of 49 ± 23 cm. Clinical details of the lung cancer patients and
healthy donors are displayed in Table 1.

The diagnosis included clinical tests performed on the 21 patients, based on fine-
needle biopsy, bronchoscopy, video-assisted thoracoscopy and subsequent cytohistology
confirmation. Subjects with coexistence of severe extrapulmonary disorder (grade IV
cardiac insufficiency according to the New York Heart Association, advanced hepatic
cirrhosis, stage V renal insufficiency), extrapulmonary neoplasm in the last five years,
specific lung disease not related to smoking (including pneumonia, interstitial pneumopa-
thy, tuberculosis, etc.) and unjustified weight loss in the last year were excluded from
both groups.
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Table 1. Clinical characteristics of lung cancer patients and healthy donors.

Healthy Donors Lung Cancer Patients

Number of Subjects 21 21

Gender (men/women) 20/1 19/2

Age (mean ± SD), years 61.33 ± 9.53 62.85 ± 8.06

Smoking (no/yes) 4/17 8/13

Lung Cancer Histology

Adenocarcinoma (AD) 11

Squamous cell carcinoma (SCC) 10

Stage (I/II/III/IV) 1/3/6/11

Metastasis (no/yes) 10/11

2.2. EBC Collection

By using the EcoScreen 2 device (FILT Lungen-und Thoraxdiagnostik, Berlin, Ger-
many) EBC was collected. Subjects wearing a nose clip breathed at a normal frequency
and continuous volume for a 15-min period through a disposable mouthpiece. The system
contained different valves that allowed the segregation of inhaled air from exhaled air.
Thereafter, the breath was driven to a cooling device, which condensed and separated
the EBC into two disposable polyethylene bags containing the EBC from the upper and
the distal airways. This approach avoids saliva contamination. Besides, a protection filter
(Scharlab, Barcelona, Spain) located over the inlet air valve does not allow the exogenous
particles enter from the atmosphere of the room.

In this study, EBC from lower airways was used in order to reduce the contribution of
upper airways (environmental factors influence) and increase the bronchial and alveolar
tracts involvement.

2.3. RNA Isolation

RNA was isolated from lower respiratory tract EBC by using the miRNeasy Serum/
Plasma Kit (Qiagen, Hilden, Germany). This kit purifies cell-free total RNA, which primar-
ily includes small RNAs such as miRNAs, from small volumes from diverse body fluids.
In brief, two hundred microliters of EBC was mixed with denaturing buffer. Next, the man-
ufacturer’s protocols were followed for RNA extraction. Finally, RNA was recovered in
14 µL of RNase-free water. The RNA concentration was quantified by NanoDrop ND-1000
(Nanodrop Technologies LLC, Wilmington, DE, USA).

2.4. Genome-Wide miRNA Expression Profiling

MicroRNA expression profile was carried out through GeneChipR miRNA 4.0 Array
using Affymetrix technology (Affymetrix, Sunnyvale, Santa Clara, CA, USA). The platform
contained 30424 probe sets designed to detect all mature human miRNA sequences (2578)
included in miRBase Release 20. Microarray experiments were conducted in all samples
following the manufacturer’s recommendations. Shortly, 5ul of total RNA was labeled
with FlashTag Biotin Labeling Kit and hybridized in the Affymetrix Hybridization Oven
640 at 48 ◦C overnight. Using fluidics script FS450_0003 the arrays were stained and then
scanned on an Axon 4000B microarray scanner (Axon Instruments, Foster City, CA, USA).

Raw data were processed using oligo package for R [20]. Expression data was obtained
by RNA background subtraction (treating the intensities of probe signals as a convolution
of noise and true signals), quantile normalization and median-polish summarization of
raw multichip data. Quality control of the output data was assessed using tests embedded
into the oligo package.
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2.5. Data Analysis and Statistics

