Intersections between Copper, β-Arrestin-1, Calcium, FBXW7, CD17, Insulin Resistance and Atherogenicity Mediate Depression and Anxiety Due to Type 2 Diabetes Mellitus: A Nomothetic Network Approach
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Assessments
2.3. Statistical Analysis
3. Results
3.1. Socio-Demographic and Clinical Characteristics
3.2. Rating Scale Scores and Biomarkers in the IRI Subgroups
3.3. Prediction of HDRS Score Using Biomarkers
3.4. Prediction of Hamilton Anxiety Rating Scale (HAM-A) Scores
3.5. Prediction of T2DM Using Biomarkers
3.6. Biomarker Predictors of IRI, β-Cell Function, Castelli, and AIP Indices
3.7. Results of PLS Path and PLS Predict Analysis
4. Discussion
4.1. Biomarkers of T2DM
4.2. Biomarkers of Affective Symptoms Due to T2DM
4.3. Limitations
4.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2020, 162, 108086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; Hawkins, M.A.; Ling, C.; Mather, K.J.; Powers, A.C.; Rhodes, C.J.; Sussel, L.; Weir, G.C. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. J. Clin. Endocrinol. Metab. 2014, 99, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.; Kuusisto, J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat. Rev. Endocrinol. 2014, 10, 293–302. [Google Scholar] [CrossRef]
- Jamshidi, L.; Seif, A.; Vazinigheysar, H. Comparison of indicators of metabolic syndrome in iranian smokers. Zahedan J. Res. Med. Sci. 2014, 16, 55–58. [Google Scholar]
- Murphy, J.M.; Monson, R.R.; Olivier, D.C.; Sobol, A.M.; Leighton, A.H. Affective disorders and mortality. A general population study. Arch. Gen. Psychiatry 1987, 44, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Kupfer, D.J. The increasing medical burden in bipolar disorder. JAMA 2005, 293, 2528–2530. [Google Scholar] [CrossRef] [PubMed]
- Benton, T.; Staab, J.; Evans, D.L. Medical co-morbidity in depressive disorders. Ann. Clin. Psychiatry 2007, 19, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Leboyer, M.; Soreca, I.; Scott, J.; Frye, M.; Henry, C.; Tamouza, R.; Kupfer, D.J. Can bipolar disorder be viewed as a multi-system inflammatory disease? J. Affect. Dis. 2012, 141, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Melo, L.G.P.; Nunes, S.O.V.; Anderson, G.; Vargas, H.O.; Barbosa, D.S.; Galecki, P.; Carvalho, A.F.; Maes, M. Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 78, 34–50. [Google Scholar] [CrossRef]
- Duarte-Silva, E.; de Melo, M.G.; Maes, M.; Chaves Filho, A.J.M.; Macedo, D.; Peixoto, C.A. Shared metabolic and neuroimmune mechanisms underlying Type 2 Diabetes Mellitus and Major Depressive Disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110351. [Google Scholar] [CrossRef] [PubMed]
- Khaledi, M.; Haghighatdoost, F.; Feizi, A.; Aminorroaya, A. The prevalence of comorbid depression in patients with type 2 diabetes: An updated systematic review and meta-analysis on huge number of observational studies. Acta Diabetol. 2019, 56, 631–650. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.; Nouwen, A.; Sartorius, N.; Ahmed, H.; Alvarez, A.; Bahendeka, S.; Basangwa, D.; Bobrov, A.; Boden, S.; Bulgari, V. Prevalence and correlates of depressive disorders in people with Type 2 diabetes: Results from the International Prevalence and Treatment of Diabetes and Depression (INTERPRET-DD) study, a collaborative study carried out in 14 countries. Diabet. Med. 2018, 35, 760–769. [Google Scholar] [CrossRef]
- Mezuk, B.; Eaton, W.W.; Albrecht, S.; Golden, S.H. Depression and type 2 diabetes over the lifespan: A meta-analysis. Diabetes Care 2008, 31, 2383–2390. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.C.; Xu, X.; Ferrante, A.W.; Krakoff, J. Reduced plasma albumin predicts type 2 diabetes and is associated with greater adipose tissue macrophage content and activation. Diabetol. Metab. Synd. 2019, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Vandewoude, M.; Scharpé, S.; De Clercq, L.; Stevens, W.; Lepoutre, L.; Schotte, C. Anthropometric and biochemical assessment of the nutritional state in depression: Evidence for lower visceral protein plasma levels in depression. J. Affect. Disord. 1991, 23, 25–33. [Google Scholar] [CrossRef]
- Anderson, G.; Maes, M. Bipolar disorder: Role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan catabolites. Curr. Psychiatry Rep. 2015, 17, 8. [Google Scholar] [CrossRef]
- Chan, K.L.; Cathomas, F.; Russo, S.J. Central and peripheral inflammation link metabolic syndrome and major depressive disorder. Physiology 2019, 34, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Maes, M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr. Opin. Psychiatry 2009, 22, 75–83. [Google Scholar] [CrossRef]
- Maes, M.; Kubera, M.; Obuchowiczwa, E.; Goehler, L.; Brzeszcz, J. Depression’s multiple comorbidities explained by (neuro) inflammatory and oxidative & nitrosative stress pathways. Neuroendocr. Lett. 2011, 32, 7–24. [Google Scholar]
- Moylan, S.; Berk, M.; Dean, O.M.; Samuni, Y.; Williams, L.J.; O’Neil, A.; Hayley, A.C.; Pasco, J.A.; Anderson, G.; Jacka, F.N. Oxidative & nitrosative stress in depression: Why so much stress? Neurosci. Biobehav. Rev. 2014, 45, 46–62. [Google Scholar] [PubMed]
