Implication of Electrophysiological Biomarkers in Psychosis: Focusing on Diagnosis and Treatment Response
Abstract
:1. Introduction
2. EEG Biomarkers for Predicting Diagnosis of Psychosis
3. EEG Biomarkers for Disease Progression and Outcome in Psychosis
4. EEG Biomarkers for Treatment Response in Psychosis
5. Clinical Implication of EEG Biomarkers in Psychosis
6. Research Implication of EEG Biomarkers in Psychosis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manchia, M.; Pisanu, C.; Squassina, A.; Carpiniello, B. Challenges and Future Prospects of Precision Medicine in Psychiatry. Pharm. Pers. Med. 2020, 13, 127–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar de Pablo, G.; Studerus, E.; Vaquerizo-Serrano, J.; Irving, J.; Catalan, A.; Oliver, D.; Baldwin, H.; Danese, A.; Fazel, S.; Steyerberg, E.W.; et al. Implementing Precision Psychiatry: A Systematic Review of Individualized Prediction Models for Clinical Practice. Schizophr. Bull. 2021, 47, 284–297. [Google Scholar] [CrossRef]
- Joshi, Y.B.; Light, G.A. Using EEG-Guided Basket and Umbrella Trials in Psychiatry: A Precision Medicine Approach for Cognitive Impairment in Schizophrenia. Front. Psychiatry 2018, 9, 554. [Google Scholar] [CrossRef]
- Insel, T.R. The NIMH Research Domain Criteria (RDoC) Project: Precision medicine for psychiatry. Am. J. Psychiatry 2014, 171, 395–397. [Google Scholar] [CrossRef] [Green Version]
- Fusar-Poli, P.; Hijazi, Z.; Stahl, D.; Steyerberg, E.W. The Science of Prognosis in Psychiatry: A Review. JAMA Psychiatry 2018, 75, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; McGorry, P.D.; Kane, J.M. Improving outcomes of first-episode psychosis: An overview. World Psychiatry 2017, 16, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Salazar de Pablo, G.; Correll, C.U.; Meyer-Lindenberg, A.; Millan, M.J.; Borgwardt, S.; Galderisi, S.; Bechdolf, A.; Pfennig, A.; Kessing, L.V.; et al. Prevention of Psychosis: Advances in Detection, Prognosis, and Intervention. JAMA Psychiatry 2020, 77, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Tognin, S.; van Hell, H.H.; Merritt, K.; Winter-van Rossum, I.; Bossong, M.G.; Kempton, M.J.; Modinos, G.; Fusar-Poli, P.; Mechelli, A.; Dazzan, P.; et al. Towards Precision Medicine in Psychosis: Benefits and Challenges of Multimodal Multicenter Studies-PSYSCAN: Translating Neuroimaging Findings From Research into Clinical Practice. Schizophr. Bull. 2020, 46, 432–441. [Google Scholar] [CrossRef]
- Banaschewski, T.; Brandeis, D. Annotation: What electrical brain activity tells us about brain function that other techniques cannot tell us—A child psychiatric perspective. J. Child Psychol. Psychiatry 2007, 48, 415–435. [Google Scholar] [CrossRef]
- Picton, T.W.; Bentin, S.; Berg, P.; Donchin, E.; Hillyard, S.A.; Johnson, R., Jr.; Miller, G.A.; Ritter, W.; Ruchkin, D.S.; Rugg, M.D.; et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 2000, 37, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Woodman, G.F.; Luck, S.J. Serial deployment of attention during visual search. J. Exp. Psychol. Hum. 2003, 29, 121–138. [Google Scholar] [CrossRef]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG; Oxford University Press: New York, NY, USA, 2006; Volume 2, pp. 163–166. [Google Scholar]
- Olichney, J.M.; Yang, J.C.; Taylor, J.; Kutas, M. Cognitive event-related potentials: Biomarkers of synaptic dysfunction across the stages of Alzheimer’s disease. J. Alzheimer’s Dis. JAD, 2011; 26, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.C.; Allison, T. Interpretation of evoked potentials: A neurophysiological perspective. Can. J. Psychol. 1981, 35, 113–135. [Google Scholar] [CrossRef]
