Dexamethasone in the Treatment of COVID-19: Primus Inter Pares?
Abstract
:1. Introduction
2. Current Evidence
3. Dexamethasone in COVID-19: Mode of Action
4. Dexamethasone in COVID-19: Clinical Considerations
- 1.
- Why use dexamethasone instead of other corticosteroids?
- 2.
- When to start corticosteroids?
- 3.
- At what dose and for how long?
- 4.
- Do they prolong viral shedding?
- 5.
- How safe are corticosteroids in the treatment of severely affected COVID-19 patients?
- 6.
- What is the role of inhaled corticosteroids in preventing or treating COVID-19 patients?
- 7.
- Why use dexamethasone instead of other corticosteroids?
4.1. When to Start Corticosteroids?
4.2. At What Dose and for How Long?
4.3. Do Corticosteroids Prolong Viral Shedding?
4.4. How Safe Are Corticosteroids in the Treatment of Severely Affected COVID-19 Patients?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. China Novel Coronavirus Investigating and Research Team. N. Engl. J. Med. 2020, 382, 72. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. China Medical Treatment Expert Group for COVID-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef]
- Rovina, N.; Galani, I.E.; Lampropoulou, V.; Triantafyllia, V.; Manioudaki, M.; Pavlos, E.; Koukaki, E.; Fragkou, P.C.; Panou, V.; Rapti, V.; et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat. Immunol. 2021, 22, 32–40. [Google Scholar]
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P.; et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020, 27, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Meffre, E.; Iwasaki, A. Interferon deficiency can lead to severe COVID. Nature 2020, 587, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. HLH Across Speciality Collaboration UK. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of COVID-19. 2020. Available online: https://apps.who.int/iris/rest/bitstreams/1278777/retrieve (accessed on 1 April 2021).
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-center, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Zhao, J.; Yi, H.; Du, R.; Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet 2020, 395, 683–684. [Google Scholar] [CrossRef] [Green Version]
- Corral-Gudino, L.; Bahamonde, A.; Arnaiz-Revillas, F.; Gómez-Barquero, J.; Abadía-Otero, J.; García-Ibarbia, C.; Mora, V.; Cerezo-Hernández, A.; Hernández, J.L.; López-Muñíz, G.; et al. GLUCOCOVID investigators. Methylprednisolone in adults hospitalized with COVID-19 pneumonia: An open-label randomized trial (GLUCOCOVID). Wien. Klin. Wochenschr. 2021, 133, 303–311. [Google Scholar] [CrossRef]
- Wu, C.; Hou, D.; Du, C.; Cai, Y.; Zheng, J.; Xu, J.; Chen, X.; Chen, C.; Hu, X.; Zhang, Y.; et al. Corticosteroid therapy for coronavirus disease 2019-related acute respiratory distress syndrome: A cohort study with propensity score analysis. Crit. Care 2020, 24, 643. [Google Scholar] [CrossRef] [PubMed]
- Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.; et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit. Care Med. 2020, 48, e440–e469. [Google Scholar] [CrossRef] [PubMed]
- Dexamethasone in hospitalized patients with COVID-19. The RECOVERY Collaborative Group. N. Engl. J. Med. 2021, 384, 693–704. [CrossRef]
- World Health Organization. WHO Welcomes Preliminary Results about Dexamethasone Use in Treating Critically Ill COVID-19 Patients. Available online: https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminaryresults-about-dexamethasone-use-in-treatingcritically-ill-COVID-19-patients (accessed on 18 June 2020).
- Liu, J.; Zhang, S.; Dong, X.; Li, Z.; Xu, Q.; Feng, H.; Cai, J.; Huang, S.; Guo, J.; Zhang, L.; et al. Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. J. Clin. Investig. 2020, 130, 6417–6428. [Google Scholar] [CrossRef]
- Lu, X.; Chen, T.; Wang, Y.; Wang, J.; Yan, F. Adjuvant corticosteroid therapy for critically ill patients with COVID-19. Crit. Care 2020, 24, 241. [Google Scholar] [CrossRef]
- Low or High Dose of Dexamethasone in Patients with Respiratory Failure by COVID-19 (HIGHLOWDEXA). Available online: https://clinicaltrials.gov/ct2/show/NCT04726098 (accessed on 1 April 2021).
