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Abstract: Re-operations and revisions are often performed in patients who have undergone total
shoulder arthroplasty (TSA) and reverse total shoulder arthroplasty (RTSA). This necessitates an
accurate recognition of the implant model and manufacturer to set the correct apparatus and pro-
cedure according to the patient’s anatomy as personalized medicine. Owing to unavailability and
ambiguity in the medical data of a patient, expert surgeons identify the implants through a visual
comparison of X-ray images. False steps cause heedlessness, morbidity, extra monetary weight, and
a waste of time. Despite significant advancements in pattern recognition and deep learning in the
medical field, extremely limited research has been conducted on classifying shoulder implants. To
overcome these problems, we propose a robust deep learning-based framework comprised of an
ensemble of convolutional neural networks (CNNs) to classify shoulder implants in X-ray images of
different patients. Through our rotational invariant augmentation, the size of the training dataset is
increased 36-fold. The modified ResNet and DenseNet are then combined deeply to form a dense
residual ensemble-network (DRE-Net). To evaluate DRE-Net, experiments were executed on a 10-fold
cross-validation on the openly available shoulder implant X-ray dataset. The experimental results
showed that DRE-Net achieved an accuracy, F1-score, precision, and recall of 85.92%, 84.69%, 85.33%,
and 84.11%, respectively, which were higher than those of the state-of-the-art methods. Moreover, we
confirmed the generalization capability of our network by testing it in an open-world configuration,
and the effectiveness of rotational invariant augmentation.

Keywords: shoulder arthroplasty; X-ray images; implant classification; deep learning; dense residual
ensemble-network; rotational invariant augmentation

1. Introduction

The human shoulder is the most mobile joint of the body. The shoulder may be
damaged owing to severe fractures or injuries to the upper arm or severe joint infection.
Shoulder surgery is needed when damage to the shoulder joint progresses to such an extent
that non-operative procedures cannot resolve the issue or the joint movement causes severe
pain. According to the Agency for Healthcare Research and Quality, 53,000 Americans
undergo shoulder replacement surgery each year [1]. Total shoulder arthroplasty (TSA)
and reverse total shoulder arthroplasty (RTSA) [2] are medical procedures for treating
arthritic shoulder joints. With this treatment, a prosthesis is used to repair the damaged
joint of the shoulder to re-establish movement and reduce pain. TSA and RTSA are critical
for shoulder pain in osteoarthritis. Proper preoperative preparation can help avoid many
complications in the revision of TSA and RTSA.
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One key surgical step that helps avoid more common complications is identifying
prostheses to properly position them. As the morphology of the human shoulder varies
from person to person, prostheses are comprised of fixtures and superstructures that can
vary by their model, structure, and manufacturer. Therefore, the “one size fits all” idea
is not suitable for the treatment of shoulder arthroplasty. Therefore, selecting the correct
prostheses model from the right manufacturer for the right patient is very important
as personalized medicine. Designing a framework for automatic selection of suitable
prostheses for a patient would allow the surgeons to conduct prior and more effective
decision-making.

There are many different combinations of device characteristics and surgical ap-
proaches, and surgeons often deal with a small number of implants at a time to maximize
their expertise with the technology [3]. With a lack of comparable data, surgeons choose
which from the few implants they currently offer are appropriate solutions for each pa-
tient, rather than choosing from the whole range of alternatives available on the market.
However, in some clinical situations, surgeons may believe that only one device is the
best option. Older patients, for example, are unlikely to gain additional benefits from a
newer implant, but they are at higher risk of surgical problems than younger patients if
revision is required [4]. In such cases, selecting a particular implant is crucial. Owing to
the limited experience of surgeons with limited implants models, this makes them difficult
to work in such situations. Moreover, implants are not identified by medical doctors due
to incoherence in documentation and global limitations relating to access to such records,
in particular by outside hospital systems [5]. With time, some models of former implants
have been halted and their production cut off, whereas new models that differ somewhat
from the prior models are being introduced by manufacturers. Moreover, the inclinations
of doctors toward certain prostheses change over time. In an investigation carried out by
arthroplasty surgeons, 88% of surgeons indicated that implant identification is a critical
obstacle to the treatment of an arthroplasty patient [6]. Different prosthesis models require
different systems and equipment for replacement and repair, and accurate identification
of the model is mandatory. Failure to identify the correct model before surgery results in
a waste of healthcare resources, time, and the health of the patient. In some situations,
the manufacture and model of the implant might be obscure to surgeons and patients, for
example when the original medical procedure is performed outside of the county, and the
patients are unable to access their medical records. Over 40% of patients in institutions
other than their original arthroplasty are less likely to access outside medical records in
a timely manner [5]. As for other reasons why the prosthesis model and manufacturer
are unknown, the first original surgery might be performed numerous years before the
subsequent surgery, and the patient’s medical information might become lost or unclear.
In these cases, medical experts identify a prosthesis through a visual comparison of X-ray
images and an implant atlas [7]. This task is tedious, time-consuming, dependent on
the surgeon’s experience, and an erroneous recognition can have certain consequences.
Therefore, there is a need for an automated method for the identification of prostheses to
aid surgeons with pre-operative planning and to save time and medical costs. However,
high intra-class variabilities and low inter-class variabilities in shoulder implants appear in
X-ray images, as shown in Figure 1, which makes this research extremely challenging.
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and lower-right images show the cases of four manufacturers of Cofield, Depuy, Tornier, and Zimmer, respectively.

Despite significant advancements in pattern recognition and deep learning (DL) in the
medical field, there has been extremely limited research conducted on classifying shoulder
implants. To address these issues, we propose a robust deep-learning-based framework
comprising an ensemble of convolutional neural networks (CNNs) to classify shoulder
implants in X-ray images. Compared to previous studies, our research is novel in the
following five ways.

• To effectively identify shoulder implants, we propose a dense residual ensemble-
network (DRE-Net) comprising two CNN models and a shallow concatenation net-
work (SCN). Our network achieves a higher accuracy compared with state-of-the-art
studies.

• We propose a rotational invariant augmentation (RIA) to tackle the overfitting prob-
lem.

• To check the generalization capability of our network, the proposed DRE-Net is
analyzed in different configuration modes of open and closed worlds.

• We analyzed the impact of end-to-end and sequential training of DRE-Net on the
testing accuracy of shoulder implant images.

• Our model is publicly available [8] for a fair comparison by other researchers.

The remainder of this paper proceeds as follows. In Section 2, related studies on
the classification of different prostheses are described. Section 3 details our proposed
classification framework for shoulder implants. In Section 4, the experimental setup and
results are presented. Finally, the discussion and conclusions are presented in Sections 5
and 6, respectively.

2. Related Works

Previous studies on implant recognition have classified handcrafted feature-based
and deep feature-based methods. Prior to the approach of DL strategies, previous studies
have considered handcrafted feature-based methods for implant identification [9–11].