- Bortolasci, C.C.; Vargas, H.O.; Souza-Nogueira, A.; Barbosa, D.S.; Moreira, E.G.; Nunes, S.O.V.; Berk, M.; Dodd, S.; Maes, M. Lowered plasma paraoxonase (PON) 1 activity is a trait marker of major depression and PON1 Q192R gene polymorphism–smoking interactions differentially predict the odds of major depression and bipolar disorder. J. Affect. Disord. 2014, 159, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Morelli, N.R.; Maes, M.; Bonifacio, K.L.; Vargas, H.O.; Nunes, S.O.V.; Barbosa, D.S. Increased nitro-oxidative toxicity in association with metabolic syndrome, atherogenicity and insulin resistance in patients with affective disorders. J. Affect. Disord. 2021, 294, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; Ravier, M.A.; Bertrand, G. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: New therapeutic strategies and consequences for drug screening. Cell. Signal. 2011, 23, 522–528. [Google Scholar] [CrossRef]
- Avissar, S.; Matuzany-Ruban, A.; Tzukert, K.; Schreiber, G. Beta-arrestin-1 levels: Reduced in leukocytes of patients with depression and elevated by antidepressants in rat brain. Am. J. Psychiatry 2004, 161, 2066–2072. [Google Scholar] [CrossRef]
- Matuzany-Ruban, A.; Avissar, S.; Schreiber, G. Dynamics of beta-arrestin1 protein and mRNA levels elevation by antidepressants in mononuclear leukocytes of patients with depression. J. Affect. Disord. 2005, 88, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, Y.; Rizavi, H.S.; Zhang, H.; Roberts, R.C.; Conley, R.R.; Pandey, G.N. Aberrant extracellular signal-regulated kinase (ERK)1/2 signalling in suicide brain: Role of ERK kinase 1 (MEK1). Int. J. Neuropsychopharmacol. 2009, 12, 1337–1354. [Google Scholar] [CrossRef] [Green Version]
- Fröjdö, S.; Vidal, H.; Pirola, L. Alterations of insulin signaling in type 2 diabetes: A review of the current evidence from humans. Biochim. Biophys. Acta 2009, 1792, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Shi, Y.; Xiang, B.; Qu, B.; Su, W.; Zhu, M.; Zhang, M.; Bao, G.; Wang, F.; Zhang, X. A nuclear function of β-arrestin1 in GPCR signaling: Regulation of histone acetylation and gene transcription. Cell 2005, 123, 833–847. [Google Scholar] [CrossRef] [Green Version]
- Tanis, K.Q.; Duman, R.S.; Newton, S.S. CREB binding and activity in brain: Regional specificity and induction by electroconvulsive seizure. Biol. Psychiatry 2008, 63, 710–720. [Google Scholar] [CrossRef] [Green Version]
- Bengoechea-Alonso, M.T.; Ericsson, J. The ubiquitin ligase Fbxw7 controls adipocyte differentiation by targeting C/EBPalpha for degradation. Proc. Natl. Acad. Sci. USA 2010, 107, 11817–11822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, S.K.; Taha, E.M.; Muhi, S.A. A case-control study to determination FBXW7 and Fetuin-A levels in patients with type 2 diabetes in Iraq. J. Diabetes Metab. Disord. 2021, 20, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.L.; Hock, M.B.; Ekholm-Reed, S.; Wohlschlegel, J.A.; Dev, K.K.; Kralli, A.; Reed, S.I. SCFCdc4 acts antagonistically to the PGC-1α transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev. 2008, 22, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, J.H.; Kim, I.J.; Wu, D.; Climent, J.; Kang, H.C.; DelRosario, R.; Balmain, A. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 2008, 321, 1499–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberi, L.; Liu, S.; Wang, Y.; Badie, R.; Smith-Hicks, C.; Wu, J.; Pierfelice, T.J.; Abazyan, B.; Mattson, M.P.; Kuhl, D.; et al. Activity-Induced Notch Signaling in Neurons Requires Arc/Arg3.1 and Is Essential for Synaptic Plasticity in Hippocampal Networks. Neuron 2011, 69, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeck, J.D.; Jandke, A.; Blake, S.M.; Nye, E.; Spencer-Dene, B.; Brandner, S.; Behrens, A. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat. Neurosci. 2010, 13, 1365–1372. [Google Scholar] [CrossRef] [Green Version]
- Yalla, K.; Elliott, C.; Day, J.P.; Findlay, J.; Barratt, S.; Hughes, Z.A.; Wilson, L.; Whiteley, E.; Popiolek, M.; Li, Y. FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Mol. Psychiat. 2018, 23, 1278–1286. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.; Walder, K.; Carvalho, A.F.; Tye, S.J.; Lucas, K.; Berk, M.; Maes, M. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci. Biobehav. Rev. 2018, 84, 453–469. [Google Scholar] [CrossRef]
- Morris, G.; Puri, B.K.; Walker, A.J.; Maes, M.; Carvalho, A.F.; Bortolasci, C.C.; Walder, K.; Berk, M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2019, 107, 862–882. [Google Scholar] [CrossRef]