- Gong, Y.; Guan, L.; Jin, Z.; Chen, S.; Xiang, G.; Gao, B. Effects of methylprednisolone on viral genomic nucleic acid negative conversion and CT imaging lesion absorption in COVID-19 patients under 50 years old. J. Med. Virol. 2020, 92, 2551. [Google Scholar] [CrossRef] [PubMed]
- Salton, F.; Confalonieri, P.; Meduri, G.U.; Santus, P.; Harari, S.; Scala, R.; Lanini, S.; Vertui, V.; Oggionni, T.; Caminati, A.; et al. Prolonged low-dose methylprednisolone in patients with severe COVID-19 pneumonia. Open Forum Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.; Berwanger, O.; Cavalcanti, A.B.; et al. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA 2020, 324, 1330. [Google Scholar]
- Pasin, L.; Navalesi, P.; Zangrillo, A.; Kuzovlev, A.; Likhvantsev, V.; Hajjar, L.A.; Fresilli, S.; Lacerda, M.V.G.; Landoni, G. Corticosteroids for patients with coronavirus disease 2019 (COVID-19) with different disease severity: A meta-analysis of randomized clinical trials. J. Cardiothor. Vasc. Anesth. 2021, 35, 578. [Google Scholar] [CrossRef]
- Van Paassen, J.; Vos, J.S.; Hoekstra, E.M.; Neumann, K.M.I.; Boot, P.C.; Arbous, S.M. Corticosteroid use in COVID-19 patients: A systematic review and meta-analysis on clinical outcomes. Crit. Care 2020, 24, 696. [Google Scholar] [CrossRef] [PubMed]
- Cano, E.J.; Fuentes, X.F.; Campioli, C.C.; O’Horo, J.C.; Abu Saleh, O.; Odeyemi, Y.; Yadav, H.; Temesgen, Z. Impact of corticosteroids in coronavirus disease 2019 outcomes. Chest 2021, 159, 1019. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.; et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef]
- Dequin, P.-F.; Heming, N.; Meziani, F.; Plantefève, G.; Voiriot, G.; Badié, J.; François, B.; Aubron, C.; Ricard, J.D.; Ehrmann, S.; et al. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support among Critically Ill Patients with COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; Derde, L.; Al-Beidh, F.; Annane, D.; Arabi, Y.; Beane, A.; van Bentum-Puijk, W.; Berry, L.; Bhimani, Z.; Bonten, M.; et al. Effect of Hydrocortisone on Mortality and Organ Support in Patients with Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA 2020, 324, 1317–1329. [Google Scholar] [PubMed]
- Jeronimo, C.M.P.; Farias, M.E.L.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Safe, I.P.; Borba, M.G.S.; Netto, R.L.A.; Maciel, A.B.S.; et al. Methylprednisolone as adjunctive therapy for patients hospitalized with coronavirus disease 2019 (COVID-19; MetCOVID): A randomized, double-blind, phase IIb, placebo-controlled trial. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Cruz, A.; Ruiz-Antorán, B.; Muñoz-Gómez, A.; Sancho-Lopez, A.; Mills-Sanchez, P.; Centeno-Soto, G.A.; Blanco-Alonso, S.; Javaloyes-Garachana, L.; Galan-Gomez, A.; Valencia-Alijo, A.; et al. A Retrospective Controlled Cohort Study of the Impact of Glucocorticoid Treatment in SARS-CoV-2 Infection Mortality. Antimicrob. Agents Chemother. 2020, 64, e01168-20. [Google Scholar] [CrossRef]
- Keller, M.J.; Kitsis, E.A.; Arora, S.; Chen, J.-T.; Agarwal, S.; Ross, M.J.; Tomer, Y.; Southern, W. Effect of systemic glucocorticoids on mortality or mechanical ventilation in patients with COVID-19. J. Hosp. Med. 2020, 15, 489. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Tian, D.; Wang, C.; Wang, S.; Cheng, J.; Hu, M.; Fang, M.; Gao, Y. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct. Target. Ther. 2020, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jiang, W.; He, Q.; Wang, C.; Wang, B.; Zhou, P.; Dong, N.; Tong, Q. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct. Target. Ther. 2020, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Meng, Q.; Rao, X.; Wang, B.; Zhang, X.; Dong, F.; Yu, T.; Li, Z.; Feng, H.; Zhang, J.; et al. Corticosteroid therapy in critically ill patients with COVID-19: A multicenter retrospective study. Crit. Care 2020, 24, 698. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, T.; Hu, Z.; Wang, X.; Zhang, Z.; Li, L.; Peng, P. Clinical efficacy of glucocorticoids on the treatment of patients with COVID-19 pneumonia: A single center experience. Biomed. Pharmacother. 2020, 130, 110529. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Qi, D.; Deng, X.Y.; Yuan, G.D.; Tian, W.G.; Cui, Y.; Yan, X.F.; Wang, D.X. Corticosteroid therapy for patients with severe novel Coronavirus disease 2019. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8194. [Google Scholar]
- Albani, F.; Fusina, F.; Granato, E.; Capotosto, C.; Ceracchi, C.; Gargaruti, R.; Santangelo, G.; Schiavone, L.; Taranto, M.S.; Tosati, C.; et al. Corticosteroid treatment has no effect on hospital mortality in COVID-19 patients. Sci. Rep. 2021, 11, 1015. [Google Scholar] [CrossRef]
