Exercise Improves Cognitive Function—A Randomized Trial on the Effects of Physical Activity on Cognition in Type 2 Diabetes Patients
Abstract
:1. Introduction
2. Methods
2.1. Experimental Protocol and Randomization
2.2. Measurement of Cognitive Function
2.3. Verbal (VM) and Nonverbal Memory (NVM)
3. Results
3.1. Weight/Body Composition
3.2. Spiroergometry
3.3. Cognition
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lautenschlager, N.T.; Cox, K.L.; Flicker, L.; Foster, J.K.; Bockxmeer, F.M.; Xiao, J.; Greenop, K.R.; Almeida, O.P. Effect of physical activity on cognitive function in older adults at risk for alzheimer disease: A randomized trial. JAMA 2008, 300, 1027–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espeland, M.A.; Lipska, K.; Miller, M.E.; Rushing, J.; Cohen, R.A.; Verghese, J.; McDermott, M.M.; King, A.C.; Strotmeyer, E.S.; Blair, S.N.; et al. Effects of physical activity intervention on physical and cognitive function in sedentary adults with and without diabetes. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 861–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiuza-Luces, C.; Garatachea, N.; Berger, N.A.; Lucia, A. Exercise is the real polypill. Physiology (Bethesda) 2013, 28, 330–358. [Google Scholar] [CrossRef] [Green Version]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; Berrington de Gonzalez, A.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef]
- Teychenne, M.; Ball, K.; Salmon, J. Sedentary behavior and depression among adults: A review. Int. J. Behav. Med. 2010, 17, 246–254. [Google Scholar] [CrossRef]
- Friedenreich, C.; Norat, T.; Steindorf, K.; Boutron-Ruault, M.C.; Pischon, T.; Mazuir, M.; Clavel-Chapelon, F.; Linseisen, J.; Boeing, H.; Bergman, M.; et al. Physical activity and risk of colon and rectal cancers: The european prospective investigation into cancer and nutrition. Cancer Epidemiol. Biomark. Prev. 2006, 15, 2398–2407. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the metabolic syndrome in the united states, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef]
- Viswanathan, V.; Sathyamurthy, S. Global increase in the prevalence of diabetes with special reference to the middle east and asia. Diabetes Technol. Ther. 2015, 17, 676–678. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, U.; Misra, A.; Gupta, R.; Viswanathan, V. Socioeconomic factors relating to diabetes and its management in india. J. Diabetes 2016, 8, 12–23. [Google Scholar] [CrossRef]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.B.; Bauman, A.; Tolstrup, J.S. Total sitting time and the risk of incident diabetes in danish adults (the danhes cohort) over 5 years: A prospective study. Br. J. Sports Med. 2016, 50, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Zaletel, J.; Piletic, M.; Lindstrom, J.; Icks, A.; Rothe, U.; Sorensen, M.; Maggini, M. National diabetes plans: Can they support changes in health care systems to strengthen diabetes prevention and care? Ann. dell’Istituto Super Sanita 2015, 51, 206–208. [Google Scholar] [CrossRef]
- Leischik, R.; Dworrak, B.; Strauss, M.; Przybylek, B.; Dworrak, T.; Schöne, D.; Horlitz, M.; Mügge, A. Plasticity of health. Ger. J. Med. 2016, 1, 1–17. [Google Scholar] [CrossRef]
- Blair, S.N. Physical inactivity: The biggest public health problem of the 21st century. Br. J. Sports Med. 2009, 43, 1–2. [Google Scholar]
- Hackethal, V. One in Two Mexicans Could Have Diabetes by 2050. Medscape Cardiology. 2015. Available online: http://www.medscape.com/viewarticle/855161?src=wnl_edit_tpal&uac=90759MT (accessed on 1 April 2021).