DL models have recently contributed pivotal additions in different clinical areas [12,13],
including lesion classification [14,15], lesion detection [16–18], and lesion segmentation [19–22].
DL also affects every clinical specialty, including orthopedic surgery [23,24]. Plain film
radiographs have been subjected to highly developed DL methods for identification of
the elbow, wrist, ankle, and humerus; classification of the hip fracture types and proximal
humerus; detection of the presence of arthroplasty and its type; detection of aseptic loos-
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ening; and staging the severity of knee osteoarthritis; among other applications [25–31].
In [32], a DL system was proposed to classify the knee implants of three datasets. The
authors used variants of the residual network (ResNet) for different datasets and conducted
a classification of two manufacturers and two models. Their network is trained to recog-
nize only two classes, which limits its generalizability. In [33], the authors achieved 99%
accuracy by using an artificial intelligence-based DL model to classify knee implants from
four manufacturers. In [34], the authors used the visual geometry group (VGG)-16 and
VGG-19 models by applying transfer learning to classify dental implants in panoramic
X-ray images. Transfer learning with pre-trained networks is effective for learning richer
features from large datasets to a small dataset to achieve a high level of accuracy. They
manually segmented the panoramic images, and their network was unable to detect the
uncropped panoramic image.

In [35], the authors used different CNN models, including SqueezeNet [36],
GoogLeNet [37], ResNet-18 [38], MobileNet-v2 [39], and ResNet-50 [38] for the classifica-
tion of dental implants in X-ray images. They used transfer learning with these pre-trained
networks and achieved an accuracy of 90%–97%. In [40], they used a dense convolutional
network (DenseNet)-201 [41] CNN with transfer learning to classify three total hip re-
placement prosthesis models in X-ray images with 100% accuracy. They implemented
DenseNet-201 using two different weight initialization methods: (1) a random Gaussian
distribution and (2) pre-trained weights of a CNN on the ImageNet database [42]. They
demonstrated that a pretrained CNN cannot learn to identify the implant design in X-
ray images well. DL also plays a vital role in the detection and classification of bone
fractures [27,43]. However, this study was limited to a binary classification of broken
and unbroken bones. In [44], a computer-assisted diagnosis (CAD) system based on a
hierarchical CNN was designed for the classification of different types of fractures in X-ray
images. However, in the case of some classes, the accuracy does not meet the expectations
of physicians, and the system still needs to be improved for the classification of subclasses.
A deep learning-based study was conducted on the classification of shoulder implants by
four manufacturers, where the authors presented comparisons of DL models with different
classifiers [45]. Nevertheless, the experiments were only conducted for a closed-world
problem. They used the transfer-learning method and did not involve an open-world
setting to address real-world problems. In [46], DL was used for the binary classification of
shoulder implant models. They used a transfer learning approach and fine-tuned ResNet-
18 for binary classification of the existence of arthroplasty implants. Similarly, they used the
same approach to distinguish between TSA and RTSA. Finally, they used five fine-tuned
models based on ResNet-152 to classify the five TSA models in a binary fashion. However,
there is a possibility for an image to be labeled for multiple classes using this method.

To overcome these problems, we propose DRE-Net comprised of two deep CNNs
and an SCN to classify shoulder implants in X-ray images. We considered a total of four
different classes by manufacturers of 597 unidentified patients related to shoulder implants.
We propose a deep feature-based framework for the accurate identification of shoulder
implants to ease surgeons. We also address the open-world configuration and found that
our model has the capability of generalizability and is therefore applicable to real-world
problems.

Table 1 shows comparisons of the strengths and weaknesses of previous studies and
our approach for the recognition of implants in X-ray images.
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Table 1. Comparisons between our proposed and previous methods for implant recognition in X-ray images.

Category Type Methods # Classes Results Strength Weakness

Handcrafted
feature-based

Knee Template matching [9] 1 70% to 90% accuracies
- Uses a simple image processing technique including
Sobel operator, binarization, and template matching
- Computationally efficient

Requires 3D CAD models for template generation of implants

Dental

Active contours +
K-nearest

neighborhood (K-NN)
[10]

11 91% of the known implants are
recognized

- Optimal initial location of the contour can be selected by
their method
- Uses simple machine learning algorithm for
classification

- K-NN classifier is time-consuming for large numbers of
features
- Because of the large number of dental implant models, their
approach returns a set of possible candidate results for
identifying new implants and needs a user interaction to
verify the candidate result

Shoulder

Hough transform +
histogram

equalization + mean
shift filter [11]

4 77% precision, and 64%
F-measure

- Uses conventional image processing schemes involving
bilateral filter, mean shift filter, and a median blur filter
- Develops a pre-processing tool for training a classifier

Segmentation performance is dependent on the growing
approach of seed region

Deep
feature-based

Knee

Pre-trained CNN [32] 2 100% sensitivity, and 100%
specificity

- High classification performance
- Precisely determines the presence of total knee
arthroplasty (TKA)
- Accurately classifies the TKA and unicompartmental
knee arthroplasty (UKA)

Classification is performed in a binary fashion (the presence
of implant)

Pre-trained CNN [33] 9 99% accuracy, 95% sensitivity,
and 99% specificity High classification performance Pre-processing is needed

and computationally expensive

Dental
Pre-trained CNN [34] 11 93.5% accuracy, 91.6%

F-measures
High average classification accuracy with a small dataset
of panoramas

VGG network can be replaced with the state-of-the-art
networks

Pre-trained CNN [35] 4 96% to 97% accuracies High classification performance and computationally
efficient

Their method is unable to detect several implants
simultaneously

Hip Pre-trained CNN [40] 3 100% accuracy High classification performance
- Requires high processing power for extensive training
- Uses only one post-surgery anteroposterior (AP) X-ray per
patient

Shoulder

Pre-trained CNN [46] 2
95% sensitivity, and 90%
specificity to classify TSA and
RTSA

- High accuracy to detect the existence of shoulder
arthroplasty
- High sensitivity to classify TSA and RTSA

Classification is performed in a binary fashion (the presence
of implant)

Pre-trained CNN [45] 4 80.4% accuracy, 80% precision,
75% recall, and 76% F1-score

- First deep learning based-approach to classify the
manufacturers of shoulder implants
- Higher classification accuracy than non-deep
learning-based methods

- Accuracies are needed to be enhanced
- Performance was measured only by closed-world
configuration

DRE-Net (Proposed) 4
85.92% accuracy, 84.69%
F1-score, 85.33% precision, and
84.11% recall

- High classification accuracy
- Applicable to real-world problems by considering both
closed-world and open-world configurations

Requires more training time
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3. Proposed Methods
3.1. Overview of Proposed Method

Figure 2 shows the overall procedure of our proposed method of shoulder implant
classification. During the training phase, input images of 224 × 224 × 3 were augmented
using the proposed RIA. This technique artificially increases the number of training datasets
by the in-plane rotation of each image from 0◦ to 360◦ with an interval of 10◦. In this way, in
addition to the original image, we obtained 36 augmented images from one input. Training
is then applied with the proposed DRE-Net, including a modified ResNet-50, a modified
DenseNet-201, and an SCN for feature concatenation. During the testing phase, an image
is input into the trained DRE-Net, and the final classification of the shoulder implant is
conducted based on the output of DRE-Net. Detailed explanations of the proposed RIA
and DRE-Net are presented in Sections 3.2 and 3.3, respectively.
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3.2. Rotational Invariant Augmentation (RIA)