- Wu, J.; Huang, J.; Zhu, G.; Liu, Y.; Xiao, H.; Zhou, Q.; Si, X.; Yi, H.; Wang, C.; Yang, D.; et al. Systematic corticosteroids and mortality in severe and critical COVID-19 patients in Wuhan, China. J. Clin. Endocrinol. Metab. 2020, 105, 12. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Shi, J.; Zhou, M.; Wu, B.; Yang, Z.; et al. Risk factors for severity and mortality in adult COVID-19 in-patients in Wuhan. J. Allergy Clin. Immunol. 2020, 146, 110. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Feng, Y.-M.; Ni, J.-X.; Zhang, J.Y.; Liu, L.M.; Hu, K.; Wu, X.Z.; Zhang, J.X.; Chen, J.W.; Zhang, J.C.; et al. Early use of corticosteroid may prolong SARS-CoV-2 shedding in non-intensive care patients with COVID-19 pneumonia: A multicenter-single, blind, randomized control trial. Respiration 2021, 100, 116. [Google Scholar]
- Papamanoli, A.; Yoo, J.; Grewal, P.; Predun, W.; Hotelling, J.; Jacob, R.; Mojahedi, A.; Skopicki, H.A.; Mansour, M.; Marcos, L.A.; et al. High-dose methylprednisolone in nonintubated patients with severe COVID-19 pneumonia. Eur. J. Clin. Investig. 2021, 51, e13458. [Google Scholar] [CrossRef]
- Zha, L.; Li, S.; Pan, L.; Tefsen, B.; Li, Y.; French, N.; Chen, L.; Yang, G.; Villanueva, E.V. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med. J. Aust. 2020, 212, 416. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, X.; Li, T.; Chan, S.; Yu, Y.; Ai, J.W.; Zhang, H.; Sun, F.; Zhang, Q.; Zhu, L.; et al. Corticosteroid prevents COVID-19 progression within its therapeutic window: A multicenter proof-of-concept observational study. Emerg. Microbe. Infect. 2020, 9, 1869. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Xu, X.; Xia, D.; Tao, Z.; Yin, W.; Tan, W.; Hu, Y.; Song, C. Effects of corticosteroid treatment for non-severe COVID-19 pneumonia: A propensity score-based analysis. Shock 2020, 54, 638. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.; Jin, Y.; Xu, W.; Huang, C.; Li, L.; Huang, Y.; Fu, Q.; Chen, L. Efficacy evaluation of early, low-dose, short-term corticosteroids in adults hospitalized with non-severe COVID-19 pneumonia: A retrospective cohort study. Infect. Dis. 2020, 9, 823. [Google Scholar]
- Ma, Y.; Zheng, H.; Zhan, Z.; Lu, H.; Zeng, Z.; He, C.; Liu, X.; Chen, C.; Qin, Q.; He, J.; et al. Corticosteroid use in the treatment of COVID-19: A multicenter retrospective study in Hunan, China. Front. Pharm. 2020, 11, 1198. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, Z.; Song, X. High dose but not low dose corticoids potentially delay viral shedding of patients with COVID-19. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Waljee, A.K.; Rogers, M.A.M.; Lin, P.; Singal, A.G.; Stein, J.D.; Marks, R.M.; Ayanian, J.Z.; Nallamothu, B.K. Short term use of oral corticosteroids and related harms among adults in the United States: Population based cohort study. BMJ 2017, 357, J1415. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Mei, Q.; Yang, T.; Li, L.; Wang, Y.; Tong, F.; Geng, S.; Pan, A. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J. Infect. 2020, 81, 147–178. [Google Scholar] [CrossRef]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. J. Am. Med. Assoc. 2020, 323, 1824. [Google Scholar] [CrossRef]
- Weikum, E.R.; Knuesel, M.T.; Ortlund, E.A.; Yamamoto, K.R. Glucocorticoid receptor control of transcription:precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 2017, 18, 159–174. [Google Scholar] [CrossRef]
- Rhen, T.; Cidlowski, J.A. Antiinflammatory action of glucocorticoids—New mechanisms for old drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta 2020, 509, 280–287. [Google Scholar] [CrossRef]
- Youssef, J.; Novosad, S.A.; Winthrop, K.L. Infection risk and safety of corticosteroid use. Rheum. Dis. Clin. 2016, 42, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Pyrillou, K.; Chairakaki, A.D.; Tamvakopoulos, C.; Andreakos, E. Dexamethasone induces omega3-derived immunoresolvents driving resolution of allergic airway inflammation. J. Allergy Clin. Immunol. 2018, 142, 691–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- van Zaane, B.; Nur, E.; Squizzato, A.; Gerdes, V.E.A.; Büller, H.R.; Dekkers, O.M.; Brandjes, D.P.M. Systematic review on the effect of glucocorticoid use on procoagulant, anti-coagulant and fibrinolytic factors. J. Thromb. Haemost. 2010, 8, 2483–2493. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, Z.; Yu, M.; Tao, Y.; Xie, M. 15-day mortality and associated risk factors for hospitalized patients with COVID-19 in Wuhan, China: An ambispective observational cohort study. Intensive Care Med. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corticosteroid Dose Equivalents. Available online: https://emedicine.medscape.com/article/2172042-overview (accessed on 1 April 2021).
- Mager, D.E.; Moledina, N.; Jusko, W.J. Relative immunosuppressive potency of therapeutic corticosteroids measured by whole blood lymphocyte proliferation. J. Pharm. Sci. 2003, 92, 1521–1525. [Google Scholar] [CrossRef]
- Cechin, S.R.; Buchwald, P. Effects of representative glucocorticoids on TNFα- and CD40L-induced NF-κ activation in sensor cells. Steroids 2014, 85, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIH. COVID-19 Treatment guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/immunomodulators/corticosteroids/ (accessed on 14 March 2021).