- Sato, T.; Iwabuchi, K.; Nagaoka, I.; Adachi, Y.; Ohno, N.; Tamura, H.; Seyama, K.; Fukuchi, Y.; Nakayama, H.; Yoshizaki, F.; et al. Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta-glucan. J. Leukoc. Biol. 2006, 80, 204–211. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Prinetti, A.; Sonnino, S.; Mauri, L.; Kobayashi, T.; Ishii, K.; Kaga, N.; Murayama, K.; Kurihara, H.; Nakayama, H.; et al. Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj. J. 2008, 25, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Yeh, L.H.; Kinsey, A.M.; Chatterjee, S.; Alevriadou, B.R. Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. J. Vasc. Res. 2001, 38, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Pannu, R.; Won, J.S.; Khan, M.; Singh, A.K.; Singh, I. A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-gamma-mediated inducible nitric oxide synthase gene expression: Implications for neuroinflammatory diseases. J. Neurosci. 2004, 24, 5942–5954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shui, G.; Lam, S.M.; Stebbins, J.; Kusunoki, J.; Duan, X.; Li, B.; Cheong, W.F.; Soon, D.; Kelly, R.P.; Wenk, M.R. Polar lipid derangements in type 2 diabetes mellitus: Potential pathological relevance of fatty acyl heterogeneity in sphingolipids. Metabolomics 2013, 9, 786–799. [Google Scholar] [CrossRef]
- Kornhuber, J.; Medlin, A.; Bleich, S.; Jendrossek, V.; Henkel, A.W.; Wiltfang, J.; Gulbins, E. High activity of acid sphingomyelinase in major depression. J. Neural Transm. 2005, 112, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Garcia, P.; Rao, V.; Haughey, N.J.; Bandaru, V.V.; Smith, G.; Rosenberg, P.B.; Lobo, A.; Lyketsos, C.G.; Mielke, M.M. Elevated plasma ceramides in depression. J. Neuropsychiatry Clin. Neurosci. 2011, 23, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Brunkhorst-Kanaan, N.; Klatt-Schreiner, K.; Hackel, J.; Schröter, K.; Trautmann, S.; Hahnefeld, L.; Wicker, S.; Reif, A.; Thomas, D.; Geisslinger, G.; et al. Targeted lipidomics reveal derangement of ceramides in major depression and bipolar disorder. Metabolism 2019, 95, 65–76. [Google Scholar] [CrossRef]
- Richmond, J.E.; Codignola, A.; Cooke, I.M.; Sher, E. Calcium- and barium-dependent exocytosis from the rat insulinoma cell line RINm5F assayed using membrane capacitance measurements and serotonin release. Pflugers Arch. 1996, 432, 258–269. [Google Scholar] [CrossRef]
- Ekholm, R.; Ericson, L.E.; Lundquist, I. Monoamines in the pancreatic islets of the mouse. Subcellular localization of 5-hydroxytryptamine by electron microscopic autoradiography. Diabetologia 1971, 7, 339–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gylfe, E. Association between 5-hydroxytryptamine release and insulin secretion. J. Endocrinol. 1978, 78, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Meltzer, H.Y.; D’Hondt, P.; Cosyns, P.; Blockx, P. Effects of serotonin precursors on the negative feedback effects of glucocorticoids on hypothalamic-pituitary-adrenal axis function in depression. Psychoneuroendocrinology 1995, 20, 149–167. [Google Scholar] [CrossRef]
- Bjorklund, G.; Dadar, M.; Pivina, L.; Dosa, M.D.; Semenova, Y.; Aaseth, J. The Role of Zinc and Copper in Insulin Resistance and Diabetes Mellitus. Curr. Med. Chem. 2020, 27, 6643–6657. [Google Scholar] [CrossRef]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in Depression: A Meta-Analysis. Biol. Psychiat. 2013, 74, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; You, Y.; Chen, J.; Zhang, L. Copper in depressive disorder: A systematic review and meta-analysis of observational studies. Psychiatry Res. 2018, 267, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xun, P.; Bae, J.C.; Kim, J.H.; Kim, D.J.; Yang, K.; He, K. Circulating calcium levels and the risk of type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2019, 122, 376–387. [Google Scholar] [CrossRef]
- Al-Dujaili, A.H.; Al-Hakeim, H.K.; Twayej, A.J.; Maes, M. Total and ionized calcium and magnesium are significantly lowered in drug-naïve depressed patients: Effects of antidepressants and associations with immune activation. Metab. Brain Dis. 2019, 34, 1493–1503. [Google Scholar] [CrossRef]
- Volpe, S.L. Magnesium, the Metabolic Syndrome, Insulin Resistance, and Type 2 Diabetes Mellitus. Crit. Rev. Food Sci. Nutr. 2008, 48, 293–300. [Google Scholar] [CrossRef]
- Eby, G.A.; Eby, K.L.; Murck, H. Magnesium and major depression. In Magnesium in the Central Nervous System; Vink, R., Nechifor, M., Eds.; University of Adelaide Press: Adelaide, Australia, 2011; pp. 313–330. [Google Scholar]
- Mousa, R.; Smesam, H.; Qazmooz, H.; Al-Hakeim, H.; Maes, M. A Nomothetic Network Model Disclosing the Comorbidity of Depression and Unstable Angina: Effects of Atherogenicity, Insulin Resistance, Immune Activation, Antioxidants, the Endogenous Opioid System, Trace Elements, and Macrominerals. J. Trace Elem. Med. Biol. 2021, in press. [Google Scholar]