The performance of a deep CNN on a dataset, including a small number of images,
usually suffers from many different problems, such as an overfitting and a lack of generality.
To address this issue, data augmentation has been proposed. Data augmentation includes
setting up strategies that upgrade the size and worth of the training dataset with an end
goal in which better DL models can be assembled utilizing such strategies [47]. Therefore,
we augmented our training dataset based on the in-plane rotation. As a reason for using
the in-plane rotation scheme, our dataset consists of implanted shoulder prostheses with
rod-like shapes that are easily in-plane rotated in the captured X-ray images, as shown in
Figure 1. Data augmentation by an in-plane rotation is applied on each image by rotating
the image based on an image center of between 0◦ and 360◦, with an interval of 10◦. In this
way, we obtained each image with 36 postures at different angles. Figure 3 shows the RIA
samples of one image from the Cofield class.
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3.3. Classification of Shoulder Implants by DRE-Net

In machine learning, ensemble strategies merge various learning algorithms to achieve
a preferable performance over any of the constituent models alone [48,49]. In the general
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frameworks of image classification, the main element is the optimum representation of
the visual details or features. Based on this, we propose DRE-Net for the classification
of shoulder implants, as shown in Figure 4. In the first stage of DRE-Net, an input
image of 224 × 224 × 3 is input to two CNNs of modified ResNet-50 and DenseNet-201,
which are modified by removing the fully connected layer (FCL) to extract the optimum
features. Explanations of the first stage based on modified ResNet-50 and DenseNet-201
are presented in Sections 3.3.1 and 3.3.2, respectively. In the second stage of DRE-Net, the
SCN obtains two feature vectors (f 1 and f 2 of Figure 4) from the first-stage networks. These
features are then concatenated and passed through the FCL and SoftMax layers to classify
the shoulder implant into one of the four manufacturers. Detailed explanations of our
developed SCN are presented in Section 3.3.3.
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Deep CNNs have demonstrated extreme power in representation learning because
they learn the features on a pre-training task and transmit effective knowledge to the
target tasks. AlexNet [50], VGG, GoogLeNet, ResNet, and DenseNet are commonly used
deep CNNs for transfer learning. The experiments showed that constructing a deep
network by copying layers from a learned shallow model leads to a high training error
owing to vanishing gradient problems [38]. The residual network has an identity shortcut
connection that skips some layers and therefore assists in shielding the network from
vanishing gradient issues and improving the performance by deepening the network.
Residual nets [38] were first placed in the ImageNet competition [51] for classification,
localization, detection, and scoring the first position in common objects in context (COCO)
competition for detection and segmentation. In our work, a state-of-the-art deep learning
model of ResNet-50 pre-trained on the ImageNet dataset [42] was modified to extract the
features for the classification of shoulder implant images.

As shown in Table 2, an image with a resolution of 224 × 224 × 3 was given as an
input to the first layer labeled “Image Input.” The second layer labeled “Conv 1” was
comprised of 64 filters of 7 × 7 × 3, which exploits the input image. The convolution
layer is a max-pooling layer, which reduced the dimensions of the feature map to a pixel
resolution of 56 × 56 × 64. Following the max-pooling layer, the layers were grouped into
four residual blocks. Each residual block was comprised of two layers of a 1×1 convolution
and one layer of a 3 × 3 convolution. The first group of layers labeled “Conv 2_x” were
comprised of three residual blocks, which processed the feature map and down-sampled it
to a pixel resolution of 56× 56× 256. The output feature map of “Conv 2_x” was processed
by the second group of layers labeled “Conv 3_x.” This group contained four residual
blocks and output a feature map with a pixel resolution of 28× 28× 512. Similarly, the third
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group of layers, labeled “Conv 4_x,” contained six residual blocks. It processed the feature
map of “Conv 3_x” and generated a feature map with a pixel resolution of 14 × 14 × 1024.
The last group of layers labeled “Conv 5_x” contained three residual blocks. It processed
the feature map of the previous layer and produced a 7 × 7 × 2048 sized feature map.
Finally, the last average pooling layer named “Average Pooling” was applied with a filter
size of 7 × 7 pixels and obtained a spatial feature vector f1 of 1 × 1 × 2048. The last three
layers of ResNet, labeled “FCL,” “SoftMax,” and “Classification Output” were removed in
our modified ResNet to enhance the training convergence and extract only features not
considering the classification.

Table 2. Layer configuration details of modified ResNet-50.

Layers Name Output Feature Map Size Kernel Size Number of Iterations

Image Input 224 × 224 × 3 - -

Conv 1 112 × 112 × 64 7 × 7 conv 1

Max Pooling 56 × 56 × 64 3 × 3 max pool 1

Conv 2_x 56 × 56 × 256
1 × 1 conv
3 × 3 conv
1 × 1 conv

3

Conv 3_x 28 × 28 × 512
1 × 1 conv
3 × 3 conv
1 × 1 conv

4

Conv 4_x 14 × 14 × 1024
1 × 1 conv
3 × 3 conv
1 × 1 conv

6

Conv 5_x 7 × 7 × 2048
1 × 1 conv
3 × 3 conv
1 × 1 conv

3

Average Pooling 1 × 1 × 2048 7 × 7 avg pool 1

3.3.2. Feature Extraction Using Modified DenseNet-201

With the rapid advancement of CNNs, they are becoming deeper, and the problem
of a vanishing gradient has emerged. One solution to this problem is to introduce skip
connections between layers, as in the ResNet model. These skip connections guarantee an
efficient data stream among the layers in the network. To ensure the stream of maximum
information among layers, all layers are associated legitimately with one another, and
each layer acquires extra inputs from prior layers and gives its feature map to every single
ensuing layer in the DenseNet model [41]. In our work, a state-of-the-art DenseNet-201
pre-trained on the ImageNet dataset [42] was modified to derive the features and classify
the shoulder implant images.

As shown in Table 3, an image with a pixel resolution of 224 × 224 × 3 was given as
an input to the first input layer called an “Image Input.” The second layer, named “Conv
1,” was comprised of 64 filters of 7 × 7 × 3, which exploited the input image. Following the
convolution layer was a max-pooling layer, which reduced the dimensions of the feature
map to 56 × 56 × 64 pixels. The layers were then grouped into four dense blocks. Each
dense block included a three-sequential composite function with a convolution of 3×3, a
rectified linear unit (ReLU) [52], and batch normalization (BN) [53]. The first group of layers,
labeled “DenseBlock_1”, which were comprised of six dense blocks, processed the feature
map and down-sampled it to a pixel resolution of 28 × 28 × 128. The output feature map
of “DenseBlock_1” was processed by the second group of layers, labeled “DenseBlock_2.”
This group contained 12 dense blocks and output a feature map with a pixel resolution
of 14 × 14 × 256. Similarly, the third group of layers, labeled “DenseBlock_3,” contained
48 dense blocks and processed the feature map of “DenseBlock_2.” It down-sampled
the features, and generated a feature map with a pixel resolution of 7 × 7 × 896. The
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last group of layers, labeled “DenseBlock_4”, contained 32 dense blocks, processed the
feature map of the previous layer, and produced a feature map with a pixel resolution
of 7 × 7 × 1920. Although the architecture contains dense blocks with various filters, the
dimensions inside the blocks are equivalent. For compactness of the model and down-
sampling of the representations, the transition layer was applied between dense blocks,
which comprise the convolution and pooling functions. Finally, the last average pooling
layer, named “Average Pooling,” was applied using a filter with a pixel resolution of 7 × 7,
and obtained a spatial feature vector f2 with a pixel resolution of 1 × 1 × 1920. The last
three layers of DenseNet, named “FCL,” “SoftMax,” and “Classification Output” were
removed to enhance the training convergence and extract only features not considering
the classification. The feature vector f2 with 1920 dimensions was concatenated using the
2048-dimension feature vector f1 of ResNet-50 in an SCN, and the final classification was
made based on the output of the SCN, as shown in Figure 4.