- Walker, R.J.; Smalls, B.L.; Campbell, J.A.; Strom Williams, J.L.; Egede, L.E. Impact of social determinants of health on outcomes for type 2 diabetes: A systematic review. Endocrine 2014, 47, 29–48. [Google Scholar] [CrossRef]
- Biessels, G.J.; Kappelle, A.C.; Bravenboer, B.; Erkelens, D.W.; Gispen, W.H. Cerebral function in diabetes mellitus. Diabetologia 1994, 37, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Alosco, M.L.; Spitznagel, M.B.; Dulmen, M.; Raz, N.; Cohen, R.; Sweet, L.H.; Colbert, L.H.; Josephson, R.; Hughes, J.; Rosneck, J.; et al. The additive effects of type-2 diabetes on cognitive function in older adults with heart failure. Cardiol. Res. Pract. 2012, 2012, 348054. [Google Scholar] [CrossRef]
- Cole, A.R.; Astell, A.; Green, C.; Sutherland, C. Molecular connexions between dementia and diabetes. Neurosci. Biobehav. Rev. 2007, 31, 1046–1063. [Google Scholar] [CrossRef] [PubMed]
- Ho, N.; Sommers, M.S.; Lucki, I. Effects of diabetes on hippocampal neurogenesis: Links to cognition and depression. Neurosci. Biobehav. Rev. 2013, 37, 1346–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penedo, F.J.; Dahn, J.R. Exercise and well-being: A review of mental and physical health benefits associated with physical activity. Curr. Opin. Psychiatry 2005, 18, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Angevaren, M.; Aufdemkampe, G.; Verhaar, H.J.; Aleman, A.; Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2008, 16, CD005381. [Google Scholar] [CrossRef]
- Currie, A.; Malik, R. Sports Psychiatry; Exercise Participation and Mental Health; Oxford University Press: Oxford, UK, 2016; pp. 107–116. [Google Scholar]
- Autio, J.; Stenback, V.; Gagnon, D.D.; Leppaluoto, J.; Herzig, K.H. (neuro) peptides, physical activity, and cognition. J. Clin. Med. 2020, 9, 2592. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.F.; Erickson, K.I.; Colcombe, S.J. Exercise, cognition, and the aging brain. J. Appl. Physiol. 2006, 101, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Khan, F. Run regular, age slower, be neuroplastic. Arch. Neurosci. 2017, 42, e39096. [Google Scholar] [CrossRef] [Green Version]
- Rehn, T.A.; Winett, R.A.; Wisloff, U.; Rognmo, O. Increasing physical activity of high intensity to reduce the prevalence of chronic diseases and improve public health. Open Cardiovasc. Med. J. 2013, 7, 1–8. [Google Scholar] [CrossRef]
- Rossen, J.; Yngve, A.; Hagströmer, M.; Brismar, K.; Ainsworth, B.E.; Iskull, C.; Möller, P.; Johansson, U.-B. Physical activity promotion in the primary care setting in pre-and type 2 diabetes-the sophia step study, an rct. BMC Public Health 2015, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploughman, M. Exercise is brain food: The effects of physical activity on cognitive function. Dev. Neurorehabil. 2008, 11, 236–240. [Google Scholar] [CrossRef]
- Thompson, W.R.; Gordon, N.F.; Pescatello, L.S. Acsm’s Guidelines for Exercise Testing and Prescription, 9th ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Cassidy, S.; Thoma, C.; Hallsworth, K.; Parikh, J.; Hollingsworth, K.G.; Taylor, R.; Jakovljevic, D.G.; Trenell, M.I. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: A randomised controlled trial. Diabetologia 2016, 59, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, K.; Whipp, B.J.; Koyl, S.N.; Beaver, W.L. Anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 1973, 35, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 focused update: Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 2018, 39, 1144–1161. [Google Scholar] [CrossRef]