- Siddiqi, H.K.; Mehra, M.R. COVID-19 Illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Villar, J.; Ferrando, C.; Martinez, D.; Ambrós, A.; Muñoz, T.; Soler, J.A. Dexamethasone in ARDS Network. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir. Med. 2020, 8, 267–276. [Google Scholar] [CrossRef]
- Shabalin, I.G.; Czub, M.P.; Majorek, K.A.; Brzezinski, D.; Grabowski, M.; Cooper, D.R.; Panasiuk, M.; Chruszcz, M.; Minor, W. Molecular determinants of vascular transport of dexamethasone in COVID-19 therapy. IUCrJ 2020, 7, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.-D.; Zhu, L.-L.; Chen, M.; Xia, P.; Zhou, Q. Weight-based dosing in medication use: What should we know? Patient Prefer. Adherence 2016, 10, 549. [Google Scholar] [PubMed] [Green Version]
- Chrousos, G.P.; Meduri, G.U. Critical COVID-19 disease, homeostasis and the “surprise” of effective glucocorticoid therapy. Clin. Immunol. 2020, 219, 108550. [Google Scholar] [CrossRef] [PubMed]
- Meduri, G.U.; Chrousos, G.P. General adaptation in critical illness: Glucocorticoid receptor-alpha, master regulator of homeostatic corrections. Front. Endocrinol. 2020, 11, 161. [Google Scholar] [CrossRef] [Green Version]
- Gogali, A.; Kyriakopoulos, C.; Kostikas, K. Corticosteroids in COVID-19: One size does not fit all. Eur. Respir. J. 2021, in press. [Google Scholar] [CrossRef]
- Xu, K.; Chen, Y.; Yuan, J.; Yi, P.; Ding, C.; Wu, W.; Li, Y.; Ni, Q.; Zou, R.; Li, X.; et al. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 799. [Google Scholar] [CrossRef]
- Shi, D.; Wu, W.; Wang, Q.; Xu, K.; Xie, J.; Wu, J.; Lv, L.; Sheng, J.; Guo, J.; Wang, K.; et al. Clinical characteristics and factors accociated with long-term viral excretion in patients with severe acute respiratory syndrome Coronavirus infection: A single-center 28-day study. J. Infect. Dis. 2020, 222, 910. [Google Scholar] [CrossRef]
- Yao, T.-C.; Huang, Y.-W.; Chang, S.-M.; Tsai, S.-Y.; Wu, A.C.; Tsai, H.-J. Association between oral corticosteroid bursts and severe adverse events. A nation population-based cohort study. Ann. Intern. Med. 2020, 173, 325. [Google Scholar] [CrossRef]
- Buetti, N.; Ruckly, S.; Montmollin, E.; Reignier, J.; Terzi, N.; Cohen, Y.; Shiami, S.; Dupuis, C.; Timsit, J.-F. COVID19 increased the risk of ICU-acquired bloodstream infections: A case-cohort study from the multicentric OUTCOMEREA network. Intensive Care Med. 2021. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Battaglini, D.; Ball, L.; Brunetti, I.; Bruzzone, B.; Codda, G.; Crea, F.; De Maria, A.; Dentone, C.; Di Biagio, A.; et al. Bloodstream infections in critically ill patients with COVID-19. Eur. J. Clin. Investig. 2020, 50, e13319. [Google Scholar] [CrossRef] [PubMed]
- Tudesq, J.-J.; Peyrony, O.; Lemiale, V.; Azoulay, E. Invasive pulmonary aspergillosis in nonimmunocompromised hosts. Semin. Respir. Crit. Care Med. 2019, 40, 540. [Google Scholar] [CrossRef]
- Armstrong-James, D.; Youngs, J.; Bicanic, T.; Abdolrasouli, A.; Denning, D.W.; Johnson, E.; Mehra, V.; Pagliuca, T.; Patel, B.; Rhodes, J.; et al. Confronting and mitigating the risk of COVID-19 associated pulmonary aspergillosis. Eur. Respir. J. 2020, 56, 2002554. [Google Scholar] [CrossRef]
- Ahmadikia, K.; Hashemi, S.J.; Khodavaisi, S.; Getso, M.I.; Alijani, N.; Badali, H.; Mirhendi, H.; Salehi, M.; Tabari, A.; Ardehali, M.M.; et al. The double-edged sword of systemic cosrticosteroid therapy in viral pneumonia: A case report and comparative review of influenza-associated mucormycosis versus COVID-19 associated mucormycosis. Mycoses 2021. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Chen, H.; Lin, J.; Zeng, J.; Xu, Z. Inhaled corticosteroids and risk of upper respiratory tract infection in patients with asthma: A meta-analysis. Infection 2019, 47, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, H.; Zhang, Y.; Du, Y.; Xu, Y.; Jiang, P.; Xu, Z. Long-term use of inhaled corticosteroids and risk of upper respiratory tract infection in chronic obstructive pulmonary disease: A meta-analysis. Inhal. Toxicol. 2017, 29, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Yang, I.A.; Clarke, M.S.; Sim, E.H.; Fong, K.M. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012, 7, CD002991. [Google Scholar] [CrossRef] [Green Version]
- Contoli, M.; Pauletti, A.; Rossi, M.R.; Spanevello, A.; Casolari, P.; Marcellini, A.; Forini, G.; Gnesini, G.; Marku, B.; Barnes, N.; et al. Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur. Respir. J. 2017, 50, 1700451. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, S.; Kawase, M.; Nao, N.; Shirato, K.; Ujike, M.; Kamitani, W.; Shimojima, M.; Fukushi, S. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Ko, M.; Lee, J.; Choi, I.; Byun, S.Y.; Park, S.; Shum, D.; Kim, S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020, 64, e00819-20. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Yoshie, K.; Kurakami, Y.; Takahashi, K.; Kato, Y.; Morishima, T. Therapeutic potential of ciclesonide inahalation for COVID-19 pneumonia: Report of three cases. J. Infect. Chemother. 2020, 26, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Yamaya, M.; Nishimura, H.; Deng, X.; Sugawara, M.; Watanabe, O.; Nomura, K.; Shimotai, Y.; Momma, H.; Ichinose, M.; Kawase, T. Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine production by primary cultures of human nasal and tracheal epithelial cells. Respir. Investig. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Nicolau, D.V., Jr.; Langford, B. Inhaled budesonide in the treatment of early COVID-19 (STOIC): A phase 2, open-label randomized controlled trial. Lancet 2021. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Singh, D.; Hafield, R.M. Inhaled corticosteroids and COVID-19: A systematic review and clinical perspective. Eur. Respir. J. 2020, 55, 2001009. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2019. Available online: www.ginasthma.org (accessed on 1 April 2021).