Table 3. Layer configuration details of modified DenseNet-201.

Layer Name Output Feature Map Size Kernel Size Number of Iterations

Image Input 224 × 224 × 3 - -

Conv 1 112 × 112 × 64 7 × 7 conv 1

Max Pooling 56 × 56 × 64 3 × 3 max pool 1

DenseBlock_1 56 × 56 × 256 1 × 1 conv
3 × 3 conv

6

Transition Layer 28 × 28 × 128 1 × 1 conv
2 × 2 avg pool

1

DenseBlock_2 28 × 28 × 512 1 × 1 conv
3 × 3 conv

12

Transition Layer 14 × 14 × 256 1 × 1 conv
2 × 2 avg pool

1

DenseBlock_3 14 × 14 × 1792 1 × 1 conv
3 × 3 conv

48

Transition Layer 7 × 7 × 896 1 × 1 conv
2 × 2 avg pool

1

DenseBlock_4 7 × 7 × 1920 1 × 1 conv
3 × 3 conv

32

Average Pooling 1 × 1 × 1920 7 × 7 avg pool 1

3.3.3. Feature Concatenation and Final Classification by SCN

After extracting the feature vectors from each CNN of the first-stage networks, we
further ensembled them to obtain a concatenated feature map using the proposed SCN,
as shown in Figure 4. The efficiency of the ensemble learning model was substantially
improved. The ensemble model allowed the true objective function to be best approxi-
mated within the space of the hypothesis, and the overall performance could be improved
using various CNN features [54,55]. We propose an SCN that concatenates two sets of
features into a longer feature vector. Table 4 presents the architecture of the SCN. The
first layer of the SCN, called “Concat,” takes the inputs from two networks of the first
stage with different dimensions and concatenates them. In detail, the feature map f1 with
pixel dimensions of 1 × 1 × 2048 by modified ResNet is concatenated with f2 with pixel
dimensions 1 × 1 × 1920 by modified DenseNet. The Concat layer of the SCN provides a
feature map f with a pixel size of 1 × 1 × 3968. It then passes through the FCL. The FCL
includes a limited number of neurons, taking data from one vector and returning data from
another. In general, considering the jth node of the ith layer, we can obtain the following
equation:
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zi =
ni−1

∑
l=1

(w[i]
j,l a

[i−1]
l + b[i]j ) (1)

where in Equation (1), a[i−1] is the output of the previous layer with dimensions
(n[i−1]

H × n[i−1]
W × n[i−1]

C ) and is given as input to the FCL by flattening the tensor to a

1D vector with dimensions of (n[i−1]
H × n[i−1]

W × n[i−1]
C , 1) [56]. The learned parameters at

the lth layers are weights wj,l with nl−1 × nl parameters, and bias bj with nl parameters. In
addition, nH , nW , and nC represent the height, width, and number of channels, respectively,
whereas the final output of the FCL is zi. Subsequently, the SoftMax layer is executed. It
computes the results of the FCL using the SoftMax function, which compresses the vector
z of arbitrary K real numbers to a normalized vector of K real number probabilities, as a
probability distribution ranging between zero and 1 with a probability equivalent to 1 [56].
The SoftMax function is as follows:

f (z)i =
ezi

∑K
j ezj

(2)

where in Equation (2), K is the number of output classes, and the output f (z)i is the
probability for each class. These probabilities are obtained by taking the exponential of
each neuron (value) for its class, that is, ezi , and dividing by the sum of all exponentials.
The denominator part acts as a normalization term to make the sum of all output values
equal to 1. Finally, the classification layer computes the final probabilities to determine the
class for the image.

Table 4. Layer configuration details of SCN.

Layers Name Output Feature Map Size Kernel Size Number of Iterations

Concat 1 × 1 × 3968 - 1

Fully Connected 1 × 1 × 4 - 1

SoftMax 1 × 1 × 4 - 1

Classification 4 - 1

3.4. Classification Configuration

In our DRE-Net-based classification of shoulder implants, we designed two config-
urations of closed-world and open-world configurations. The detailed explanations are
as follows: for the closed-world configuration, data from the same class are used for both
training and testing. In detail, we applied a 10-fold cross-validation. Therefore, 90% of the
data of each class were used for training, and the remaining 10% of the data of the same
class were used for testing. This procedure was iterated 10 times, and the average accuracy
of 10 trials was obtained as the final classification accuracy. Because the output classes of
training and testing were the same, the final classification was made based on the output
of DRE-Net, as shown in Figure 5.

For the open-world configuration, data from the same class are not used for both
training and testing, which means that the classes of training and testing data are completely
different, as in general content-based image retrieval systems [57]. We conducted a 2-fold
cross-validation considering four output classes. Therefore, the data of classes 1 and 2 were
used for training, and the remaining data of classes 3 and 4 were used for testing in the
first trial. In the second trial, the training and testing data were exchanged with each other,
and the same procedure was repeated. The average accuracy of the two trials was obtained
as the final accuracy of classification. Because the output classes of training and testing
are different, the final classification cannot be made based on the output of DRE-Net, as
in the close-world configuration shown in Figure 5. Instead, the feature vector (1 × 3968)
of one testing image is extracted from the first layer (the concatenation layer of Figure 4
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and Table 4) of the SCN with trained DRE-Net, and the best matching class is determined
based on the L2-norm distance (Euclidean distance) between the extracted feature vector
and mean vector of the testing classes, as shown in Figure 6. The open-world configuration
can reflect the real scenario better than the closed-world configuration, because the data of
the untrained class can be obtained in the medical field, as a new manufacturer appears.
In this scenario, there is no need to retrain the whole network for all the previous and
new classes. Only a reference mean feature vector of the new class (extracted from our
network) and its corresponding label (assigned by the medical professional) need to be
registered. Then, the model can also work for all the data samples of the new class. In detail,
when a new implant model needs to be recognized in a testing phase, the feature vector
(1 × 3968) of the image of the new implant model can be extracted from the first layer (the
concatenation layer of Figure 4 and Table 4) of the SCN with DRE-Net without additional
training. Then, the best matching class can be determined based on the L2-norm distance
(Euclidean distance) between the extracted feature vector and the set of reference mean
feature vectors.
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4. Experimental Setups and Results
4.1. Dataset and Experimental Setups