Prior to differential gene expression analysis, probes not designed for human miRNA
detection were trimmed out from the dataset. We then selected the 5% more abundant
human miRNAs according to the individual median calculated across datasets and carried
out least squares regression statistical analysis available in the limma package for R to
identify differential gene expression between two groups [21]. Differences in miRNA
expression were deemed significant when p < 0.05. For each group comparison in this
study, we also performed a principal component analysis of scaled data from regulated mi-
croRNAs. Scaled data was obtained by subtracting individual miRNA levels average from
the corresponding miRNA levels of individuals samples, and by dividing the now centered
results by their standard deviations. We also designed training classification models to
detect variable importance amongst regulated miRNAs. A random forest algorithm was
therefore applied repeatedly. At each iteration, the number of variables randomly sampled
as candidates at each split in the decision trees was determined by testing the accuracy
of cross-validated random forests (500 trees), and the final model was designed using
the number of variables at each split that returned the best accuracy. Individual miRNA
importance in the model at each interaction, indicating the mean decrease in accuracy
by rearranging the values of each variable, was then identified and recorded. The least
important variable was identified and removed from the next iteration until the 3 miRNAs
with the highest importance were identified. We then used random forest models with
leave-one-out cross-validation (LOOCV) for the seven grouping possibilities to identify
the most accurate combination, and a binomial generalized linear model fitted with the
selected miRNAs was generated. Finally, we determined the sensitivity and specificity of
the individual selected miRNAs and the fitted model at various thresholds to generate
ROC curves. We then calculated the area under the curve to determine the diagnostic
ability of individual miRNAs and the fitted model to predict the outcome.

2.6. Target Gene Prediction and Integrated Analysis by IPA

The panel of EBC miRNAs associated with lung cancer patients and their clinical
characteristics were analysed to gain insight into the biological pathways, functions and
networks by using the Ingenuity Pathway Software (IPA). Potential mRNA targets (pre-
dicted with high confidence and experimentally observed) of the EBC-miRNA signa-
ture were recognised through different predicted tools (TargetScan, miRecords, TarBase,
and Ingenuity® knowledge Base) (IPA, Quiagen). Through the microRNA target filter tool,
we selected only mRNA targets showing either experimentally observed or high confidence
predicted interactions, which have been previously associated with the pathogenesis of
lung cancer.

3. Results
3.1. Lung Cancer Patients Exhibit an Altered EBC miRNA Profile

Using GeneChipR miRNA 4.0 array we profiled the miRNA expression of ECB sam-
ples from 42 subjects (21 lung cancer patients and 21 healthy controls). By applying a
robust multichip average algorithm, used to subtract background, normalise quantiles
and summarise raw microarray fluorescence data, the expression data from the 42 subjects
included in the study was obtained. Using a multiple-linear-model approach, we identified
a set of individual transcripts altered in lung cancer (p-value < 0.05) amongst the top 5%
most abundant miRNAs. Of these, 128 miRNAs, 9 miRNAs were significantly upregulated
(miR-6865-5p, miR-4707-5p, miR-451a, miR-1469, miR-4507, miR-6780a-5p, miR-668-5p,
miR-6794-5p and miR-7855-5p) while 3 were downregulated (miR-3921, miR-320a, miR-
6777-5p) in breath condensates from lung cancer patients (Figure 2A).

A principal component analysis of scaled results from the differentially expressed
miRNAs showed a separation between samples from cancer patients and healthy donors
(HDs) in component 1, which explains 24.9% of the variance observed (Figure 2B). A heat
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map including the levels and clustering of those individual transcripts was also obtained
(Figure 2C).

Figure 2. (A) Volcano plot showing fold change (FC) and statistical significance of individual miRNA levels in the breath
condensate of cancer patients compared to healthy donors. Blue and red dots represent negatively and positively regulated
miRNAs respectively (p < 0.05). (B) Regulated miRNAs calculated PCA plots showing the PC1 and PC2 scores for individual
cancer patients (red dots) and healthy donors (blue dots). (C) Heatmap showing z-score of miRNAs regulated in healthy
donors and cancer patients. (D) Accuracy of lung cancer prediction calculated by LOOCV models for individual miRNAs
and for the four possible combinations. (E,F) ROC curves predicted for an individual (E) and combined miRNAs (F) selected
through a random forest iteration model.

To identify the most suitable miRNAs in the breath condensate to be used as biomark-
ers of lung cancer, we designed training classification random forest models (500 trees) to
detect variable importance. The algorithm was applied repeatedly, and at each iteration,
the least important variable was flagged and removed from the next iteration until the
3 miRNAs with the highest importance were identified. We then developed random forest
models with leave-one-out cross-validation (LOOCV) for the seven grouping possibilities
using the selected variables and identified the model using all three miRNAs as the most
accurate one (Figure 2D).