- Marshall, P.J.; Reeb, B.C.; Fox, N.A. Electrophysiological responses to auditory novelty in temperamentally different 9-month-old infants. Dev. Sci. 2009, 12, 568–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelley, A.M.; Ward, P.B.; Catts, S.V.; Michie, P.T.; Andrews, S.; McConaghy, N. Mismatch negativity: An index of a preattentive processing deficit in schizophrenia. Biol. Psychiatry 1991, 30, 1059–1062. [Google Scholar] [CrossRef]
- Kim, S.; Jeon, H.; Jang, K.I.; Kim, Y.W.; Im, C.H.; Lee, S.H. Mismatch Negativity and Cortical Thickness in Patients With Schizophrenia and Bipolar Disorder. Schizophr. Bull. 2019, 45, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Naatanen, R.; Gaillard, A.W.; Mantysalo, S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 1978, 42, 313–329. [Google Scholar] [CrossRef]
- Javitt, D.C.; Zukin, S.R.; Heresco-Levy, U.; Umbricht, D. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr. Bull. 2012, 38, 958–966. [Google Scholar] [CrossRef] [Green Version]
- Umbricht, D.; Koller, R.; Vollenweider, F.X.; Schmid, L. Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biol. Psychiatry 2002, 51, 400–406. [Google Scholar] [CrossRef]
- Dvey-Aharon, Z.; Fogelson, N.; Peled, A.; Intrator, N. Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach. PLoS ONE 2015, 10, e0123033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramyead, A.; Studerus, E.; Kometer, M.; Uttinger, M.; Gschwandtner, U.; Fuhr, P.; Riecher-Rössler, A. Prediction of psychosis using neural oscillations and machine learning in neuroleptic-naïve at-risk patients. World J. Biol. Psychiatry 2016, 17, 285–295. [Google Scholar] [CrossRef]
- Javitt, D.C.; Freedman, R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am. J. Psychiatry 2015, 172, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, J.; Wang, C.; Zhao, X.; Chang, Q.; Wang, H.; Wang, C. Discriminating schizophrenia disease progression using a P50 sensory gating task with dense-array EEG, clinical assessments, and cognitive tests. Expert Rev. Neurother 2019, 19, 459–470. [Google Scholar] [CrossRef]
- Bodatsch, M.; Ruhrmann, S.; Wagner, M.; Müller, R.; Schultze-Lutter, F.; Frommann, I.; Brinkmeyer, J.; Gaebel, W.; Maier, W.; Klosterkötter, J.; et al. Prediction of psychosis by mismatch negativity. Biol. Psychiatry 2011, 69, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Perez, V.B.; Woods, S.W.; Roach, B.J.; Ford, J.M.; McGlashan, T.H.; Srihari, V.H.; Mathalon, D.H. Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: Forecasting psychosis risk with mismatch negativity. Biol. Psychiatry 2014, 75, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Light, G.A.; Swerdlow, N.R. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann. N. Y. Acad. Sci. 2015, 1344, 105–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, J.K.; Sugar, C.; Horan, W.P.; Kern, R.; Green, M.F. Mismatch negativity, social cognition, and functioning in schizophrenia patients. Biol. Psychiatry 2010, 67, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Light, G.A.; Braff, D.L. Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch. Gen. Psychiatry 2005, 62, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Hasey, G.M.; Kiang, M. A review of recent literature employing electroencephalographic techniques to study the pathophysiology, phenomenology, and treatment response of schizophrenia. Curr. Psychiatry Rep. 2013, 15, 388. [Google Scholar] [CrossRef] [PubMed]
- Koutsoukos, E.; Angelopoulos, E.; Maillis, A.; Papadimitriou, G.N.; Stefanis, C. Indication of increased phase coupling between theta and gamma EEG rhythms associated with the experience of auditory verbal hallucinations. Neurosci. Lett. 2013, 534, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Surmeli, T.; Ertem, A.; Eralp, E.; Kos, I.H. Schizophrenia and the efficacy of qEEG-guided neurofeedback treatment: A clinical case series. Clin. EEG Neurosci. 2012, 43, 133–144. [Google Scholar] [CrossRef]