- WHO. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. Use of Glycated Haemoglobin (HbA1c) in Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Sangeeta, S. Metformin and pioglitazone in polycystic ovarian syndrome: A comparative study. J. Obs. Gynaecol. India 2012, 62, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Pernicova, I.; Korbonits, M. Metformin—Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakeim, H.K.; Abdulzahra, M.S. Correlation Between Glycated Hemoglobin and Homa Indices in Type 2 Diabetes Mellitus: Prediction of Beta-Cell Function from Glycated Hemoglobin/Korelacija Između Glikoliziranog Hemoglobina I Homa Indeksa U Dijabetes Melitusu Tipa 2: Predviđanje Funkcije Beta Ćelija Na Osnovu Glikoliziranog Hemoglobina. J. Med. Biochem. 2015, 34, 191–199. [Google Scholar] [PubMed] [Green Version]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Almulla, A.F.; Al-Rawi, K.F.; Maes, M.; Al-Hakeim, H.K. In schizophrenia, immune-inflammatory pathways are strongly associated with depressive and anxiety symptoms, which are part of a latent trait which comprises neurocognitive impairments and schizophrenia symptoms. J. Affect. Disord. 2021, 287, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Flauzino, T.; Pereira, W.L.d.C.J.; Alfieri, D.F.; Oliveira, S.R.; Kallaur, A.P.; Lozovoy, M.A.B.; Kaimen-Maciel, D.R.; Maes, M.; Reiche, E.M.V. Disability in multiple sclerosis is associated with age and inflammatory, metabolic and oxidative/nitrosative stress biomarkers: Results of multivariate and machine learning procedures. Metab. Brain Dis. 2019, 34, 1401–1413. [Google Scholar] [CrossRef]
- Bonifácio, K.L.; Barbosa, D.S.; Moreira, E.G.; Coneglian, C.F.; Vargas, H.O.; Nunes, S.O.V.; Moraes, J.B.; Maes, M. Increased nitro-oxidative stress toxicity as a major determinant of increased blood pressure in mood disorders. J. Affect. Disord. 2020, 278, 226–238. [Google Scholar] [CrossRef]
- Ringle, C.; Da Silva, D.; Bido, D. Structural equation modeling with the SmartPLS. Braz. J. Mark. 2015, 13, 56–73. [Google Scholar] [CrossRef]
- Shmueli, G.; Sarstedt, M.; Hair, J.F.; Cheah, J.-H.; Ting, H.; Vaithilingam, S.; Ringle, C.M. Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. Eur. J. Mark. 2019. [Google Scholar] [CrossRef]
- Stoyanov, D.; Maes, M.H. How to construct neuroscience-informed psychiatric classification? Towards nomothetic networks psychiatry. World J. Psychiatry 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhang, F.; Zhu, W.; Wu, J.; Liang, M. Copper in Diabetes Mellitus: A Meta-Analysis and Systematic Review of Plasma and Serum Studies. Biol. Trace Elem. Res. 2017, 177, 53–63. [Google Scholar] [CrossRef]
- Tanaka, A.; Kaneto, H.; Miyatsuka, T.; Yamamoto, K.; Yoshiuchi, K.; Yamasaki, Y.; Shimomura, I.; Matsuoka, T.A.; Matsuhisa, M. Role of copper ion in the pathogenesis of type 2 diabetes. Endocr. J. 2009, 56, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Masad, A.; Hayes, L.; Tabner, B.J.; Turnbull, S.; Cooper, L.J.; Fullwood, N.J.; German, M.J.; Kametani, F.; El-Agnaf, O.M.; Allsop, D. Copper-mediated formation of hydrogen peroxide from the amylin peptide: A novel mechanism for degeneration of islet cells in type-2 diabetes mellitus? FEBS Lett. 2007, 581, 3489–3493. [Google Scholar] [CrossRef] [PubMed]
- Naka, T.; Kaneto, H.; Katakami, N.; Matsuoka, T.A.; Harada, A.; Yamasaki, Y.; Matsuhisa, M.; Shimomura, I. Association of serum copper levels and glycemic control in patients with type 2 diabetes. Endocr. J. 2013, 60, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, A.; Dash, S.; Barik, B.K.; Muttigi, M.S.; Kedage, V.; Shetty, J.K.; Prakash, M. Copper and ceruloplasmin levels in relation to total thiols and GST in type 2 diabetes mellitus patients. Indian J. Clin. Biochem. 2010, 25, 74–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, J.; Taveira-da-Silva, R.; Hilário-Souza, E. Dissecting copper homeostasis in diabetes mellitus. Iubmb Life 2017, 69, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Cruz, K.J.C.; de Oliveira, A.R.S.; Morais, J.B.S.; Severo, J.S.; Mendes, P.M.V.; de Sousa Melo, S.R.; de Sousa, G.S.; Marreiro, D.D.N. Zinc and Insulin Resistance: Biochemical and Molecular Aspects. Biol. Trace Elem. Res. 2018, 186, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Moriyama, Y.; Watanabe, K.; Tomizawa, S.; Yamazaki, R.; Takahashi, H.; Murayama, T. Lactosylceramide-Induced Phosphorylation Signaling to Group IVA Phospholipase A2 via Reactive Oxygen Species in Tumor Necrosis Factor-alpha-Treated Cells. J. Cell. Biochem. 2017, 118, 4370–4382. [Google Scholar] [CrossRef] [PubMed]
- Alshehry, Z.H.; Mundra, P.A.; Barlow, C.K.; Mellett, N.A.; Wong, G.; McConville, M.J.; Simes, J.; Tonkin, A.M.; Sullivan, D.R.; Barnes, E.H.; et al. Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Prediction of Cardiovascular Events in Type 2 Diabetes Mellitus. Circulation 2016, 134, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Xiong, X.; Li, Y.; Liu, X.; Wang, T.; Zhang, H.; Jiao, Y.; Jiang, J.; Zhang, H.; Tang, Q. Hepatic F-box protein FBXW7 maintains glucose homeostasis through degradation of fetuin-A. Diabetes 2018, 67, 818–830. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.; Dasgupta, S.; Kundu, R.; Maitra, S.; Das, G.; Mukhopadhyay, S.; Ray, S.; Majumdar, S.S.; Bhattacharya, S. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 2012, 18, 1279–1285. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Mey, J.; Varady, K.A. Fetuin-A: A novel link between obesity and related complications. Int. J. Obes. 2015, 39, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, A.; Bengoechea-Alonso, M.T.; Ye, X.; Lukiyanchuk, V.; Jin, J.; Harper, J.W.; Ericsson, J. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 2005, 1, 379–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Fan, F.; Chen, J.; Long, Y.; Tang, S.; Jiang, C.; Xu, Y. FBW7 Regulates the Autophagy Signal in Mesangial Cells Induced by High Glucose. Biomed. Res. Int. 2019, 2019, 6061594. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, J.; Li, F.; Gao, F.; Zhu, L.; Hao, J. FBXW7 mediates high glucose-induced SREBP1 expression in renal tubular cells of diabetic nephropathy under PI3K/Akt pathway regulation. Mol. Med. Rep. 2021, 23, 233. [Google Scholar] [CrossRef]