At the individual level, miR-4507 showed the best specificity and sensitivity, with the
largest area under the curve (AUC of 0.70) in a receiver operating characteristic (ROC) plot
followed by miR-6777-5p and miR-451a (AUC of 0.66 and 0.63, respectively) (Figure 2E).
A binomial generalised linear model fitted with the three selected miRNAs was more
robust and showed a higher AUC of 0.83 (Figure 2F).

3.2. EBC miRNAs Discriminate between the Two Most Common Types of Lung Cancer AD and
SCC with High Accuracy

Twenty-eight miRNAs were differentially expressed in EBC from AD compared to SCC
lung cancer patients (Figure 3A). The PCA analysis of those miRNAs might distinguish
patients from both types of cancer (Figure 3B). The expression level of the signature
consisting of 28 miRNAs was significantly reduced in SCC compared with AD patients
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(Figure 3C). The top three biomarker miRNAs able to distinguish AD from SCC lung cancer
with the highest accuracy were miR-4529-3p, miR-8075 and miR-7704 after LOOCV and
ROC curve analysis (Figure 3D,E). The combined panel integrated by those three miRNAs
improved the individual capacity to discriminate between both types of lung cancer with
an AUC of 0.98, 100% specificity and 88% sensitivity (Figure 3F).

Figure 3. (A) Volcano plot showing fold change (FC) and statistical significance of individual miRNA levels in the breath
condensate of SCC (squamous cell carcinoma) compared to AD (adenocarcinoma) patients. Blue dots represent negatively
regulated miRNAs respectively (p < 0.05). (B) Regulated miRNAs calculated PCA plots showing the PC1 and PC2 scores for
individual SCC patients (purple dots) and AD patients (green dots). (C) Heatmap showing z-score of miRNAs regulated
in EBC from SCC and AD patients. (D) Accuracy of specific cancer type prediction calculated by LOOCV models for
individual miRNAs and for the four possible combinations. (E,F) ROC curves predicted for an individual (E) and combined
miRNAs (F) selected through a random forest iteration model.

3.3. Association of EBC miRNAs with Clinical Features of Lung Cancer: Stage and Invasion

Three specific signatures of EBC miRNAs distinguished clinical characteristics of
lung cancer including stage and invasion capability. A signature of 8 EBC miRNAs was
downregulated in patients with stage IV compared to those patients with less advanced
disease defined by stages I, II or III. This EBC miRNA signature was composed of miR-548ae,
miR-548ac, miR-1272, miR-4529-3p, miR-3124-5p, miR-602, miR-4787-5p and miR-551b-
5p (Figure 4A–C). The best EBC miRNA candidates as biomarkers to identify patients
with the most advanced stage of the disease were miR-602, miR-551b-5p and miR-1272
and the combined panel of these three miRNAs improved the discrimination capacity
of each miRNA independently with an AUC of 0.88, 89% specificity and 92% sensitivity
(Figure 4D–F).

Regarding the invasion capability of the tumors, a signature of 9 EBC miRNAs was
differentially expressed between invasive and non-invasive tumors. Invasive tumors were
characterised by the downregulation of miR-1233-5p, miR-6729-5p, miR-1298-3p, miR-548x-
3p, miR-548a-3p, miR-4668-5p, miR-663a, miR-1272, and the upregulation of miR-6803-5p
(Figure 5A–C). Three of these EBC miRNAs showed the highest accuracy as biomarkers
of invasion in lung cancer tumors including miR-6803-5p, miR-548x-3p and miR-1272.
The combination of these miRNAs in an integrated panel distinguished invasive from
non-invasive tumors with 100% specificity and sensitivity in our cohort (Figure 5D–F).
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3.4. EBC miRNAs Predict the Clinical Outcome of Lung Cancer Patients with High Accuracy

In order to evaluate the capacity of EBC miRNAs as biomarkers of prognosis, we per-
formed a prospective clinical follow-up of all the patients included in this study for 500 days
since the first EBC sample was collected. The final clinical outcome of lung cancer patients
after this time was defined as deceased or alive. Ten lung cancer patients were deceased and
8 were alive after 500 days. At this point, data from 3 patients were missing. Among the
deceased patients, 80% were at stage IV and 20% were at stage I-III at the moment of EBC
sample collection. In contrast, 25% of the alive patients were at stage IV and 75% were at
stage I-III by the time of EBC testing.