- Leischik, R.; Foshag, P.; Strauss, M.; Littwitz, H.; Garg, P.; Dworrak, B.; Horlitz, M. Aerobic capacity, physical activity and metabolic risk factors in firefighters compared with police officers and sedentary clerks. PLoS ONE 2015, 10, e0133113. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. (1985) 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Muller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the i.O.C. Medical commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Moosbrugger, H.; Oehlschlägel, J. Fair. Frankfurter Aufmerksamkeits-Inventar. Testmanual; Huber: Bern, Switzerland, 1996. [Google Scholar]
- Andrews, J.J.W. Test reviews: Reynolds, c. R., & kamphaus, r. W. (2003). Rias: Reynolds intellectual assessment scales. Lutz, fl: Psychological assessment resources, inc. J. Psychoeduc. Assess. 2007, 25, 402–408. [Google Scholar] [CrossRef]
- Moosbrugger, H.; Oelschlägel, J. Fair-2. Frankfurter Aufmerksamkeits-Inventar 2; Huber: Bern, Switzerland, 2011. [Google Scholar]
- Biddle, S. Physical activity and mental health: Evidence is growing. World Psychiatry 2016, 15, 176–177. [Google Scholar] [CrossRef] [Green Version]
- Danaei, G.; Singh, G.M.; Paciorek, C.J.; Lin, J.K.; Cowan, M.J.; Finucane, M.M.; Farzadfar, F.; Stevens, G.A.; Riley, L.M.; Lu, Y.; et al. The global cardiovascular risk transition: Associations of four metabolic risk factors with national income, urbanization, and western diet in 1980 and 2008. Circulation 2013, 127, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.; Kramer, A.F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.M.; Pahor, M.; Guralnik, J.M.; McDermott, M.M.; King, A.C.; Buford, T.W.; Strotmeyer, E.S.; Nelson, M.E.; Sink, K.M.; Demons, J.L.; et al. Effect of structured physical activity on prevention of serious fall injuries in adults aged 70–89: Randomized clinical trial (life study). BMJ 2016, 352, i245. [Google Scholar] [CrossRef] [Green Version]
- Eggermont, L.H.P.; Swaab, D.F.; Hol, E.M.; Scherder, E.J.A. Walking the line: A randomised trial on the effects of a short term walking programme on cognition in dementia. J. Neurol. Neurosurg. Psychiatry 2009, 80, 802–804. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Hopker, S.W. The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ 2001, 322, 763. [Google Scholar] [CrossRef] [Green Version]
- Klusmann, V.; Evers, A.; Schwarzer, R.; Schlattmann, P.; Reischies, F.M.; Heuser, I.; Dimeo, F.C. Complex mental and physical activity in older women and cognitive performance: A 6-month randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 680–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcelos, N.; Shah, N.; Cohen, K.; Hogan, M.J.; Mulkerrin, E.; Arciero, P.J.; Cohen, B.D.; Kramer, A.F.; Anderson-Hanley, C. Aerobic and cognitive exercise (ace) pilot study for older adults: Executive function improves with cognitive challenge while exergaming. J. Int. Neuropsychol. Soc. 2015, 21, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D.; Frith, E.; Crawford, L. The effects of acute exercise on retroactive memory interference. Am. J. Health Promot. 2020, 34, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Hillman, C.H.; Kramer, A.F. Physical activity, brain, and cognition. Curr. Opin. Behav. Sci. 2015, 4, 27–32. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Bassett, D.R. How many steps/day are enough? Sports Med. 2004, 34, 1–8. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, W.; Gou, Z.; Jiang, B.; Qi, Y. Planning walkable neighborhoods for “aging in place”: Lessons from five aging-friendly districts in singapore. Sustainability 2021, 13, 1742. [Google Scholar] [CrossRef]