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2020. Available online: www.goldcopd.org/ (accessed on 1 April 2021).
Trial Name/Authors (Reference) | Steroid Used, Dosing | Trial Design, Population | Initiation Timing (Days) | Duration of Administration (Days) | Main Outcome(s) | Secondary Outcome(s) | Viral Clearance |
---|---|---|---|---|---|---|---|
Jeronimo CMP et al. MetCOVID [30] | MP 0.5 mg/kg × 2 vs. placebo | MC/R/DB phase II-b placebo-controlled | 5 | No difference in D28 mortality MP pts > 60 yo had lower D28 mortality | No difference in: D7, D14 mortality/D7 intubation and PFR < 100/LOHS/Radiological presence of fibrosis/BOOP after D7 | No difference on D7viral clearance | |
Corral-Gudino L et al. GLUCOCOVID trial [13] | MP 40 mg bid × 3 d, then 20 mg bid × 3 d | MC/O-L/R pts on O2 SOC vs. SOC + MP | NA | 6 | Composite endpoint: death, ICU admission, need for NIV MP: no significant effect on endpoint (ITT analysis) MP: beneficial effect (PP analysis) | NA | NA |
Tang X et al. [42] | MP 1 mg/kg/d vs. no MP | Ps/MC/R Single-blind ward pts | 8 (6–16) since Sx onset | 7 | MP vs. no MP: no difference in incidence of clinical deterioration (4.8 vs. 4.8%; OR 1.000 [95% CI, 0.134–7.442]; p = 1.000) | MP vs. no MP: no difference in: D14 clinical cure rate/time to clinical cure/ICU admission/hospitalization duration/in-hospital mortality (all p > 0.05) | MP significantly prolonged SARS-CoV-2 shedding (median, 11 d vs. 8d; HR 1.782 (1.057–3.003); p = 0.030) |
Gong Y et al. [21] | MP 1 to 2 mg/kg/d halved every 3 d vs. no MP | Rs | 5–10 | No difference in radiologic progression within 20 d | Longer time to negative PCR in MP group (p = 0.03) | ||
Wang et al. [35] | MP 1 to 2 mg/kg/d | Obs severe COVID-19 pts | 5–7 | MP: faster SpO2 improvement, less likely to receive MV (p = 0.05), faster ↓ CRP, IL-6 No significant difference in: mortality, ↓ LOHS and ICU LOS | |||
Papamanoli A et al. [43] | MP median 160 mg (120–180)/d | SC/Rs cohort HFNC > 50%, MP vs. no CS | 10 since Sx onset, 2 since admission, 1 since HFNC initiation | Median: 10 incl tapering | MP: 37% lower risk of death D28 (p = 0.003) and less frequent MV (p = 0.001) | No difference in mortality between groups | |
Fernandez-Cruz et al. [32] | MP 1 mg/kg/d or pulse | SC/Rs MP vs. no MP | 10 since Sx onset | NA | MP Mortality 13.9% vs. 23.9% no MP (HR = 0.51 95% CI, 0.27–0.96, p = 0.044). Dosing scheme not associated with mortality. | Mortality in moderate-severe ARDS: MP 26.2% vs. 60% no CS, OR = 0.23 (95% CI, 0.08–1.71) | |
Zha L et al. [44] | MP 40–80 mg/day | Obs/MC CS vs. no CS | within 24 h after admission | 5 | LOHS and Duration of Sx: not associated with CS | CS: no influence on viral clearance | |
Li Y et al. [45], Shangai cohort | MP 0.75–1 mg/kg/d × 3 d, then 20 mg MP × 3 d vs. (no MP and rescue CS) | MC/Obs/ | Early (according to LDH and radiographic progression) | ≤7 | ↓ MV need in early MP (p = 0.037) | No difference in viral clearance time | |
Ma Q et al. [38] | MP 40–80 mg/d vs. no CS | MC/Rs cohort severe and critically ill pts | No difference: Mortality, LOHS CS group: ↓ Sx duration | No difference in viral clearance time | |||
Salton F et al. [22] | MP 80 mg loading dose, then 80 mg/day cont infusion | MC/Obs severe COVID-19 MP vs. no MP | Min 8 | Composite endpoint:ICU referral/ intubation need/ D28 death: significantly ↓ compared with the control group: aHR, 0.41 | MV free d ΔCRP | Not affected | |
Yuan M et al. [46] | MP max dose 52.5 mg | Rs nonsevere pts MP vs. no MP | Median 8.3 since Sx onset | Median duration 10.8 | Nonsevere pts on CS:progressed to severe disease, had ↑ LOHS and ↓c duration of fever (not statistically significant difference vs. non-CS pts) | Nonsevere pts on CS: ↑ duration of viral shedding, (not statistically significant difference) | |
Wu C et al. [31] | MP vs. no MP | Rs/Obs | NA | NA | MP in ARDS pts: ↓ risk of death (HR, 0.38; 95% CI, 0.20–0.72, p = 0.003) | NA |