A signature of three miRNAs was differentially expressed at baseline between the two
prognosis groups. The expression level of miR-6777-5p was up-regulated, while 6780a-5p
and miR-877-5p were downregulated in the deceased group compared with the alive
group after 500 days. A principal component analysis highlighted the stratification of both
prognosis groups based on the expression of these miRNAs (Figure 6A–C). The potential
of the EBC miRNA signature as biomarker predictors of prognosis in lung cancer patients
was demonstrated through the ROC curve analysis which showed individual AUCs above
0.8. The combined model integrated by those three miRNAs predicted the prognosis at
500 days with 100% specificity and sensitivity along with an AUC of 1 in our cohort of
patients (Figure 6D–F). Interestingly, as 20–25% of lung cancer patients did not show a
correlation between their stage and outcome at 500 days, the panel of miRNAs predictors
of each clinical feature was independent.

Figure 4. (A) Volcano plot showing fold change (FC) and statistical significance of individual miRNA levels in the breath
condensate of lung cancer patients with stage IV compared to stage I-III. Blue dots represent negatively regulated miRNAs
(p < 0.05). (B) Regulated miRNAs calculated PCA plots showing the PC1 and PC2 scores for individual lung cancer patients
with stage IV (yellow dots) and stage I-III (blue dots). (C) Heatmap showing z-score of miRNAs regulated in EBC from lung
cancer patients with stage I-III and stage IV. (D) Accuracy of stage prediction calculated by LOOCV models for individual
miRNAs and for the four possible combinations. (E,F) ROC curves predicted for an individual (E) and combined miRNAs
(F) selected through a random forest iteration model.
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Figure 5. (A) Volcano plot showing fold change (FC) and statistical significance of individual miRNA levels in the breath
condensate of lung cancer patients with invasion compared to those having no invasion. Blue and red dots represent
negatively and positively regulated miRNAs respectively (p < 0.05). (B) Regulated miRNAs calculated PCA plots showing
the PC1 and PC2 scores for individual lung cancer patients with invasion (green dots) and patients having no invasion
(yellow dots). (C) Heatmap showing z-score of miRNAs regulated in EBC from lung cancer patients with and without
invasion. (D) Accuracy of invasion capacity prediction calculated by LOOCV models for individual miRNAs and for the
four possible combinations. (E,F) ROC curves predicted for an individual (E) and combined miRNAs (F) selected through a
random forest iteration model.

Taken together, our results highlight the potential of several miRNAs as useful
biomarkers candidates for diagnosis, prognosis and clinical features of lung cancer (Table 2).

3.5. The EBC miRNA Signature Associated with Lung Cancer and Its Clinical Features Shows
Multiple Potential mRNA Targets Related to the Disease

Ingenuity Pathway Analysis allowed us to identify potential targets of the miRNAs
identified in EBC that were signatures of lung cancer and associated with its clinical
features. This included a remarkable number of potential targets known to be related to
the pathogenesis of the disease. Thus, a complex network between EBC miRNAs and lung
cancer-associated mRNA targets was obtained where individual miRNAs simultaneously
interact with multiples mRNA targets. Among these miRNAs, miR-5001-5p, -6780a-5p,
-6794-5p, -5006-5p, -1908-5p, -1233-5p, -6803-5p, -6865-5p, and miR-6777-5p showed more
than 10 potential lung cancer-associated mRNA targets at the same time (Figure 7A).
Reciprocally, in this network, a number of individual lung cancer-associated mRNA targets
could be simultaneously regulated by multiples EBC miRNAs. Among these lung cancer-
associated genes, CDKN2B, CYCS, BCL2L1, CDK6, PTEN, TP53, BCL2, CDKN2A, IKBKG,
RASD1, STK4, TGFA and TRAF1, were predicted to be regulated by more than 5 EBC
miRNAs at the same time (Figure 7B,C).
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Figure 6. (A) Volcano plot showing fold change (FC) and statistical significance of individual miRNA levels in the breath
condensate of lung cancer patients who were deceased after 500 days and those alive. Blue and red dots represent negatively
and positively regulated miRNAs respectively (p < 0.05). (B) Regulated miRNAs calculated PCA plots showing the PC1 and
PC2 scores for individual lung cancer patients alive (blue dots) and deceased (orange dots). (C) Heatmap showing z-score
of miRNAs regulated in EBC from lung cancer patients who died and are alive after 500 days. (D) Accuracy of invasion
capacity prediction calculated by LOOCV models for individual miRNAs and for the four possible combinations. (E,F) ROC
curves predicted for an individual (E) and combined miRNAs (F) selected through a random forest iteration model.