- Usui, I.; Imamura, T.; Huang, J.; Satoh, H.; Shenoy, S.K.; Lefkowitz, R.J.; Hupfeld, C.J.; Olefsky, J.M. beta-arrestin-1 competitively inhibits insulin-induced ubiquitination and degradation of insulin receptor substrate 1. Mol. Cell. Biol. 2004, 24, 8929–8937. [Google Scholar] [CrossRef] [Green Version]
- Matarese, A.; Gambardella, J.; Lombardi, A.; Wang, X.; Santulli, G. miR-7 Regulates GLP-1-Mediated Insulin Release by Targeting beta-Arrestin 1. Cells 2020, 9, 1621. [Google Scholar] [CrossRef] [PubMed]
- Fan, H. β-Arrestins 1 and 2 are critical regulators of inflammation. Innate Immun. 2014, 20, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Campbell, A.M.; Chan, J.; Schattgen, S.A.; Orlowski, G.M.; Nayar, R.; Huyler, A.H.; Nündel, K.; Mohan, C.; Berg, L.J. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl. Acad. Sci. USA 2015, 112, E710–E717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.; Lee, E.; Irwin, R.; Lucas, P.C.; McCabe, L.R.; Parameswaran, N. beta-Arrestin-1 deficiency protects mice from experimental colitis. Am. J. Pathol. 2013, 182, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Jiao, P.L.; Sun, J.C.; Wang, W.; Ye, P.; Wang, Y.K.; Leng, Y.Q.; Wang, W.Z. β-Arrestin1 Reduces Oxidative Stress via Nrf2 Activation in the Rostral Ventrolateral Medulla in Hypertension. Front. Neurosci. 2021, 15, 657825. [Google Scholar] [CrossRef]
- Philip, J.L.; Razzaque, M.A.; Han, M.; Li, J.; Theccanat, T.; Xu, X.; Akhter, S.A. Regulation of mitochondrial oxidative stress by beta-arrestins in cultured human cardiac fibroblasts. Dis. Model. Mech. 2015, 8, 1579–1589. [Google Scholar] [CrossRef] [Green Version]
- van Gastel, J.; Hendrickx, J.O.; Leysen, H.; Santos-Otte, P.; Luttrell, L.M.; Martin, B.; Maudsley, S. β-Arrestin Based Receptor Signaling Paradigms: Potential Therapeutic Targets for Complex Age-Related Disorders. Front. Pharm. 2018, 9, 1369. [Google Scholar] [CrossRef] [PubMed]
- Nadler, J.L.; Buchanan, T.; Natarajan, R.; Antonipillai, I.; Bergman, R.; Rude, R. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 1993, 21, 1024–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, F.H.; Milne, D.B.; Klevay, L.M.; Gallagher, S.; Johnson, L. Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. J. Am. Coll. Nutr. 2007, 26, 121–132. [Google Scholar] [CrossRef]
- Swaminathan, R. Magnesium metabolism and its disorders. Clin. Biochem. Rev. 2003, 24, 47–66. [Google Scholar]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [Green Version]
- Pittas, A.G.; Harris, S.S.; Stark, P.C.; Dawson-Hughes, B. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 2007, 30, 980–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabut, J.M.; Crane, J.D.; Green, A.E.; Keating, D.J.; Khan, W.I.; Steinberg, G.R. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr. Rev. 2019, 40, 1092–1107. [Google Scholar] [CrossRef]
- Oh, C.-M.; Park, S.; Kim, H. Serotonin as a new therapeutic target for diabetes mellitus and obesity. Diabetes Metab. J. 2016, 40, 89. [Google Scholar] [CrossRef] [Green Version]
- Lam, D.D.; Heisler, L.K. Serotonin and energy balance: Molecular mechanisms and implications for type 2 diabetes. Expert Rev. Mol. Med. 2007, 9, 1–24. [Google Scholar] [CrossRef]
- Heimes, K.; Feistel, B.; Verspohl, E.J. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts. Eur. J. Pharm. 2009, 624, 58–65. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Zhou, W.; Gao, L.; Yuan, L.; Han, X. Serotonin receptor 2C and insulin secretion. PLoS ONE 2013, 8, e54250. [Google Scholar] [CrossRef]
- Paulmann, N.; Grohmann, M.; Voigt, J.P.; Bert, B.; Vowinckel, J.; Bader, M.; Skelin, M.; Jevsek, M.; Fink, H.; Rupnik, M.; et al. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 2009, 7, e1000229. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; Moraes, J.B.; Bonifacio, K.L.; Barbosa, D.S.; Vargas, H.O.; Michelin, A.P.; Nunes, S.O.V. Towards a new model and classification of mood disorders based on risk resilience, neuro-affective toxicity, staging, and phenome features using the nomothetic network psychiatry approach. Metab. Brain Dis. 2021, 36, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Simeonova, D.; Stoyanov, D.; Leunis, J.C.; Murdjeva, M.; Maes, M. Construction of a nitro-oxidative stress-driven, mechanistic model of mood disorders: A nomothetic network approach. Nitric Oxide 2021, 106, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Bonifácio, K.L.; Barbosa, D.S.; Moreira, E.G.; de Farias, C.C.; Higachi, L.; Camargo, A.E.I.; Soares, J.F.; Vargas, H.O.; Nunes, S.O.V.; Berk, M. Indices of insulin resistance and glucotoxicity are not associated with bipolar disorder or major depressive disorder, but are differently associated with inflammatory, oxidative and nitrosative biomarkers. J. Affect. Disord. 