- Bödeker, M. Walking and walkability in pre-set and self-defined neighborhoods: A mental mapping study in older adults. Int. J. Environ. Res. Public Health 2018, 15, 1363. [Google Scholar] [CrossRef] [Green Version]
- Thyfault, J.P.; Bergouignan, A. Exercise and metabolic health: Beyond skeletal muscle. Diabetologia 2020, 63, 1464–1474. [Google Scholar] [CrossRef]
- Cannata, F.; Vadala, G.; Russo, F.; Papalia, R.; Napoli, N.; Pozzilli, P. Beneficial effects of physical activity in diabetic patients. J. Funct. Morphol. Kinesiol. 2020, 5, 70. [Google Scholar] [CrossRef]
- Savikj, M.; Zierath, J.R. Train like an athlete: Applying exercise interventions to manage type 2 diabetes. Diabetologia 2020, 63, 1491–1499. [Google Scholar] [CrossRef]
- Brands, A.M.; Biessels, G.J.; Kappelle, L.J.; Haan, E.H.; Valk, H.W.; Algra, A.; Kessels, R.P.; Utrecht, G. Cognitive functioning and brain mri in patients with type 1 and type 2 diabetes mellitus: A comparative study. Dement. Geriatr. Cogn. Disord. 2007, 23, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Luchsinger, J.A. Diabetes and the Brain; Springer: Berlin, Germany, 2010. [Google Scholar]
- Berg, E.; Dekker, J.M.; Nijpels, G.; Kessels, R.P.; Kappelle, L.J.; Haan, E.H.; Heine, R.J.; Stehouwer, C.D.; Biessels, G.J. Cognitive functioning in elderly persons with type 2 diabetes and metabolic syndrome: The Hoorn study. Dement. Geriatr. Cogn. Disord. 2008, 26, 261–269. [Google Scholar] [CrossRef] [PubMed]
Control (n = 16) Mean (sd) | Walking (n = 16) Mean (sd) | E-Health (n = 17) Mean (sd) | p-Value * | |
---|---|---|---|---|
Age, years | 59.1 (8.5) | 60.4 (5.9) | 56.4 (8.8) | 0.310 |
Weight, kg | 98.6 (16.5) | 96.7 (15.4) | 103.7 (18.0) | 0.478 |
BMI | 33.8 (4.4) | 34.4 (4.6) | 33.8 (5.2) | 0.924 |
BSA acc. to Mosteller | 2.16 (0.23) | 2.12 (0.21) | 2.24 (0.22) | 0.259 |
Muscle mass, kg | 60.7 (12.9) | 55.4 (11.3) | 63.8 (10.0) | 0.092 |
%Bodyfat | 35.5 (7.5) | 39.5 (8.7) | 34.6 (7.0) | 0.194 |
Waist circumference | 114.1 (11.6) | 114.2 (10.4) | 116.3 (14.5) | 0.868 |
HR rest | 77.6 (11.3) | 76.4 (10.7) | 75.3 (9.3) | 0.819 |
BP syst rest | 137.9 (12.6) | 140.6 (11.7) | 135.7 (12.6) | 0.521 |
BP diast rest | 84.4 (6.3) | 83.0 (8.6) | 81.2 (7.6) | 0.426 |
VO2 max abs | 1.78 (0.67) (n = 10) | 1.59 (0.39) (n = 14) | 1.97 (0.43) (n = 14) | 0.067 |
VO2 max rel | 18.1 (5.6) (n = 10) | 16.4 (3.4) (n = 14) | 19.9 (3.5) (n = 14) | 0.039 |
Haemoglobin g/dL | 14.2 (1.3) | 14.9 (1.2) | 14.6 (1.3) | 0.266 |
HbA1c % | 7.0 (1.3) | 7.3 (1.3) | 6.9 (0.8) | 0.467 |
HbA1c mmol/mol | 52.8 (14.5) | 56.6 (14.0) | 51.2 (8.4) | 0.420 |
Blood sugar | 154.9 (41.9) | 156.9 (39.8) | 144.1 (29.0) | 0.499 |
Cholesterol mg/dL | 186.0 (29.1) | 199.0 (40.0) | 193.3 (43.6) | 0.563 |
Triglycerides mg/dL | 199.9 (64.9) | 185.7 (114.5) | 237.6 (173.5) | 0.596 |
Cholesterol HDL mg/dL | 50.2 (10.8) | 52.4 (13.3) | 45.9 (12.5) | 0.342 |
Cholesterol LDL mg/dL | 112.6 (33.8) | 121.2 (32.7) | 113.6 (35.2) | 0.738 |
Cognitive performance | 240.1 (35.6) | 252.4 (66.8) | 266.6 (80.8) | 0.435 |
Quality value (%) | 89.8 (13.2) | 91.0 (10.0) | 88.6 (9.3) | 0.777 |
Continuity value | 230.1 (63.2) | 228.2 (61.6) | 243.4 (83.2) | 0.824 |
Verbal memory | 60.0 (19.9) | 66.4 (11.3) | 62.9 (15.9) | 0.510 |
Nonverbal memory | 32.4 (4.9) | 28.2 (5.1) | 29.7 (3.9) | 0.061 |
Control | Walking | E-Health | ||||
---|---|---|---|---|---|---|
Diff. (95%-CI) | p * | Diff. (95%-CI) | p * | Diff. (95%-CI) | p * | |
Weight kg | −0.21 (−1.85, 1.43) | 0.799 | −1.17 (−2.76, 0.43) | 0.151 | −0.65 (−2.24, 0.94) | 0.425 |
BMI | −0.09 (−0.64, 0.46) | 0.747 | −0.37 (−0.93, 0.19) | 0.191 | −0.24 (−0.77, 0.28) | 0.364 |
BSA acc. to Mosteller | −0.00 (−0.02, 0.02) | 0.835 | −0.04 (−0.08, 0.01) | 0.121 | −0.01 (−0.02, 0.01) | 0.439 |