Trial Name/Authors (Reference) | Steroid Used, Dosing | Trial Design, Population | Initiation Timing | Duration of Administration (Days) | Main Outcome(s) | Secondary Outcome(s) | Viral Clearance |
---|---|---|---|---|---|---|---|
Tomazini BM et al. CoDEX trial [27] | dexa 20 mg iv × 5 d, then 10 mg dexa × 5 d or until ICU discharge | MC/R/O-L moderate to severe ARDS: SOC vs. SOC + dexa | Not mentioned | ≤10 | Dexa group: mean 6.6 ventilator-free d (95% CI, 5.0–8.2) vs. SOC group: 4.0 ventilator-free d (95% CI, 2.9–5.4), (difference, 2.26; 95% CI, 0.2–4.38; p = 0.04). | D28 no significant difference in: All-cause mortality Clinical status ICU free d MV duration SOFA | NA |
RECOVERY trial [16] | dexa 6 mg/day pos or iv | Controlled/O-L CS vs. SOC | NA | 10 | D28 mortality: 22.9% dexa vs. 25.7% SOC, greater ↓ in pts on MV > O2 and if initiation > 7 d | Time to discharge Need for MV Need for CRRT | NA |
Trial Name/Authors (Reference) | Steroid Used, Dosing | Trial Design, Population | Initiation Timing | Duration of Administration (Days) | Main Outcome(s) | Secondary Outcome(s) | Viral Clearance |
---|---|---|---|---|---|---|---|
Dequin P-F et al. [28] | HC Cont iv: 200 mg × 7 d, then 100 mg × 4 d, then 50 mg × 3 d | MC/R/DB critically ill pts | Total max 14 | D21 Tx failure (death, persistent MV, HFNC): No significant difference between CS and placebo (under-powered, stopped early) | No significant difference in: need for intubation, proning, ECMO, NO | ||
Angus DC et al. [29] | HC Fixed: 50–100 mg × 4 Shock HC: 50 mg × 4 | O-L/R, severe COVID-19 pts, fixed dose HC vs. shock dose HC vs. no HC | 7 | D21 organ-support free ds: Probability of superiority compared to no CS: 93% in fixed dose HC 80% in shock dose HC | Mortality rate: 30% fixed dose 26% shock dose 33% no CS |
Trial Name/Authors (Reference) | Steroid Used, Dosing | Trial Design, Population | Initiation Timing | Duration of Administration (Days) | Main Outcomes | Secondary Outcome(s) | Viral Clearance |
---|---|---|---|---|---|---|---|
Wu C et al. [14] | Max dose: 80 mg MP equiv (IQR = 40–80) mg | SC/Rs/Obs | NA | 7 (4–12) | D-60 in-hospital-mortality: Significant ↓ in CS (p = 0.0160) | NA | CS not associated with delayed viral clearance |
Liu J et al. [18] | Not mentioned | Rs/Obs CS vs. no CS | CS D28 mortality 44.3% vs. no CS 31% (p < 0.001) Mortality in CS group linked to HD and early initiation (<3 d from hospitalization) | Delayed (SHR 1.59 CI 95%, 1.17–2.15) p = 0.003 | |||
Li Y et al. [36] | Median 200 mg/d HC equiv (100–320.9) | Rs/MC critically ill pts CS vs. no CS | 9 (5–14) | No significant difference in mortality | CS prolonged viral shedding | ||
Lu X et al. [19] | Different CS, 100–800 mg/day HC equiv | SC/Rs, critically ill pts, CS vs. no CS | Median 8 (4–12) | CS independent from overall mortality. HD CS:↑ mortality risk (p = 0.003) | NA | NA | |
Li Q et al. [47] | 5 pts on pos prednisone (MP equiv dose 20 mg/d) and 50 pts on iv MP 20–40 mg/d | Rs nonsevere pts early LD CS vs. no CS | 1–5 d after hospital admission | 3 (Oral prednisone) 3–5 (iv MP) | CS in nonsevere COVID-19 pneumonia: ↑risk of progression to severe disease, ↑ use of antibiotics, ↑ duration of fever, ↑LOHS | CS in nonsevere COVID-19 pneumonia: prolongs virus clearance time | |
Ma Y et al. [48] | MP equiv 56.6 mg median daily dose | Rs/MC, severe and nonsevere COVID-19 pts | 5 median duration | CS: ↑ LOS in nonsevere pts (p < 0.05) BUT no significant ↑ LOS of severe pts | CS:↑ viral shedding duration only in nonsevere pts (p < 0.05) | ||
Li S et al. [49] | Not mentioned | Not mentioned | Not mentioned | Assessment of risk factors for long-term (>30 d) positive SARS-CoV-2 and viral shedding | NA | HD (80 mg/day; aHR, 0.67 (95%CI, 0.46–0.96) p = 0.031) but not LD CS (40 mg/day; aHR,0.72 (95%CI, 0.48–1.08), p = 0.11) potentially delayed viral shedding | |
Shi D et al. [50] | Rs/SC | Factors associated with prolonged viral shedding | CS:not independent factor of prolonged viral shedding | ||||
