
Supplementary Table S1. LIDC Nodule Characteristics, Definitions, and Ratings [1]. 
    
Characteristic Ratings   Description 
Calcification 1 Popcorn Calcification appearance in the nodule - the smaller the 

nodule, the more likely it must contain calcium in order to be 
visualized. Benignity is highly associated with central, non-
central, laminated, and popcorn calcification 

(categorical) 2 Laminated  
  3 Solid 
  4 Non-central  
  5 Central  
  6 Absent  
Internal structure  1 Soft tissue  Expected internal composition of the nodule 
(categorical) 2 Fluid    
  3 Fat   
  4 Air    
Lobulation  1 Marked  Whether a lobular shape is apparent from the margin or not - 

lobulated margin is an indication for benignity (ordinal) 2 . 
  3 . 
  4 . 
  5 None 
Malignancy 1 Highly unlikely Likelihood of malignancy of the nodule - malignancy is 

associated with large nodule size while small nodules are 
more likely to be benign. Most malignant nodules are non-
calcified and have speculated margins. 

(ordinal) 2 Moderately unlikely 
  3 Indeterminate 
  4 Moderately suspicious  
  5 Highly suspicious 
Margin 1 Poorly defined How well defined the margins of the nodules are 
(ordinal) 2 .   
  3 .   
  4 .   
  5 Sharp    
Sphericity 1 Linear Dimensional shape of nodule in terms of roundness 
(ordinal) 2 .   
  3 Ovoid   
  4 .   
  5 Round   
Spiculation 1 Marked Degree to which the nodule exhibits spicules, spike-like 

structures, along its border - spiculated margin is an 
indication of malignancy 

(ordinal) 2 . 
  3 . 
  4 . 
  5 None 
Subtlety 1 Extremely subtle  Difficulty in detection - refers to the contrast between the 

lung and its surroundings (ordinal) 2 Moderately subtle 
  3 . 
  4 Fairly subtle 
  5 Obvious 
Texture 1 Nonsolid Internal density of a nodule - texture plays an important role 

when attempting to segment a nodule, since part-solid and 
nonsolid texture can increase the difficulty of defining the 
nodule boundary 

(ordinal) 2 . 
  3 Part-solid/mixed 
  4 . 
  5 Solid 



1 Opulencia P, Channin DS, Raicu DS, Furst JD (2011) Mapping LIDC, RadLex, and lung nodule 
image features. J Digit Imaging 24:256-270 

Supplementary Table S2. LIDC criteria scored by a thorax radiologist   
   

  
BRAF Mutant  
(N=82 lesions) 

BRAF wild type  
(N=87 lesions) 

Calcification      

Popcorn      
Yes 0 0 
No 82 87 

Laminated     
Yes 0 0 
No 82 87 

Solid     
Yes 0 1 
No 82 86 

Non-central     
Yes 0 0 
No 82 87 

Central      
Yes 1 0 
No 82 87 

Absent      
Yes 75 80 
No 7 7 

Internal structure     
Soft tissue      

Yes 75 81 
No 7 6 

Fluid      
Yes 0 0 
No 82 87 

Fat      
Yes 0 0 
No 82 87 

Air      
Yes 1 1 
No 81 86 

Lobulation (ordinal)     
1 Marked  10 7 
2 1 0 
3 4 5 



4 20 26 
5 None 47 49 

Malignancy      
Highly unlikely  8 5 
Moderate unlikely  2 0 
Indeterminate  0 1 
Moderately suspicious  1 1 
Highly suspicious  71 80 

Margin (ordinal)     
1 Poorly defined  8 5 
2 3 1 
3 12 11 
4 4 12 
5 Sharp  55 58 

Sphericity (ordinal)     
1 Linear  9 7 
2 3 2 
3 Ovoid  33 28 
4 20 25 
5 Round 17 25 

Spiculation (ordinal)     
1 Marked  8 6 
2 2 1 
3 1 2 
4 6 6 
5 None 65 72 

Subtlety      
1 Extremely subtle  7 5 
2 Moderately subtle  0 0 
3 0 0 
4 Fairly subtle  0 1 
5 Obvious  75 81 

Texture      
1 Nonsolid 10 5 
2 0 0 
3 Part-solid/mixed  0 0 
4 0 0 
5 Solid 72 82 
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(16 features) 
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*Abbreviations: COM: center of mass; GLCM: gray level co-occurrence matrix; MS: multi slice; NGTDM: neighborhood gray tone difference matrix; GLSZM: gray level size zone matrix;
GLRLM: gray level run length matrix; LBP: local binary patterns; LoG: Laplacian of Gaussian; std: standard deviation.  

  



 

Figure S1 Visualization of the 100x random-split cross-validation, including a second 5x random-split cross-validation within the training set. 



 

Figure S2 Flowchart of excluded and included patients. 
  