The dataset used in our research was collected from two different sources comprised
of 597 X-ray images of shoulder implant prostheses. This is an open medical dataset that
can be used for research purposes. The dataset consists of shoulder prosthesis images of
16 different models from 4 different manufacturers, which were collected from individual
manufacturers, surgeons, and the University of Washington [11,45]. One image was
captured from each patient in the dataset. The 597 X-ray images of implants are the sum
of 83, 294, 71, and 149 of the four manufacturers, Cofield, Depuy, Tornier, and Zimmer,
respectively. Figure 7 shows representatives from the dataset, including actual class
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labels. As shown in Figure 1, the dataset is challenging owing to (1) a high intra-class
variance resulting from the various models of the same manufacturer, (2) a small inter-class
variance from all X-ray scans of the implants being generally indistinguishable, and (3) a
class imbalance. The intra-class variance and class imbalance problems were solved by
increasing the dataset size using RIA with sufficient training.
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Following the size of the input layer of our model, we resized all images of each class
to spatial dimensions with a pixel resolution of 224× 224× 3 in a portable network graphics
(PNG) file format. For the closed-world configuration, we randomly divided the dataset
into 10 folds for a cross-validation, as described in Section 3.4. The number of images for
the training dataset is not uniform for all classes, and this imbalance problem of the classes
degrades the classification performance [58]. To eliminate this issue, we expanded the
size of the training dataset by using RIA, but did not perform this augmentation with the
testing dataset. Table 5 shows the detailed explanations of the 10-fold cross-validation of
the training and testing datasets for the closed-world configuration. C1, C2, C3, and C4
represent the class Cofield, Depuy, Tornier, and Zimmer. We analyzed the performance of
state-of-the-art methods using the same experimental protocols. In addition, state-of-the-
art methods were also analyzed with online data augmentation and RIA to optimize the
results.

Table 5. Summary of 10-fold cross-validation of training and testing data for closed-world configura-
tion (unit: images).

Validation
Training Testing

Total
Original Augmented C1 C2 C3 C4

1st fold 538 19,368 8 29 7 15 19,965

2nd fold 536 19,296 9 30 7 15 19,893

3rd fold 538 19,368 8 29 7 15 19,965

4th fold 537 19,332 8 30 7 15 19,929

5th fold 536 19,296 9 29 8 15 19,893

6th fold 539 19,404 8 29 7 14 20,001

7th fold 537 19,332 8 30 7 15 19,929

8th fold 538 19,368 8 29 7 15 19,965

9th fold 536 19,296 9 30 7 15 19,893

10th fold 538 19,368 8 29 7 15 19,965

A desktop system with the following specifications was used for all experiments in our
work: 3.50 GHz Intel® (Santa Clara, CA, USA) Core™ i7–3770K central processing unit [59]
with 16 GB RAM, and an NVIDIA (Santa Clara, CA, USA) GeForce GTX 1070 graphics
card [60]. A deep learning toolbox with MATLAB R2019b (MathWorks, Inc., Natick, MA,
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USA) [61] was used on the Windows 10 operating system to implement our RIA algorithm
and DRE-Net.

4.2. Training of CNN Model

For training DRE-Net, the cross-entropy loss function was used as follows [62]:

CE = −
K

∑
i

tilog( f (z)i) (3)

where in Equation (3), f (z)i is the probability for each class, which is defined in Equation (2).
Cross entropy is simply the negative log of f (z)i for the true label class ti. For the true label
class, ti becomes 1, whereas it becomes zero for all other classes.

Prior to training the CNNs, all of the dataset images were resized to 224 × 224 × 3
pixels. We trained different CNNs involving VGG-16, VGG-19, ResNet-18, ResNet-50,
NASNet, DenseNet-201, and our deep DRE-Net for comparison. All CNNs were trained
using the stochastic gradient descent (SGD) algorithm [63]. SGD is an optimization method
that applies a backpropagation algorithm. The main goal of SGD is to find the optimum
parameters for the model based on a mini-batch using the derivative of the loss function.
SGD updates parameters, such as the weights and biases for each training instance and
label. During the training of the CNN, the loss between the actual label and predicted
label is calculated, and the SGD updates the parameters based on the loss function. Owing
to the problems of class imbalance and the limited size of the dataset, the dataset was
augmented using the proposed RIA. Owing to the small dataset, the filter weights of
the first-stage networks of the modified DenseNet and ResNet were initialized using the
parameters of pre-trained DenseNet-201 and ResNet-50 along with the ImageNet dataset,
respectively. Transfer learning with our training data was then conducted using these
CNN models. Transfer learning with pre-trained networks is effective for learning richer
features from large datasets to a small dataset to achieve high accuracy. The details of the
training parameters for the modified DenseNet, ResNet, and DRE-Net are listed in Table 6.
The explanations of these parameters are given in [64]. In our research, we compared
the accuracies from sequential training, by which modified DenseNet, ResNet, and SCN
were separately trained, and the accuracies from end-to-end training, by which DRE-Net
including modified DenseNet, ResNet, and SCN were trained at the same time. The
training parameters of the two training cases are presented in Table 6.

Table 6. Parameters for network training.

Methods Number of
Epochs

Mini-Batch
Size

Learning
Rate

Momentum
Term

L2-
Regularization

Learning Rate
Drop Factor

Sequential
training

Modified
DenseNet-201 13 10 0.001 0.9 0.0001 0.1

Modified
ResNet-50 13 10 0.001 0.9 0.0001 0.1

SCN 9 10 0.001 0.9 0.0001 0.1

End-to-end
training DRE-Net 7 10 0.001 0.9 0.0001 0.1

The graphs of the training losses and the accuracies through both sequential and
end-to-end training are visualized according to the number of epochs, as shown in Figure 8.
All networks were converged by increasing the accuracy to 100% while decreasing the
loss to 0%, which shows that all networks were successfully trained well. However, the
convergence time in terms of loss of the end-to-end training was longer than that of the
modified DenseNet, ResNet, and DRE-Net when applying sequential training. In our
experiments, we selected 25% of the data as a validation subset and the remaining 75% of
the data as a training subset from the training data. We provide the validation losses and
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accuracies of the proposed SCN (Figure 8c) which shows the better testing accuracies than
DRE-Net (end-to-end training) (Figure 8d). Even with the model of training accuracies at
100% (Figure 8c), we could obtain the high validation accuracy and low validation loss
as shown in Figure 8e, which confirms the optimal convergence of the proposed network
without causing overfitting problem with training data.
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4.3. Testing and Performance Analysis

We used four qualitative evaluation metrics to assess the performance of our classifi-
cation network: the accuracy, F1-score, precision, and recall. These metrics are commonly
used to evaluate classification frameworks [65] and are calculated as follows:

Accuracy =
1
K ∑K

k=1
TPk + TNk

TPk + TNk + FPk + FNk
(4)

F1-score = 2 × Precision × Recall
Precision + Recall

(5)

Precision =
1
K ∑K

k=1
TPk

TPk + FPk
(6)

Recall =
1
K ∑K

k=1
TPk

TPk + TNk
(7)

where K represents the total number of classes, which is equivalent to 4 in our study; TPk is
the number of true positives of class k, which represents the correctly predicted image from
class k; and FPk represents the number of false positives of class k, which represents the
incorrect prediction of another class into class k. In addition, TNk represents the number
of true negatives of class k, and is the result in which the other class (except for class k) is
correctly predicted by the model. Finally, FNk represents the number of false negatives
of class k, which occurs when class k is incorrectly predicted into another class using the
model.