Hu Y et al. [37] | 0.75–1 mg/kg/d MP equiv | Rs CS vs. no CS | Median time since Sx onset: 7 | 6 (IQR, 4–8) | CS vs. no CS: no significant difference in: imaging progression, 90-day mortality. Significant difference in lymphocytes and CRP | CS vs. no CS: no significant difference in time to negative PCR | |
Keller MJ et al. [33] | CS vs. no CS | Obs incl children | Within 48 h of admission | CS: no effect on mortality, BUT if CRP > 20; significant ↓ risk of mortality or MV [OR 0.23, 95% CI, 0.08–0.7]. If CRP < 10; significant ↑ risk of mortality or MV [OR 2.64, 95% CI, 1.39–5.03] | |||
Wu J et al. [40] | MP equiv dose 40 mg/d | Rs severe and critically ill pts | 24 h after Dx | Median 6 (3–10) | CS independently associated with ↑ in-hospital mortality in severe COVID-19 (HR = 1.43, 95% CI: 0.82–2.49, p = 0.201 in IPTW; HR = 1.55, 95% CI: 0.83–2.87, p = 0.166 in PSM) and critically-ill pts (HR = 3.34, 95% CI: 1.84–6.05, p < 0.001 in IPTW; HR = 2.90, 95% CI: 1.17–7.16, p = 0.021 in PSM) | ||
Albani F et al. [39] | Median dexa equiv dose 20 mg/day | Rs CS vs. no CS | CS not associated with in-hospital mortality | CS: ↓ ICU admission | |||
Fang X et al. [51] | Median dose (HC equiv) pos 237.5 mg/iv 250 mg in general/severe pts | Rs, pts of different severity, CS vs. no CS | Not mentioned | Median duration: 7/4 in general/severe pts | CS:no significant difference in viral shedding irrespective of severity | ||
Li X et al. [41] | Median cumulative dose equiv to 200 mg prednisone | As, CS vs. no CS | NA | Median duration: 4 | severity on admission, complications, Tx, and outcomes: HD CS during hospitalization (aHR, 3.5; 95%CI, 1.8–6.9] was significant risk factor associated with death in severe COVID-19 | NA | NA |
Sarkar S et al. [20] | SRMA (2 RCTs and 10 cohorts) | CS: ↑ mortality (OR = 1.94, 95%CI: 1.11–3.4, I2 = 96%), irrespective of severity or dosage and ↑ LOHS (MD = 1.18 d, 95%CI: −1.28 to 3.64, I2 = 93%) | CS may prolong viral shedding (MD = 1.42 d, 95%CI: −0.52 to 3.37, I2 = 0%) | ||||
Sterne JAC et al. REACT [23] | Different CS in different schemes | Ps/MA (7 RCTs) CS vs. SOC | CS: ↓ all-cause D28-mortality: dexa vs. SOC OR 0.64 [95% CI, 0.5–0.82. p < 0.01], HC vs. SOC OR 0.69 [95% CI, 0.53–0.82, p = 0.13], MP vs. SOC OR 0.91 [0.29–2.87, p = 0.87] | No difference in serious AEs | |||
Pasin L et al. [24] | SRMA (5 RCT)CS vs. any other Tx | CS: ↓ Mortality rate (26% in CS vs. 28% in no CS, RR = 0.89, CI 95%, 0.82–0.96, p = 0.003) CS: ↑ mortality in pts on no O2 | Significant ↓ of MV risk in CS group | ||||
Van Paassen [25] | Diverse CS strategies | SRMA (RCTs and Obs) | CS are beneficial in short-term mortality | CS: ↓ MV need | CS: not clear effect on viral clearance | ||
Cano EJ et al. [26] | Different CS in different doses | SRMA | Mortality benefit in CS group in severe COVID-19: OR, 0.65; 95% CI, 0.51–0.83, p = 0.0006. No benefit or harmful effect among HD and LD CS | LD CS no significant effect on viral shedding |
Trial Name | Steroid Used, Dosing | Initiation (Days) | Duration (Days) | Hyperglycemia | GI | CNS | CVS | Secondary Infections | Other |
---|---|---|---|---|---|---|---|---|---|
Jeronimo CMP et al. MetCOVID [30] | MP 0.5 mg/kg bid vs. placebo | 5 | MP group: ↑insulin | No difference in BC positivity | |||||
Corral-Cudino et al., GLUCOCOVID [13] | MP 40 mg bid × 3 d, then 20 mg bid x 3 d | Min 7 after Sx onset | 6 | MP: ↑ Glu (p = 0.015) | MP: ↑ Secondary infections (p = 0.637) | ||||
Tang X et al. [42] | 1 mg/kg/d MP vs. no MP | Median time 8 (6–16) after Sx onset | 7 | no MP: ↑ Glu (p = 0.313) | Either group: No stress ulcers/GI bleed | Either group: No delirium | MP: ↑ VAP (p = 0.557) | ||
Papamanoli A et al. [43] | Median daily 160 mg MP (120–180) | 10 from Sx onset, 2 from admission, 1 from HFNC initiation | Median: 10 incl tapering | GI bleed: no difference | Bacteremia, HAP/VAP: No difference | ||||