Muscle mass kg | −0.12 (−1.26, 1.02) | 0.838 | 0.82 (−0.27, 1.91) | 0.140 | 0.00 (−0.55, 0.55) | 1.000 |
%Bodyfat | −0.09 (−1.04, 0.86) | 0.857 | −2.74 (−4.71, −0.76) | 0.007 | −0.05 (−0.81, 0.71) | 0.892 |
Waist circumference | 0.25 (−1.53, 2.03) | 0.783 | −3.00 (−4.41, −1.59) | <0.001 | −1.71 (−3.00, −0.41) | 0.010 |
HR rest | −4.00 (−10.85, 2.85) | 0.252 | −6.50 (−9.69, −3.31) | <0.001 | −2.35 (−7.14, 2.43) | 0.335 |
BP syst rest | −6.75 (−15.00, 1.50) | 0.109 | −8.00 (−16.55, 0.55) | 0.067 | −5.76 (−13.25, 1.72) | 0.131 |
BP diast rest | −4.88 (−9.78, 0.03) | 0.051 | −3.19 (−6.89, 0.52) | 0.092 | −3.06 (−6.21, 0.09) | 0.057 |
VO2max abs | −0.12 (−0.22, −0.03) | 0.014 | 0.06 (−0.04, 0.15) | 0.224 | −0.09 (−0.18, 0.00) | 0.061 |
VO2max rel | −1.47 (−2.50, −0.45) | 0.005 | 0.91 (−0.03, 1.85) | 0.058 | −1.18 (−2.33, −0.03) | 0.044 |
Hemoglobin g/dL | −0.02 (−0.49, 0.45) | 0.937 | −0.15 (−0.47, 0.17) | 0.355 | 0.18 (−0.17, 0.53) | 0.324 |
HbA1c % | 0.04 (−0.48, 0.56) | 0.888 | −0.03 (−0.34, 0.29) | 0.877 | −0.19 (−0.47, 0.09) | 0.192 |
HbA1C mmol/mol | 0.04 (−5.64, 5.71) | 0.990 | −0.38 (−3.71, 2.96) | 0.825 | −1.84 (−4.93, 1.26) | 0.245 |
Blood sugar | −1.50 (−16.80, 13.80) | 0.848 | −2.56 (−22.10, 16.97) | 0.797 | −3.12 (−18.93, 12.69) | 0.699 |
Cholesterol mg/dL | −4.13 (−12.48, 4.23) | 0.333 | −14.25 (−28.20, −0.30) | 0.045 | −8.65 (−18.55, 1.25) | 0.087 |
Triglycerides mg/dL | −27.00 (−58.57, 4.57) | 0.094 | 3.06 (−27.81, 33.94) | 0.846 | −27.06 (−71.44, 17.32) | 0.232 |
Cholesterol HDL mg/dL | −0.06 (−2.94, 2.81) | 0.966 | 0.63 (−3.36, 4.61) | 0.759 | 0.94 (−1.29, 3.17) | 0.408 |
Cholesterol LDL mg/dL | −11.81 (−22.65, −0.98) | 0.033 | −23.18 (−35.30, −11.05) | <0.001 | −12.81 (−21.19, −4.44) | 0.003 |
Cognitive Performance | 12.12 (−14.85, 39.10) | 0.378 | 51.87 (27.13, 76.62) | <0.001 | 85.65 (52.04, 119.26) | <0.001 |
Quality value (%) | −1.13 (−9.17, 6.92) | 0.784 | 3.52 (−1.52, 8.56) | 0.171 | 3.88 (0.85, 6.91)) | 0.012 |
Continuity value | 16.35 (−14.95, 47.66) | 0.306 | 55.05 (26.12, 83.97) | <0.001 | 89.94 (54.45, 125.42) | <0.001 |
Verbal Memory | 0.71 (−7.12, 8.55) | 0.858 | 12.00 (4.79, 19.21) | <0.001 | 7.94 (−0.84, 16.72) | 0.076 |
Non-Verbal Memory | −4.31 (−7.95, −0.67) | 0.020 | 7.13 (3.96, 10.29) | <0.001 | 5.88 (3.26, 8.50) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leischik, R.; Schwarz, K.; Bank, P.; Brzek, A.; Dworrak, B.; Strauss, M.; Litwitz, H.; Gerlach, C.E. Exercise Improves Cognitive Function—A Randomized Trial on the Effects of Physical Activity on Cognition in Type 2 Diabetes Patients. J. Pers. Med. 2021, 11, 530. https://doi.org/10.3390/jpm11060530
Leischik R, Schwarz K, Bank P, Brzek A, Dworrak B, Strauss M, Litwitz H, Gerlach CE. Exercise Improves Cognitive Function—A Randomized Trial on the Effects of Physical Activity on Cognition in Type 2 Diabetes Patients. Journal of Personalized Medicine. 2021; 11(6):530. https://doi.org/10.3390/jpm11060530
Chicago/Turabian StyleLeischik, Roman, Katharina Schwarz, Patrick Bank, Ania Brzek, Birgit Dworrak, Markus Strauss, Henning Litwitz, and Christian Erik Gerlach. 2021. "Exercise Improves Cognitive Function—A Randomized Trial on the Effects of Physical Activity on Cognition in Type 2 Diabetes Patients" Journal of Personalized Medicine 11, no. 6: 530. https://doi.org/10.3390/jpm11060530
APA StyleLeischik, R., Schwarz, K., Bank, P., Brzek, A., Dworrak, B., Strauss, M., Litwitz, H., & Gerlach, C. E. (2021). Exercise Improves Cognitive Function—A Randomized Trial on the Effects of Physical Activity on Cognition in Type 2 Diabetes Patients. Journal of Personalized Medicine, 11(6), 530. https://doi.org/10.3390/jpm11060530