Table 2. EBC miRNAs with potential as biomarkers in lung cancer.

Cancer vs. HDs Type of Cancer: AD vs. SCC Stage I-III vs. Stage IV

EBC miRNAs Combined Model EBC miRNAs Combined Model EBC miRNAs Combined Model

miR-6777-5p AUC: 0.837 miR-8075 AUC: 0.981 miR-602 AUC: 0.935
miR-4507 Specificity: 0.75 miR-4529-3p Specificity: 1 miR-551b-5p Specificity: 0.88
miR-451a Sensitivity: 0.81 miR-7704 Sensitivity: 0.88 miR-1272 Sensitivity: 0.91

Invasion vs. No Invasion Prognosis 500 days: Deceased vs. Alive

EBC miRNAs Combined Model EBC miRNAs Combined Model

miR-6803-5p AUC: 1 miR-877-5p AUC: 1
miR-548x-3p Specificity: 1 miR-6777-5p Specificity: 1

miR-1272 Sensitivity: 1 miR-6780a-5p Sensitivity: 1
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Figure 7. (A) Number of potential mRNA targets of the miRNAs identified in EBC that were signatures of lung cancer
and associated with its clinical features. Individual miRNAs can simultaneously interact with multiples mRNA targets.
(B,C) A number of individual lung cancer-associated mRNA targets could be simultaneously regulated by multiples
EBC miRNAs.

4. Discussion

We here show the proof of concept of the clinical utility of miRNAs from EBC as
non-invasive biomarkers for lung cancer. Previous studies have shown the potential of EBC
miRNAs as biomarkers for other respiratory diseases such as asthma, Chronic Obstructive
Pulmonary Disease (COPD), and pulmonary tuberculosis [22–24]. Pinkerton et al. analysed
a candidate panel of 39 miRNAs by PCR in 11 patients with asthma, 10 with COPD and
12 healthy volunteers (HDs). Three miRNAs including miR-1248, miR-1291 and let-7 were
downregulated in asthma compared with COPD and HDs, while miR-328 and miR-21 were
lower in both respiratory diseases compared with HDs [22]. Sinha et al. also analysed a
larger candidate panel of miRNAs in EBC from 10 patients with asthma and 10 HDs by
PCR. Seven miRNAs (miR-649, 1264, 2861, 574-5p, 453, 4256, 556-5p) were simultaneously
altered in both asthma and pulmonary tuberculosis, although to a much higher degree in
the tuberculosis group. They demonstrated that most of the detected miRNAs in EBC were
present in exosomes allowing the transference of miRNAs between cells and increasing
their stability in this biofluid [23]. To date, the only previous study of EBC in relation to
lung cancer, was by Monzzoni et al. who analysed the levels of two selected miRNAs
in EBC and plasma from 54 NSCLC and 46 HDs by PCR. They showed upregulation of
miR-21 and downregulation of miR-486 in both EBC and plasma from lung cancer patients,
suggesting the clinical utility of miRNAs as biomarkers for the diagnosis of NSCLC [24].

Our data showed that the unsupervised analysis of the whole miRNome in EBC allows
the identification of miRNA signatures that might differentiate individuals with lung cancer.
New studies with large cohorts of patients are needed to replicate and validate these and
other models that would significantly improve the early detection and management of this
and other respiratory diseases.

Currently, the only way to diagnose the type of lung cancer is through invasive biopsy
techniques. This is a critical step for the clinical decision of selecting the most suitable
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therapy for each patient. Several studies have identified potential miRNAs candidates
as biomarkers for typifying the type of cancer in histological samples. For example,
Zhang et al. identified four miRNAs highly expressed in SCC including miR-93, miR-205,
miR-221 and miR-30e, while adenocarcinoma was characterised by high expression of five
miRNAs like miR-29b, let-7e, miR-100, miR-29c and miR-125a-5p [25]. The specificity of
miR-205 as biomarker of SCC in lung biopsies has been confirmed in other two additional
studies [26,27]. In adenocarcinoma, Nadal et al. showed that miR-411, miR-370 and miR-
376a, were associated with poor survival after resection [28]. The translational potential of
these histological biomarkers was also demonstrated by the development of a microRNA-
based diagnostic assay called “miRview lung”, which distinguished four main lung cancer
subtypes with high accuracy (94%) using the expression of a signature of 8 miRNAs (miR-
205, miR-21, miR-125a-5p, miR-29b, miR-106a, miR-129-3p, miR-7, and miR-375) [29]. In our
study, we showed for the first time, that miRNAs coming directly from the respiratory tract
in non-invasive samples such as EBC can also identify the type of lung cancer with a high
degree of accuracy in a small cohort of patients. These promising results open the door
for new clinical studies to confirm the clinical utility of this non-invasive test which might
influence the early diagnosis, treatment and quality of life of these patients.