4.3.1. Ablation Studies

We studied ablation studies to check the performance and contribution of each com-
ponent to the overall framework. As the first ablation study, we compared the accuracies
of our SCN in Figure 4 with those of the principal component analysis (PCA) + K-NN
classifier. A PCA [66] followed by a K-NN [67] was utilized as a post-processing stage to
generate the uncorrelated features and scale down the dimensions of the feature vector. The
main purpose of applying a PCA is to analyze the discrimination of the selected features
(i.e., whether features are distinctive or redundant). From the concatenation layer of a
SCN, shown in Figure 4, 1 × 3968 features are projected into the eigenspace to obtain 3968
eigenvectors and eigenvalues of the training samples. As shown in Figure 9, different
eigenvectors are selected to evaluate the PCA for computing the eigenvector (λ), which
shows the best performance. As shown in Figure 9, the maximum average performance of
λ = 10 was found among all eigenvectors with the training data. Then, the PCA features of
the testing samples at λ = 10 were calculated and used as an input to the K-NN classifier.
Detailed comparative classification results are shown in Table 7. Although the PCA can
reduce the number of dimensions from 1 × 3968 to 1 × 10, the classification performance
was not higher than that without the PCA-based classification framework (our SCN), as
shown in Table 7. This indicates that the high-dimensional features extracted by our deep
DRE-Net are already diversified.

Table 7. Performance comparisons of our proposed SCN using a PCA and a K-NN (unit: %).

Fold
Performance without a PCA (our SCN) Performance with PCA (λ = 10) + K-NN

Accuracy F1-Score Recall Precision Accuracy F1-Score Recall Precision

10-Fold
Average 85.92 84.69 84.11 85.33 57.94 48.04 40.60 60.17
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Table 8 shows the second ablation study of the shoulder implant classification. As
shown in this table, DenseNet-201 and ResNet-50 without the proposed RIA showed lower
accuracies by DenseNet-201 and ResNet-50 with RIA. However, the proposed DRE-Net,
including DenseNet-201, ResNet-50, and SCN, showed the highest accuracies. The diversity
of individually trained ensembles has been reported to be advantageous [68]. Therefore, we
compared the results of DRE-Net using sequential and end-to-end training. The results in
Table 8 suggest that ensembles of the models benefit from independent training (sequential
training). End-to-end training showed a lower performance than sequential training, and
the reason for this is that we used high-capacity models, and the ensemble of these models
in end-to-end training shows a “model dominance” effect. Table 8 shows that there is
a small difference between the results of DRE-Net (end-to-end) and ResNet-50 + RIA
compared to those of DenseNet-201 + RIA. That is because DRE-Net (end-to-end) has
“model dominance” effect of ResNet-50 + RIA.

Table 8. Performance comparisons of each sub-network and proposed DRE-Net by end-to-end or
sequential training (unit: %).

Methods Accuracy F1-Score Precision Recall

ResNet-50 [38] 66.70 62.02 64.67 59.83

DenseNet-201 [41] 55.76 47.55 49.73 45.73

ResNet-50 + RIA 80.57 78.02 79.21 76.95

DenseNet-201 + RIA 84.75 83.76 85.21 82.42

DRE-Net (end-to-end) 81.55 79.12 80.77 77.66

DRE-Net (sequential) 85.92 84.69 85.33 84.11

Figure 10a–c present the classification performances of the second-best (DenseNet-201
+ RIA) and third-best approaches (ResNet-50 + RIA) and our model (DRE-Net (sequential
training)) from Table 8 in terms of a confusion matrix. The diagonal values of each table
in Figure 10 show the average recall of each class. As shown in Figure 10, our model
outperforms both DenseNet-201 + RIA and ResNet-50 + RIA. The reason why class 4 shows
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lower accuracies by our model than with the other classes is that the data of class 4 have a
higher interclass similarity with those of class 2, as explained in Section 5.
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4.3.2. Comparison of Proposed DRE-Net with the Subjective Evaluation

To highlight the significance of the proposed deep learning method, we additionally
performed a subjective evaluation experiment considering the same experimental setup
(same testing data samples and 10-fold cross validation). The graphical user interface (GUI)
of the experimental protocol was designed in MATLAB R2019b (MathWorks, Inc., Natick,
MA, USA) [61], as shown in Figure 11. In detail, a total of 10 individuals (without medical
training) participated in this subjective evaluation and visually predicted the class label
of all testing data samples one by one for each fold. The demographic details of these
participants and subjective performance are given in Table 9. Participants (80% male and
20% female) from three different countries, including 50% from South Korea, 40% from
Pakistan, and 10% from Iran took part in this subjective evaluation. All information for
experiments was given to participants in advance. Each participant could observe both a
set of random training samples of each manufacturer of Figure 11a, and one-fold testing
images which is the 10% of the data of Figure 11b at the same time. In this way, each testing-
fold samples were provided to each person to perform 10-fold cross validation. The group
evaluated all of the testing images of each fold, and assigned the appropriate label to each
sample of Figure 11b by visually comparing the training set as shown in Figure 11a. The
average time calculated for the evaluation of one participant was about twenty minutes.
Once all individuals had completed the evaluation, the average performance of each
fold was calculated as shown in Table 9. Finally, we obtained the average performance
(as confusion matrix, average accuracy, F1-score, precision, and recall) of this subjective
evaluation and compared them with the proposed DRE-Net as presented in Figure 12 and
Table 10. It can be observed that our proposed DRE-Net shows the superior performance
over subjective evaluation with average performance gains of 33.67%, 35.15%, 36.47%, and
33.83% in terms of accuracy, F1-score, precision, and recall, respectively.

In addition, as shown in Figure 12a, the correct classification accuracy by human
subject with Cofield data (C1) was 63.86% which was much lower than that by our proposed
method of 84.34%. These results confirm that it is visually difficult to discriminate the data
of C1 from Figure 1a, and we can tell that there exist the differences among those intra
models.
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Table 10. Average performance comparison (10-folds) between subjective evaluation and the pro-
posed DRE-Net (unit: %).

Methods Accuracy F1-Score Precision Recall

Subjective
Method 52.25 49.54 48.86 50.28

DRE-Net
(sequential) 85.92 84.69 85.33 84.11

4.3.3. Comparisons of Proposed DRE-Net with the State-of-The-Art Methods

The performances of various state-of-the-art methods [38,41,45,46,69,70] were com-
pared with those of our approach. Table 11 shows the performance comparisons by the
state-of-the-art methods and the proposed method without data augmentation, and ResNet-
50 [38] outperformed the other methods. In this case, all methods were compared without a
data augmentation for a fair comparison. Table 12 shows the performance comparisons by
the state-of-the-art methods and the proposed method with data augmentation (through a
random in-plane rotation and translation), which shows higher accuracies than those listed
in Table 11. The results in most cases show that ResNet-50 [38] and DenseNet-201 [41]
outperformed the other methods. In this case, all methods were compared with the data
augmentation (random in-plane rotation and translation) for fair comparisons. However,
our proposed model does not produce state-of-the-art results with this augmentation tech-
nique, as shown in Table 12. This demonstrates that different augmentation techniques
have different impacts on the neural networks.