Supplementary Materials Supplementary Material 1: Radiomics feature extraction This supplementary material is similar to1, but details relevant for the current study are highlighted.  A total of 540 radiomics features were used in this study. All features were extracted using the defaults for CT scans from the Workflow for Optimal Radiomics Classification (WORC) toolbox2, which internally uses the PREDICT 3 and PyRadiomics4 feature extraction toolboxes. For CT scans, the images are not normalized as the scans already have a fixed unit and scale (i.e. Hounsfield), contrary to MRI. The code to extract the features for this specific study has been published open-source5. An overview of all features is depicted in Supplementary Table S3. For details on the mathematical formulation of the features, we refer the reader to Zwanenburg et al. (2020)6. More details on the extracted features can be found in the documentation of the PREDICT, PyRadiomics, and mainly the WORC documentation7.  The features can be divided in several groups. Thirteen intensity features were extracted using the histogram of all intensity values within the ROIs and included several first-order statistics such as the mean, standard deviation and kurtosis. These describe the distribution of Hounsfield units within the lesion. Thirty-five shape features were extracted based only on the ROI, i.e. not using the image, and included shape descriptions such as the volume, compactness and circular variance. These describe the morphological properties of the lesion. Nine orientation features were used, describing the orientation of the ROI, i.e. not using the image. Lastly, 483 texture features were extracted using Gabor filters (144 features), Laplacian of Gaussian filters (36 features), vessel (i.e. tubular structures) filters (36 features)8, the Gray Level Co-occurrence Matrix (144 features)6, the Gray Level Size Zone Matrix (16 features)6, the Gray Level Run Length Matrix (16 features)6, the Gray Level Dependence Matrix (14 features)6, the Neighbourhood Grey Tone Difference Matrix (5 features)6, Local Binary Patterns (18 features)9, and local phase filters (36 features) 10. These features describe more complex patterns within the lesion, such as heterogeneity, occurrence of blob-like structures, and presence of line patterns.   



Supplementary Materials 2: Model optimization This appendix is similar to1, but details relevant for the current study are highlighted.  The Workflow for Optimal Radiomics Classification (WORC) toolbox2 makes use of adaptive algorithm optimization to create the optimal performing workflow from a variety of methods. WORC defines a workflow as a sequential combination of algorithms and their respective parameters. To create a workflow, WORC includes algorithms to perform feature scaling, feature imputation, feature selection, oversampling, and machine learning. If used, as some of these steps are optional as described below, these methods are performed in the same order as described in this appendix. More details can be found in the WORC documentation 7. The code to use WORC for creating the BRAF decision models in this specific study has been published open-source5.   When a feature could not be computed, e.g. the lesion is too small or a division by zero occurs, feature imputation was used to estimate replacement values for the missing values. Strategies for imputation included 1) the mean; 2) the median; 3) the most frequent value; and 4) a nearest neighbor approach. Feature scaling was performed to make all features have the same scale, as otherwise the machine learning methods may focus only on those features with large values. This was done through z-scoring, i.e. subtracting the mean value followed by division by the standard deviation, for each individual feature. In this way, all features had a mean of zero and a variance of one. A robust version of z-scoring was used, in which outliers, i.e. values below the 5th percentile or above the 95th percentile, are excluded from computing the mean and variance.  Feature selection was performed to eliminate features which were not useful to distinguish between the classes, i.e. BRAF mutant vs. BRAF wild-type. These included; 1) a variance threshold, in which features with a low variance (<0.01) are removed. This method was always used, as this serves as a feature sanity check with almost zero risk of removing relevant features; 2) optionally, a group-wise search, in which specific groups of features (i.e. intensity, shape, and the subgroups of texture features as defined in Supplementary Materials 1) are selected or deleted. To this end, each feature group has an on/off variable which is randomly activated or deactivated, which were all included as hyperparameters in the optimization; 3) optionally, individual feature selection through univariate testing. To this end, for each feature, a Mann-Whitney U test is performed to test for significant differences in distribution between the labels (e.g. BRAF mutant vs BRAF wild-type). Afterwards, only features with a p-value above a certain threshold are selected. A Mann-Whitney U test was chosen as features may not be normally distributed and the samples (i.e. lesions) were independent; and 4) optionally, principal component analysis (PCA), in which either only those linear combinations of features were kept which explained 95% of the variance in the features or a limited amount of components (between 10 – 50). These feature selection methods may be combined by WORC, but only in the mentioned order.  Oversampling was used to make sure the classes were balanced in the training dataset. These included; 1) random oversampling, which randomly repeats patients of the minority class; and 2) the synthetic minority 



oversampling technique (SMOTE)11, which creates new synthetic "lesions" using a combination of the features in the minority class. Randomly, either one of these methods or no oversampling method was used. Lastly, machine learning methods were used to determine a decision rule to distinguish the classes. These included; 1) logistic regression; 2) support vector machines; 3) random forests; 4) naive Bayes; and 5) linear and quadratic discriminant analysis.   Most of the included methods require specific settings or parameters to be set, which may have a large impact on the performance. As these parameters have to be determined before executing the workflow, these are so-called "hyperparameters". In WORC, all parameters of all mentioned methods are treated as hyperparameters, since they may all influence the decision model creation. WORC simultaneously estimates which combination of algorithms and hyperparameters performs best. A comprehensive overview of all parameters is provided in the WORC documentation7.  By default in WORC, the performance is evaluated in a 100x random-split train-test cross-validation. In the training phase, a total of 100,000 pseudo-randomly generated workflows is created. These workflows are evaluated in a 5x random-split cross-validation on the training dataset, using 85% of the data for actual training and 15% for validation of the performance. All described methods were fit on the training datasets, and only tested on the validation datasets. The workflows are ranked from best to worst based on their mean performance on the validation sets using the F1-score, which is the harmonic average of precision and recall. Due to the large number of workflows executed, there is a chance that the best performing workflow is overfitting, i.e. looking at too much detail or even noise in the training dataset. Hence, to create a more robust model and boost performance, WORC combines the 50 best performing workflows into a single decision model, which is known as ensembling. These 50 best performing workflows are re-trained using the entire training dataset, and only tested on the test dataset. The ensemble is created through averaging of the probabilities, i.e. the chance of a lesion being BRAF mutant or BRAF wild-type, of these 50 workflows.   The code for the model creation, including more details, has been published open-source5.   
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