Salton F et al. [22] | 80 mg MP loading dose, then 80 mg/day cont infusion | Min 8 | MP: ↑ Glu | MP: Mild agitation more common | |||||
Yuan M et al. [46] | MP max dose 52.5 mg, nonsevere pts | Median 8.3 from Sx onset | Median duration 10.8 | CS vs. no CS: No significant difference in secondary infections | |||||
RECOVERY trial [16] | dexa 6 mg/day pos or iv | 2/2104 pts | GI bleed: 1/2104 pts | Psychosis: 1/2104 | |||||
Tomazini BM et al. CoDEX trial [27] | 20 mg dexa iv × 5 d, then 10 mg dexa × 5 d or until ICU discharge | ≤10 | Insulin need: Dexa: 31.1% vs. SOC 28.3% | Dexa 21.9% vs. SOC: 29.1% | Other serious: dexa 3.3% vs. 6.1% SOC | ||||
Dequin P-F et al. [28] | Cont iv: 200 mg HC × 7d, then 100 mg × 4d, then 50 mg × 3 d | Total max 14 | D28: nosocomial infection: 37.3% HC vs. 41.1%placebo (p = 0.42). D28 VAP: 29% HC vs. 27.4% placebo. D28 bacteremia: 6.6% HC vs. 11% placebo | HC:3 serious AE considered unrelated: Cerebral vasculitis, Cardiac arrest 2nd to PE, IA bleed 2nd to anticoagulation | |||||
Angus DC et al. [29] REMAP-CAP COVID-19 | Fixed HC: 50–100 mg qid vs. Shock HC: 50 mg qid vs. No CS (101 pts) | 7 | 1 episode of fungemia in fixed dose HC | 1 episode of neuromyopathy in fixed dose HC | |||||
Li Y et al. [36] | Median 200 mg/d HC equiv | 9 (5–14) | CS: ↑ Secondary infections | ||||||
Liu J et al. [18] | Not mentioned | Liver injury: CS 18.3% vs. 9.9% no CS (p = 0.001) | myocardial injury: CS 15.6% vs. 10.4% no CS (p = 0.041) | Shock: CS 22% vs. no CS 12.6% (p < 0.001) | |||||
Li Q et al. [47] | Pos Prednisone (MP equiv dose 20 mg/d) or iv MP 20–40 mg/d | 1–5 after hospital admission | Pos prednisone × 3, iv MP × 3–5 | CS in nonsevere COVID-19 pneumonia: ↑ use of antibiotics | |||||
Ma Y et al. [48] | CS 56.6 mg (MP equiv) median daily dose | 5 median duration | CS: ↑ antibiotic use regardless of disease severity (p < 0.001) | ||||||
Hu Y et al. [37] | 0.75–1 mg/kg/d MP equiv | Median since Sx onset: 7 | 6 (IQR, 4–8) | No difference | No difference in hypokalemia | ||||
Li Y et al. [45] | MP 0.75–1 mg/kg/d × 3 d, then 20 mg × 3 d vs. (no MP and rescue CS) | Early (according to LDH and radiographic progression) | ≤7 | No difference in psychosis | No difference in secondary infections | No difference in osteoporosis, avascular necrosis | |||
Buetti N et al. [77] | Matched case- control study COVID-19 vs. non-COVID-19 ICU pts | COVID-19 pts:↑ BSI probability, esp after 7 d of ICU admission compared to non-COVID-19 ICU pts (p < 0.00001). COVID-19 pts: significantly ↑ ICU-BSI risk if received anti-IL-1 or anti-IL-6 (sHR 3.20, 95% CI 1.31–7.81, p = 0.011) but not in pts who received CS. | |||||||
Sterne JAC et al. REACT [23] | Different CS in different schemes | No difference in serious AEs | |||||||
Van Paassen [25] | Diverse CS strategies | 5–10 | CS: ↑ use of antibiotics and ↑ secondary infections or sepsis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanou, V.; Koukaki, E.; Chantziara, V.; Stamou, P.; Kote, A.; Vasileiadis, I.; Koutsoukou, A.; Rovina, N. Dexamethasone in the Treatment of COVID-19: Primus Inter Pares? J. Pers. Med. 2021, 11, 556. https://doi.org/10.3390/jpm11060556
Romanou V, Koukaki E, Chantziara V, Stamou P, Kote A, Vasileiadis I, Koutsoukou A, Rovina N. Dexamethasone in the Treatment of COVID-19: Primus Inter Pares? Journal of Personalized Medicine. 2021; 11(6):556. https://doi.org/10.3390/jpm11060556
Chicago/Turabian StyleRomanou, Vasiliki, Evangelia Koukaki, Vasiliki Chantziara, Panagiota Stamou, Alexandra Kote, Ioannis Vasileiadis, Antonia Koutsoukou, and Nikoletta Rovina. 2021. "Dexamethasone in the Treatment of COVID-19: Primus Inter Pares?" Journal of Personalized Medicine 11, no. 6: 556. https://doi.org/10.3390/jpm11060556
APA StyleRomanou, V., Koukaki, E., Chantziara, V., Stamou, P., Kote, A., Vasileiadis, I., Koutsoukou, A., & Rovina, N. (2021). Dexamethasone in the Treatment of COVID-19: Primus Inter Pares? Journal of Personalized Medicine, 11(6), 556. https://doi.org/10.3390/jpm11060556