Table 11. Performance comparisons of state-of-the-art methods and the proposed approach without
data augmentation. Averages from a 10-fold cross-validation are shown (unit: %).

Methods Accuracy F1-Score Precision Recall

VGG-16 [45,69] 58.70 45 54 45

VGG-19 [45,69] 63.60 54 61 53

ResNet-18 [38,46] 66.13 60.86 64.25 58.13

ResNet-50 [38] 66.70 62.02 64.67 59.83

NASNet [45,70] 64.50 54 62 52

DenseNet-201 [41] 55.76 47.55 49.73 45.73

Proposed 58.10 50.82 51.78 49.96

Table 12. Performance comparisons of the state-of-the-art methods and proposed approach with data
augmentation by random in-plane rotation and translation. Averages from a 10-fold cross-validation
are shown (unit: %).

Methods Accuracy F1-Score Precision Recall

VGG-16 [45,69] 74 69 72 68

VGG-19 [45,69] 76.20 70 75 69

ResNet-18 [38,46] 70.82 65.93 68.02 64.38

ResNet-50 [38] 80.56 77.66 79.49 76.02

NASNet [45,70] 80.40 76 80 75

DenseNet-201 [41] 80.57 77.60 79.05 76.32

Proposed 77.05 74.80 76.93 73.07

As can be seen in Table 13, when the performances are compared between the state-
of-the-art methods and the proposed method with RIA, a 4.18% performance gain was
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shown in the average accuracy of DenseNet-201 with ResNet-50. In addition, NASNet
exhibited a 1.34% performance decrease in terms of the average accuracy with ResNet-50.
Among all methods applied, our approach (DRE-Net (sequential training)) outperforms
all other state-of-the-art methods. In this case, all methods were compared with RIA for
a fair comparison. In addition, we can confirm that the accuracies of Table 13 are higher
than those of Tables 11 and 12 in most cases. For fair comparison, the weights of the CNN
models were pre-trained on the ImageNet dataset, and transfer learning was performed
again with our training data in all experiments presented in Tables 11–13.

Table 13. Performance comparisons of the state-of-the-art methods and proposed approach with RIA.
Averages from a 10-fold cross-validation are shown (unit: %).

Methods Accuracy F1-Score Precision Recall

VGG-16 [45,69] 68.85 66.90 66.82 67.22

VGG-19 [45,69] 66.54 63.54 63.81 63.35

ResNet-18 [38,46] 77.41 74.67 76.60 73.05

ResNet-50 [38] 80.57 78.02 79.21 76.95

NASNet [45,70] 79.23 76.28 77.25 75.44

DenseNet-201 [41] 84.75 83.76 85.21 82.42

Proposed 85.92 84.69 85.33 84.11

We evaluated the deep models using a 10-fold cross-validation and calculated the
mean scores. To verify that the difference between mean scores was statistically significant,
a t-test [71] was conducted. This test is based on a null hypothesis (H), which states that
the performances of our model and the other approaches are not expected to be different
(i.e., H = 0). The T-test is carried out to verify the substantial disparity between our model
and the second-best [41] and third-best [38] baseline models in Table 13. Our sample size
was small and increased the complexity of the statistical analysis. In detail, as the sample
size decreases, the chance that every measured mean value is the same as the real total
mean value decreases and the degree of uncertainty about the true value of the mean
increases. Therefore, we conducted a t-test by combining 10-fold cross-validation values of
the accuracy, F1-score, precision, and recall. The null hypothesis is rejected when there is
less than a 5% chance of validity. The results in Table 14 show that the p-values calculated
by the second- and third-best methods with our model are 0.03 (<0.05) and 7.84 × 10−9

(<0.001%), respectively, which demonstrates the effective distinction between our model
and the other approaches. The p-value (0.03) for the second-best model shows that the null
hypothesis is rejected at a 97% confidence level and shows a significant difference between
our approach and the second-best model. In the case of the third-best model, the p-value
(7.84 × 10−9) indicates a significant difference between our approach and the third-best
model, and the null hypothesis is rejected at a 99% confidence level.

Table 14. The t-test analysis results between our model and the second-best and third-best models.

Comparisons p-Value Confidence Level

Proposed Second-best 0.03 97%

Proposed Third-best 7.84 × 10−9 99%

5. Discussions

In this study, we implemented two spatial feature extraction networks using a densely
connected convolution network and a residual neural network. In the first stage, our pro-
posed model envisages the spatially extracted features of both networks, which eventually
leads to better results compared to other state-of-the-art classification networks. In the
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second stage, the proposed SCN further processes the spatial features, and therefore, ideal
spatial features are extracted to achieve the best result. The architecture of the modified
DenseNet model is shown in Table 3, and shows various dense blocks and transition
layers used to exploit the optimal spatial features of the input image and achieve superior
outcomes over other CNN models.

In this section, we generate class activation maps to illustrate the performance of the
achievements of the modified DenseNet. Figure 13 shows the discriminative image regions
used by the modified DenseNet to identify the class. The activation maps calculated for
each dense block are represented using a pseudo color scheme [72]. The left column in
Figure 13 shows the input images of four classes (C1–C4) given to DenseNet to learn
its features, and it can be seen that the activation maps (F1, F2, . . . , F5) become salient
after processing through each dense block. Finally, we can obtain class-specific regions
(activation map F5) that provide the specific visual pattern for each class, which ensures
that DenseNet learns the features well. Similarly, we generated class activation maps
to illustrate the performance of the modified ResNet. The architecture of the modified
ResNet model is listed in Table 2, and shows various residual blocks used to exploit the
optimal spatial features of the input image. Figure 14 shows the discriminative image
regions used by the modified ResNet to identify the class. The left column in Figure 14
shows the input images of four classes (C1–C4) given to ResNet to learn its features and
activation maps calculated by each residual block, which are represented by a pseudo
color scheme [72]. The activation maps (F1, F2, . . . , F5) become prominent after processing
through the residual blocks. Ultimately, we can obtain class-specific regions (activation map
F5) that provide a specific visual pattern for each class. However, as shown in Figure 14,
the activation map for class 4 (Zimmer) does not clearly match visually distinct patterns.
For a fair comparison between first-stage networks, we used the same input images of
different classes to generate activation maps in Figures 13 and 14. The activation maps
for class 4 generated by DenseNet and ResNet are quite different. The activation map
generated by DenseNet for class 4 is the representation of its visually discriminated region,
as shown in the last row of Figure 13, whereas that generated by ResNet for the same class
shows a deviation from the discriminated region, as shown in the last row of Figure 14.
This indicates that ResNet made predictions not on the head of the implants, which is a
discriminated part, but on the background. Therefore, ResNet does not make a decision
well for class 4 to learn the features. Moreover, as shown in Figure 10, the confusion matrix
of the first-stage networks shows that ResNet has 5.37% less average recall than DenseNet
for class 4. In addition, the activation map generated by ResNet-50 for class 3, as shown in
the third row of Figure 14, is not focused on the head and is larger than that generated by
DenseNet-201, shown in the third row of Figure 13. Therefore, the recall of ResNet-50 is
much lower than that of DenseNet-201, as indicated in Figure 10. A similar analysis can
be made for class 1. The activation map generated by ResNet-50 for class 1, as shown in
the first row of Figure 14, does not accurately exist in the head area compared to that by
DenseNet-201, as shown in the first row of Figure 13. Therefore, the recall of ResNet-50 is
lower than that of DenseNet-201, as shown in Figure 10.