2017, 222, 185–194. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Al-Kufi, S.N.; Al-Dujaili, A.H.; Maes, M. Serum Interleukin Levels and Insulin Resistance in Major Depressive Disorder. CNS Neurol. Disord. Drug Targets 2018, 17, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.O.V.; de Melo, L.G.P.; de Castro, M.R.P.; Barbosa, D.S.; Vargas, H.O.; Berk, M.; Maes, M. Atherogenic index of plasma and atherogenic coefficient are increased in major depression and bipolar disorder, especially when comorbid with tobacco use disorder. J. Affect. Dis. 2015, 172, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Vargas, H.O.; Nunes, S.O.V.; Barbosa, D.S.; Vargas, M.M.; Cestari, A.; Dodd, S.; Venugopal, K.; Maes, M.; Berk, M. Castelli risk indexes 1 and 2 are higher in major depression but other characteristics of the metabolic syndrome are not specific to mood disorders. Life Sci. 2014, 102, 65–71. [Google Scholar] [CrossRef]
- Bortolasci, C.C.; Vargas, H.O.; Nunes, S.O.V.; de Melo, L.G.P.; de Castro, M.R.P.; Moreira, E.G.; Dodd, S.; Barbosa, D.S.; Berk, M.; Maes, M. Factors influencing insulin resistance in relation to atherogenicity in mood disorders, the metabolic syndrome and tobacco use disorder. J. Affect. Disord. 2015, 179, 148–155. [Google Scholar] [CrossRef]
- Nolan, K.R. Copper toxicity syndrome. J. Orthomol. Psychiatry 1983, 12, 270–282. [Google Scholar]
- Styczen, K.; Sowa-Kucma, M.; Siwek, M.; Dudek, D.; Reczynski, W.; Misztak, P.; Szewczyk, B.; Topor-Madry, R.; Opoka, W.; Nowak, G. Study of the Serum Copper Levels in Patients with Major Depressive Disorder. Biol. Trace Elem. Res. 2016, 174, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Twayej, A.J.; Al-Hakeim, H.K.; Al-Dujaili, A.H.; Maes, M. Lowered zinc and copper levels in drug-naïve patients with major depression: Effects of antidepressants, ketoprofen and immune activation. World J. Biol. Psychiatry 2020, 21, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, B.; Szopa, A.; Serefko, A.; Poleszak, E.; Nowak, G. The role of magnesium and zinc in depression: Similarities and differences. Magnesium Res. 2018, 31, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhong, S.; Liao, X.; Chen, J.; He, T.; Lai, S.; Jia, Y. A meta-analysis of oxidative stress markers in depression. PLoS ONE 2015, 10, e0138904. [Google Scholar] [CrossRef]
- Maes, M.; Ruckoanich, P.; Chang, Y.S.; Mahanonda, N.; Berk, M. Multiple aberrations in shared inflammatory and oxidative & nitrosative stress (IO&NS) pathways explain the co-association of depression and cardiovascular disorder (CVD), and the increased risk for CVD and due mortality in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 769–783. [Google Scholar] [CrossRef]
- Bae, Y.J.; Kim, S.K. Low dietary calcium is associated with self-rated depression in middle-aged Korean women. Nutr. Res. Pract. 2012, 6, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Qazmooz, H.A.; Smesam, H.N.; Mousa, R.F.; Al-Hakeim, H.K.; Maes, M. Trace element, immune and opioid biomarkers of unstable angina, increased atherogenicity and insulin resistance: Results of machine learning. J. Trace Elem. Med. Biol. 2021, 64, 126703. [Google Scholar] [CrossRef]
- Alam, F.; Nayyar, S.; Richie, W.; Archibong, A.; Nayyar, T. Beta-Arrestin1 Levels in Mononuclear Leukocytes Support Depression Scores for Women with Premenstrual Dysphoric Disorder. Int. J. Environ. Res. Public Health 2016, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, G.; Golan, M.; Avissar, S. Beta-arrestin signaling complex as a target for antidepressants and as a depression marker. Drug News Perspect. 2009, 22, 467–480. [Google Scholar]
- Avissar, S.; Schreiber, G.; Lopez-Munoz, F.; Alamo, C. Beta-Arrestins in depression: A molecular switch from signal desensitization to alternative intracellular adaptor functions. Neurobiol. Depress. 2012, 371–390. [Google Scholar]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Jiang, Q.; Li, S.; Zhu, H.; Xu, R.; Song, N.; Ding, X.; Liu, J.; Chen, M.; Song, M. Opposing functions of β-arrestin 1 and 2 in Parkinson’s disease via microglia inflammation and Nprl3. Cell Death Differ. 2021, 28, 1822–1836. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Yirmyia, R.; Noraberg, J.; Brene, S.; Hibbeln, J.; Perini, G.; Kubera, M.; Bob, P.; Lerer, B.; Maj, M. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metab. Brain Dis. 2009, 24, 27–53. [Google Scholar] [CrossRef]
- Dinoff, A.; Saleem, M.; Herrmann, N.; Mielke, M.M.; Oh, P.I.; Venkata, S.L.V.; Haughey, N.J.; Lanctôt, K.L. Plasma sphingolipids and depressive symptoms in coronary artery disease. Brain Behav. 2017, 7, e00836. [Google Scholar] [CrossRef]
- Chatterjee, S.; Pandey, A. The Yin and Yang of lactosylceramide metabolism: Implications in cell function. Biochim. Biophys. Acta 2008, 1780, 370–382. [Google Scholar] [CrossRef]
- Chatterjee, S.; Balram, A.; Li, W. Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes. Int. J. Mol. Sci. 2021, 22, 1816. [Google Scholar] [CrossRef] [PubMed]