Despite the standard therapies, the severity and rapid progression of lung cancer are
associated with the aggressive behaviour of the disease involving key processes such as
invasion, migration and epithelial-to-mesenchymal transition. Numerous studies have
shown the key role of miRNAs in the regulation of genes, including transcription factors
and signalling pathways related to epithelial cell plasticity, cell invasion, migration and
metastasis [30]. The search for biomarkers that contribute to the early identification of these
processes is a crucial step in the prevention and treatment of lung cancer patients. Our pilot
study demonstrated that the analysis of the expression level of miRNAs in biofluids from
the respiratory tract such as EBC has the potential not only to identify the presence and the
subtype of lung cancer but also clinical features such as stage, invasion and metastasis.

Most lung cancer patients are diagnosed at late stages and conventional treatments in-
cluding surgery, chemotherapy and radiotherapy are not effective for those stages, which is
translated into a poor survival rate in the short-term. Thus, early diagnosis and accurate
prognosis are important factors to improve the survival rate of these patients. There are
several cancer-associated miRNAs that can predict the prognosis of lung cancer [31]. A re-
cent meta-analysis carried out by Xiao et al. which included 15 studies and 1753 lung
cancer patients in total, identified a signature of 18 miRNAs (8 down and 10 up) from
biopsies, serum and plasma associated with poorer overall survival [32]. In the present
study, we showed for the first time that the analysis of miRNAs in EBC from lung cancer
patients has the capacity to predict the clinical outcome of these patients in non-invasive
samples. Thus, the identification and validation of robust miRNA signatures in EBC in
large longitudinal studies might constitute a novel valuable tool for the early identification
of patients at higher risk.

Interestingly, we also noticed that several miRNAs including miR-1272, miR-6858,
miR-5094, miR-6727, miR-320b and miR-548 family were simultaneously associated with
several clinical features, such as the presence of the tumor (miR-6858 and miR-5094), type of
lung cancer (miR-1272, miR-6858 and miR-6727), metastasis (miR-1272, miR-5094, miR-
6727, miR-320b and miR-548 family), invasion (miR-1272 and miR-548 family) and stage
(miR-1272, miR-5094, miR-320b and miR-548 family), which reinforces their relevant role
as potential biomarkers of this disease.

In addition, we identified potential mRNA targets of the EBC miRNAs known to
be related to lung cancer pathogenesis. Thus, individual miRNAs could simultaneously
interact with multiples mRNA targets and reciprocally individual mRNA targets could be
simultaneously regulated by multiples EBC miRNAs

Among them, KRAS, which is frequently mutated in lung cancer, and EGFR, which is
a major therapeutic target in this disease, were also predicted targets of three miRNAs
identified in EBC from lung cancer patients.



J. Pers. Med. 2021, 11, 111 13 of 14

These results highlighted the likely coordinated dysregulation of the EBC miRNA
profile in lung cancer patients which might influence the pathologic mechanism driven
by their potential mRNA targets. Future studies are needed to further characterise the
relationship between these miRNAs and mRNA targets and to gain insight into the biologic
role of miRNAs in EBC.

Limitations of the study: authors recognize the impact of the small sample size may
have on the strength of the results, not allowing some kind of analysis such as the effect of
the medications or the differentiation among all the stages of the tumor or other clinical
features. A larger cohort of patients and healthy donors would be necessary to replicate
and validate these results and reach a conclusive model.

In conclusion, our findings demonstrate proof of principle that the integration of
unsupervised high-throughput analysis such as the genome-wide miRNA profiling of EBC
from lung cancer patients, and advances in computational tools, such as machine learning,
could allow the identification, stratification and monitorisation of lung cancer patients with
high accuracy in a non-invasive type of sample. This proof of concept paves the way for
the development of large clinical studies involving this and other respiratory diseases in
the era of personalised medicine that could have a substantial impact on the prognosis of
individuals with lung disease.
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