Finally, the final class activation maps (F5) of the first-stage networks are processed
by the proposed SCN for final classification after passing through their respective average
pooling layers. A class activation map for the second-stage network cannot be generated.
The reason for this is that, in the second stage network, the feature vector is 1 × 1 × 4,
and it lacks the visual information. Moreover, the ability of visual object detection by
convolution layer was lost when FCL was used for classification in the second stage
network. The fundamental difference between the SCN and first-stage networks is the
processing of the feature maps. DenseNet and ResNet extract and process the feature maps
of an image independently, whereas SCN combines the connectivity of both networks and
processes their feature maps. In this way, an optimal representation of the spatial features
is generated, which ultimately leads to a better performance in the classification of various
types of shoulder prostheses.
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We also computed the performance of our proposed network for an open-world
configuration. For the open-world configuration, we conducted two-fold experiments
by splitting the datasets into two halves, as explained in Section 3.4. The first half was
used for training, while the other half was used for testing. Similar to the closed-world
configuration, the training dataset in the open-world configuration is augmented using RIA.
The main step in the open-world setup is to judge the real class label of the query image by
calculating its similarity score with the class mean features. Thus, the Euclidean distance
can be used to predict a class label for the query image. Owing to the limited number of
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classes (i.e., 4), we used two-fold cross-validation. Table 15 displays the details of the two-
fold cross-validation of the training and testing datasets for the open-world configuration.
Table 16 shows the experimental results of our proposed model, and the second- and
third-best models are shown in Table 13 for the open-world configuration. There is a 0.72%
performance gain in the average accuracy of our model over the second-best model and
2.4% over the third-best model.

Table 15. Summary of two-fold cross-validation of training and testing data for open-world configu-
ration (unit: images).

Validation
Training Testing

Classes Original Augmented Classes Original Total

1st fold-A Cofield,
Depuy 377 13,572 Tornier,

Zimmer 220 14,169

1st fold-B Tornier,
Zimmer 220 7920 Cofield,

Depuy 377 8517

2nd fold-A Tornier,
Cofield 154 5544 Zimmer,

Depuy 443 3585

2nd fold-B Zimmer,
Depuy 443 15,948 Tornier,

Cofield 154 16,545

Table 16. Comparison of our proposed model with the second- and third-best models of Table 13 for
open-world configuration (unit: %).

CNN Model Accuracy F1-Score Precision Recall

ResNet-50 [38] 74.96 67.14 67.78 66.51
DenseNet-201 [41] 76.64 71.31 70.64 72.05

Proposed 77.36 70.85 71.22 70.49

In this section, we also measured the performance of the proposed network in terms of
confusion matrices considering open-world setting, as shown in Figure 15. In the 1st fold-A
and -B, Tornier (C3), Zimmer (C4) (Figure 15b) and Cofield (C1), Depuy (C2) (Figure 15a)
are used in testing, respectively. Similarly, in the 2nd fold-A and -B, Depuy (C2), Zimmer
(C4) (Figure 15c) and Cofield (C1), Tornier (C3) (Figure 15d) are used in testing, respectively.
As shown in these figures, the average value of correct classification ((84.01 + 51.68)/2(%))
with the testing of C2 and C4 (Figure 15c) is lower than those with the testing of C1 and
C2 (Figure 15a) and C1 and C3 (Figure 15d). However, it is higher than that with the
testing of C3 and C4 (Figure 15b). These results mean that the similarity between C2 and
C4 does not give much effect on testing by open-world configuration compared to that
by closed-world configuration. That is because the number of classes in the testing of
open-world configuration (two classes) is half of that of closed-world configuration (four
classes), which increases the inter-distance between two classes and consequently reduces
the effect of similarity of C2 and C4 on testing accuracy of open-world configuration. In
the open-world configuration mode, which is more complicated and challenging than the
closed-world configuration mode, our model performs the best and is likely applicable to
real-world problems as well.

We analyzed the false-positive and false-negative cases of our classifier and found
that the reasons for the erroneous classification are structural similarities of the prostheses
and the limited size of the dataset. For example, in Figure 10, the confusion matrix of our
proposed model shows a lower average recall of class 4 (Zimmer) than that of the other
classes. This is because the size (the number of images) of class 4 is two times less than
that of class 2 (Depuy) with a high inter-class similarity between them, as can be seen in
Figure 16. However, we maintain the sizes of the classes using RIA, although the class
imbalance problem remains. It should be considered that the class imbalance problem is
still an open issue [73], and thus various solutions are not guaranteed to be optimal. In
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addition, we analyzed the two-fold experiments for the open-world configuration owing
to the limited number of classes. We plan to increase the number of folds in the future by
increasing the number of classes. We trained two separate CNNs to extract the features
and ensemble them using an SCN. This approach increases the training time owing to the
large number of parameters required but makes the model more robust.
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6. Conclusions

In this study, we proposed the use of DRE-Net by combining features for shoul-
der implant classification in X-ray images based on two independent models: modified
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ResNet-50 and DenseNet-201. This framework automatically detects the prostheses by
the manufacturer and aids the surgeons to fit it in the patient’s body by their anatomy as
personalized medicine. We analyzed the application of different deep learning models for
the classification of shoulder implants by the manufacturer, and compared them with the
ensemble of two deep learning models. The ensemble of models using the proposed SCN
minimizes the weaknesses of each individually and takes advantage of the strengths of
both. To further improve the efficiency of the classification, we proposed the application
of RIA and increased the results by 8.87%. We discovered that independent (sequential)
training of ensemble models shows better performance than end-to-end training. Although
the dataset is relatively small, we obtained the optimum results for shoulder implant
classification by integrating transfer learning, ensemble learning, feature concatenation,
and RIA. We also examined our model for an open-world configuration and achieved the
best results compared to the other deep models, which demonstrates the generalizability
of our approach. As reported in previous research [11,45,46], the usage of computer-based
algorithms can do better to identify shoulder arthroplasty implants compared to medical
experts, which can reduce the risk of delayed operations, perioperative morbidity, and
overuse of resources due to lack of correct identification of shoulder arthroplasty implants.
Based on these motivations, previous research [11,45,46] has also studied the computer-
based algorithms for the identification of shoulder implants. This study is helpful for
personalized shoulder arthroscopy and researchers working on X-ray image-based implant
recognition.

In the future, we plan to upgrade the results and reduce the training time of the
proposed technique by establishing a custom-built model. We also plan to extend this work
by adding additional manufacturers and classifying shoulder implants using the models.
In addition, the class imbalance problem and increased number of classes for open-world
configurations will also researched in the future.
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