- Gulbins, E.; Palmada, M.; Reichel, M.; Lüth, A.; Böhmer, C.; Amato, D.; Müller, C.P.; Tischbirek, C.H.; Groemer, T.W.; Tabatabai, G. Acid sphingomyelinase–ceramide system mediates effects of antidepressant drugs. Nat. Med. 2013, 19, 934–938. [Google Scholar] [CrossRef] [Green Version]
- Ono, M.; Kikusui, T.; Sasaki, N.; Ichikawa, M.; Mori, Y.; Murakami-Murofushi, K. Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice. Neuroscience 2008, 156, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
Variables | Normal-IRI A (n = 30) | Increased-IRI B (n = 33) | Very High-IRI C (n = 25) | F/χ2 | df | p |
---|---|---|---|---|---|---|
Age (years) | 48.5 ± 5.5 | 48.6 ± 7.4 | 49.0 ± 5.2 | 0.06 | 2/85 | 0.944 |
Body mass index (kg/m2) | 26.98 ± 3.29 | 27.50 ± 2.75 | 26.29 ± 4.57 | 0.83 | 2/85 | 0.439 |
Education (years) | 10.0 ± 3.9 | 10.1 ± 4.6 | 9.3 ± 3.9 | 0.32 | 2/85 | 0.727 |
Single/Married | 4/26 | 5/28 | 4/21 | 0.08 | 2 | 0.959 |
Rural/Urban | 12/18 | 21/12 | 6/19 | 1.68 | 2 | 0.433 |
Employment Yes/No | 17/13 | 17/16 | 12/13 | 0.42 | 2 | 0.809 |
Family history Yes/No | 15/15 B,C | 12/21 A,C | 19/6 A,B | 9.05 | 2 | 0.011 |
Drug free/Diet only/drugs | 16/6/8 C | 12/10/11 C | 0/9/16 A,B | FEPT | - | 0.001 |
FBG mM | 6.79 ± 2.09 B,C | 9.53 ± 3.95 A,C | 13.29 ± 3.68 A,B | 25.75 | 2/85 | <0.001 |
Insulin pM | 42.80 ± 10.36 B,C | 53.45 ± 16.74 A,C | 62.14 ± 19.70 A,B | 10.27 | 2/85 | <0.001 |
IRI (z score) | −1.073 ± 0.451 B,C | 0.002 ± 0.321 A,C | 1.196 ± 0.527 A,B | 188.25 | 2/85 | <0.001 |
zβcell (z score) | 0.057 ± 0.570 | 0.016 ± 1.113 | −0.243 ± 1.143 | 0.76 | 2/85 | 0.472 |
Triglycerides mM | 1.38 ± 0.47 B,C | 1.80 ± 0.57 A | 2.03 ± 0.59 A | 10.47 | 2/85 | <0.001 |
Total cholesterol mmol/L | 5.25 ± 0.89 B,C | 5.77 ± 0.97 A | 5.91 ± 0.80 A | 4.22 | 2/85 | 0.018 |
HDLc mmol/L | 1.04 ± 0.15 | 1.05 ± 0.16 | 0.99 ± 0.16 | 0.85 | 2/85 | 0.432 |
LDLc mmol/L | 3.58 ± 0.76 | 3.90 ± 0.84 | 3.99 ± 0.58 | 2.34 | 2/85 | 0.102 |
zCastelli (z scores) | −0.348 ± 0.983 C | 0.067 ± 1.110 | 0.458 ± 0.553 A | 5.09 | 2/85 | 0.008 |
zAIP (z scores) | −0.435 ± 0.800 B,C | 0.047 ± 1.040 A,C | 0.572 ± 0.885 A,B | 8.31 | 2/85 | 0.001 |
Variables | Normal-IRI (n = 28) | Increased-IRI (n = 33) | Very High-IRI (n = 25) | F/χ2 | df | p |
---|---|---|---|---|---|---|
Total HDRS | 8.33 ± 6.16 C | 10.30 ± 5.45 C | 13.20 ± 3.96 A,B | 5.68 | 2/85 | 0.005 |
Key HDRS | 2.20 ± 1.83 C | 2.70 ± 1.61 C | 4.00 ± 1.50 A,B | 8.42 | 2/85 | <0.001 |
Physiosomatic HDRS | 2.47 ± 2.08 C | 3.24 ± 2.05 | 3.92 ± 1.98 A | 3.50 | 2/85 | 0.035 |
Melancholia HDRS | 1.63 ± 1.65 C | 2.03 ± 1.69 | 2.64 ± 1.25 A | 2.84 | 2/85 | 0.064 |
Total HAM-A | 9.17 ± 6.32 C | 10.67 ± 5.99 C | 14.92 ± 4.13 A,B | 7.47 | 2/85 | 0.001 |
Key HAM-A | 2.77 ± 2.10 C | 3.15 ± 2.03 C | 4.28 ± 1.40 A,B | 4.59 | 2/85 | 0.013 |
Physiosomatic HAM-A | 4.27 ± 3.14 C | 4.94 ± 3.08 C | 7.16 ± 2.81 A,B | 6.69 | 2/85 | 0.002 |
β-arrestin-1 ng/mL | 12.81 ± 7.21 | 15.60 ± 7.86 | 17.39 ± 6.93 | 2.71 | 2/85 | 0.072 |
Serotonin ng/mL | 143.1 ± 73.0 | 142.75 ± 81.1 | 184.4 ± 114.4 | 1.92 | 2/85 | 0.153 |
FBXW7 ng/mL | 16.40 ± 0.62 C | 16.73 ± 8.40 C | 11.26 ± 6.71 A,B | 4.32 | 2/85 | 0.016 |
Lactosylceramide ng/mL | 27.05 ± 11.35 C | 30.49 ± 15.01 C | 38.80 ± 16.78 A,B | 4.69 | 2/85 | 0.012 |
Albumin g/L | 45.47 ± 6.95 | 45.82 ± 5.47 | 46.68 ± 4.79 | 0.31 | 2/85 | 0.738 |
Total magnesium mM | 0.736 ± 0.161 C | 0.682 ± 0.192 | 0.637 ± 0.124 A | 2.49 | 2/85 | 0.089 |
Total calcium mM | 2.287 ± 0.156 | 2.259 ± 0.168 | 2.265 ± 0.179 | 0.24 | 2/85 | 0.791 |
Copper mg/L | 0.975 ± 0.206 | 0.931 ± 0.242 C | 1.050 ± 0.113 B | 2.53 | 2/85 | 0.086 |
Zinc mg/L | 0.716 ± 0.158 | 0.685 ± 0.200 | 0.638 ± 0.156 | 1.36 | 2/85 | 0.262 |
Dependent Variables | Explanatory Variables | Β | t | p | F Model | df | p | R2 |
---|---|---|---|---|---|---|---|---|
#1a. Total HDRS-17 | Model | 19.03 | 4/83 | <0.001 | 0.478 | |||
Calcium | −0.358 | −4.39 | <0.001 | |||||
Copper | 0.273 | 3.25 | 0.002 | |||||
β-arrestin-1 | 0.275 | 3.33 | 0.001 | |||||
Lactosylceramide | 0.187 | 2.19 | 0.031 | |||||
#1b. Total HDRS-17 | Model | 20.66 | 4/83 | <0.001 | 0.499 | |||
Calcium | −0.326 | −3.99 | <0.001 | |||||
Copper | 0.302 | 3.79 | <0.001 | |||||
β-arrestin-1 | 0.240 | 2.90 | 0.005 | |||||
Castelli risk index 1 | 0.245 | 2.90 | 0.005 | |||||
#2a. Key_HDRS | Model | 14.66 | 3/84 | <0.001 | 0.344 | |||
β-arrestin-1 | 0.327 | 3.60 | 0.001 | |||||
Copper | 0.283 | 3.12 | 0.002 | |||||
Calcium | −0.271 | −3.01 | 0.004 | |||||
#2b. Key_HDRS | Model | 15.75 | 4/83 | <0.001 | 0.432 | |||
Castelli risk index 1 | 0.323 | 3.58 | 0.001 | |||||
Copper | 0.261 | 3.07 | 0.003 | |||||
β-arrestin-1 | 0.243 | 2.76 | 0.007 | |||||
Calcium | −0.194 | −2.23 | 0.029 | |||||
#3a. Physiom_HDRS | Model | 10.45 | 3/84 | <0.001 | 0.272 | |||
Calcium | −0.351 | −3.73 | <0.001 | |||||
Copper | 0.233 | 2.42 | 0.018 | |||||
FBXW7 | −0.216 | −2.27 | 0.026 | |||||
#3b. Physiom_HDRS | Model | 11.01 | 3/84 | <0.001 | 0.282 | |||
Calcium | −0.353 | −3.78 | <0.001 | |||||
Copper | 0.255 | 2.72 | 0.008 | |||||
Insulin Resistance Index | 0.236 | 2.54 | 0.013 | |||||
#4a. Melanch_HDRS | Model | 10.10 | 3/84 | <0.001 | 0.265 | |||
Copper | 0.285 | 2.98 | 0.004 | |||||
β-arrestin-1 | 0.286 | 3.00 | 0.004 | |||||
Zinc | −0.233 | −2.49 | 0.015 | |||||
#4b. Melanch_HDRS | Model | 11.55 | 4/83 | <0.001 | 0.358 | |||
Castelli risk index 1 | 0.334 | 3.59 | 0.001 | |||||
Copper | 0.228 | 2.49 | 0.015 | |||||
Albumin | 0.226 | 2.52 | 0.014 | |||||
β-arrestin-1 | 0.195 | 2.08 | 0.041 |
Dependent Variables | Explanatory Variables | β | t | p | F Model | df | p | R2 |
---|---|---|---|---|---|---|---|---|
#1. HAM-A total score | Model | 18.95 | 4/83 | <0.001 | 0.477 | |||
Copper | 0.354 | 4.21 | <0.001 | |||||
β-arrestin-1 | 0.289 | 3.50 | 0.001 | |||||
Calcium | −0.267 | −3.27 | 0.002 | |||||
Lactosylceramide | 0.175 | 2.05 | 0.043 | |||||
#2. HAM-A total score | Model | 23.34 | 4/83 | <0.001 | 0.529 | |||
Castelli risk index 1 | 0.306 | 3.72 | <0.001 | |||||
Copper | 0.376 | 4.87 | <0.001 | |||||
β-arrestin-1 | 0.237 | 2.96 | 0.004 | |||||
Calcium | −0.219 | −2.76 | 0.007 | |||||
#3. Key_HAM-A | Model | 14.33 | 5/82 | <0.001 | 0.466 | |||
Copper | 0.366 | 4.32 | <0.001 | |||||
FBXW7 | −0.307 | −3.50 | 0.001 | |||||
Calcium | −0.244 | −2.96 | 0.004 | |||||
β-arrestin-1 | 0.229 | 2.61 | 0.011 | |||||
Age | −0.213 | −2.51 | 0.014 | |||||
#4. Key_HAM-A | Model | 13.21 | 6/81 | <0.001 | 0.494 | |||
Copper | 0.360 | 4.34 | <0.001 | |||||
Castelli risk index 1 | 0.191 | 2.12 | 0.037 | |||||
FBXW7 | −0.252 | −2.81 | 0.006 | |||||
Calcium | −0.196 | −2.33 | 0.022 | |||||
Age | −0.201 | −2.42 | 0.018 | |||||
β-arrestin-1 | 0.195 | 2.23 | 0.029 | |||||
#5. Physiosom_HAM-A | Model | 16.10 | 4/83 | <0.001 | 0.437 | |||
Copper | 0.320 | 3.67 | <0.001 | |||||
Calcium | −0.281 | −3.32 | 0.001 | |||||
β-arrestin-1 | 0.256 | 2.98 | 0.004 | |||||
Lactosylceramide | 0.186 | 2.10 | 0.039 | |||||
#6. Physiosom_HAM-A | Model | 18.70 | 4/83 | <0.001 | 0.474 | |||
Atherogenic index of plasma | 0.284 | 3.25 | 0.002 | |||||
Copper | 0.327 | 3.96 | <0.001 | |||||
β-arrestin-1 | 0.231 | 2.77 | 0.007 | |||||
Calcium | −0.228 | −2.70 | 0.009 |
Dependent Variables | Explanatory Variables | B | SE | Wald | df | p | OR | 95% CI |
---|---|---|---|---|---|---|---|---|
#1. T2DM Patients vs. Controls | Serotonin | 1.224 | 0.386 | 10.05 | 1 | 0.002 | 3.40 | 1.60–7.25 |
FBXW7 | −1.107 | 0.414 | 7.15 | 1 | 0.008 | 0.33 | 0.15–0.74 | |
Lactosylceramide | 1.929 | 0.568 | 11.52 | 1 | 0.001 | 6.88 | 2.26–20.96 | |
Calcium | −1.502 | 0.401 | 14.02 | 1 | <0.001 | 0.22 | 0.10–0.49 | |
Copper | 1.863 | 0.506 | 13.57 | 1 | <0.001 | 6.44 | 2.39–17.37 | |
#2. T2DM Patients vs. Controls | β-arrestin 1 | 1.014 | 0.317 | 10.26 | 1 | 0.001 | 2.76 | 1.48–5.13 |
#3. T2DM Patients vs. Controls | Magnesium | −1.082 | 0.302 | 12.80 | 1 | <0.001 | 0.34 | 0.19–0.61 |
Dependent Variables | Explanatory Variables | β | t | p | F Model | df | p | R2 |
---|---|---|---|---|---|---|---|---|
#1. Insulin resistance index | Model | 7.26 | 2/85 | 0.001 | 0.146 | |||
FBXW7 | −0.239 | −2.28 | 0.025 | |||||
Lactosylceramide | 0.237 | 2.26 | 0.026 | |||||
#2. β-cell function index | Model | 13.410 | 5/82 | <0.001 | 0.450 | |||
B-arrestin | −0.284 | −3.30 | 0.001 | |||||
Calcium | 0.324 | 3.79 | <0.001 | |||||
Copper | −0.277 | −3.12 | 0.003 | |||||
Albumin | 0.251 | 2.93 | 0.004 | |||||
Family history | −0.186 | −2.00 | 0.049 | |||||
#3. Castelli Risk index 1 | Model | 11.70 | 3/84 | <0.001 | 0.295 | |||
Family history | 0.325 | 3.38 | 0.001 | |||||
FBXW7 | −0.274 | −2.93 | 0.004 | |||||
Calcium | −0.207 | −2.20 | 0.031 | |||||
#4. AIP | Model | 8.94 | 3/84 | <0.001 | 0.242 | |||
Magnesium | −0.239 | −2.38 | 0.020 | |||||
Serotonin | 0.282 | 2.97 | 0.004 | |||||
Calcium | −0.247 | −2.25 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hakeim, H.K.; Hadi, H.H.; Jawad, G.A.; Maes, M. Intersections between Copper, β-Arrestin-1, Calcium, FBXW7, CD17, Insulin Resistance and Atherogenicity Mediate Depression and Anxiety Due to Type 2 Diabetes Mellitus: A Nomothetic Network Approach. J. Pers. Med. 2022, 12, 23. https://doi.org/10.3390/jpm12010023
Al-Hakeim HK, Hadi HH, Jawad GA, Maes M. Intersections between Copper, β-Arrestin-1, Calcium, FBXW7, CD17, Insulin Resistance and Atherogenicity Mediate Depression and Anxiety Due to Type 2 Diabetes Mellitus: A Nomothetic Network Approach. Journal of Personalized Medicine. 2022; 12(1):23. https://doi.org/10.3390/jpm12010023
Chicago/Turabian StyleAl-Hakeim, Hussein Kadhem, Hadi Hasan Hadi, Ghoufran Akeel Jawad, and Michael Maes. 2022. "Intersections between Copper, β-Arrestin-1, Calcium, FBXW7, CD17, Insulin Resistance and Atherogenicity Mediate Depression and Anxiety Due to Type 2 Diabetes Mellitus: A Nomothetic Network Approach" Journal of Personalized Medicine 12, no. 1: 23. https://doi.org/10.3390/jpm12010023
APA StyleAl-Hakeim, H. K., Hadi, H. H., Jawad, G. A., & Maes, M. (2022). Intersections between Copper, β-Arrestin-1, Calcium, FBXW7, CD17, Insulin Resistance and Atherogenicity Mediate Depression and Anxiety Due to Type 2 Diabetes Mellitus: A Nomothetic Network Approach. Journal of Personalized Medicine, 12(1), 23. https://doi.org/10.3390/jpm12010023