- Khodayari-Rostamabad, A.; Hasey, G.M.; Maccrimmon, D.J.; Reilly, J.P.; de Bruin, H. A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2010, 121, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Ravan, M.; MacCrimmon, D.; Hasey, G.; Reilly, J.P.; Khodayari-Rostamabad, A. A machine learning approach using P300 responses to investigate effect of clozapine therapy. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 5911–5914. [Google Scholar] [CrossRef]
- Potter, D.; Summerfelt, A.; Gold, J.; Buchanan, R.W. Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophr. Bull. 2006, 32, 692–700. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, L.; Liu, S.; Hong, X.; Chen, D.C.; Xiu, M.H.; Yang, F.D.; Zhang, Z.; Zhang, X.; Kosten, T.A.; et al. Short-term tropisetron treatment and cognitive and P50 auditory gating deficits in schizophrenia. Am. J. Psychiatry 2012, 169, 974–981. [Google Scholar] [CrossRef]
- Kishi, T.; Ikuta, T.; Oya, K.; Matsunaga, S.; Matsuda, Y.; Iwata, N. Anti-Dementia Drugs for Psychopathology and Cognitive Impairment in Schizophrenia: A Systematic Review and Meta-Analysis. Int. J. Neuropsychopharmacol. 2018, 21, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, G.; Baroni, G.; Lorusso, M.; Montemitro, C.; Spano, M.C.; di Giannantonio, M. Efficacy of Memantine in Schizophrenic Patients: A Systematic Review. J. Amino Acids 2017, 2017, 7021071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catts, V.S.; Lai, Y.L.; Weickert, C.S.; Weickert, T.W.; Catts, S.V. A quantitative review of the postmortem evidence for decreased cortical N-methyl-D-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol. Psychol. 2016, 116, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Bhakta, S.G.; Chou, H.H.; Rana, B.; Talledo, J.A.; Balvaneda, B.; Gaddis, L.; Light, G.A.; Swerdlow, N.R. Effects of acute memantine administration on MATRICS Consensus Cognitive Battery performance in psychosis: Testing an experimental medicine strategy. Psychopharmacology 2016, 233, 2399–2410. [Google Scholar] [CrossRef] [Green Version]
- Adcock, R.A.; Dale, C.; Fisher, M.; Aldebot, S.; Genevsky, A.; Simpson, G.V.; Nagarajan, S.; Vinogradov, S. When top-down meets bottom-up: Auditory training enhances verbal memory in schizophrenia. Schizophr. Bull. 2009, 35, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Menning, H.; Roberts, L.E.; Pantev, C. Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 2000, 11, 817–822. [Google Scholar] [CrossRef]
- Näätänen, R. Mismatch negativity (MMN) as an index of central auditory system plasticity. Int. J. Audiol. 2008, 47, S16–S20. [Google Scholar] [CrossRef]
- Light, G.A.; Swerdlow, N.R.; Thomas, M.L.; Calkins, M.E.; Green, M.F.; Greenwood, T.A.; Gur, R.E.; Gur, R.C.; Lazzeroni, L.C.; Nuechterlein, K.H.; et al. Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: Characterization of demographic, clinical, cognitive, and functional correlates in COGS-2. Schizophr. Res. 2015, 163, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Harvey, P.D.; Strassnig, M. Predicting the severity of everyday functional disability in people with schizophrenia: Cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry 2012, 11, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santesteban-Echarri, O.; Paino, M.; Rice, S.; González-Blanch, C.; McGorry, P.; Gleeson, J.; Alvarez-Jimenez, M. Predictors of functional recovery in first-episode psychosis: A systematic review and meta-analysis of longitudinal studies. Clin. Psychol. Rev. 2017, 58, 59–75. [Google Scholar] [CrossRef] [PubMed]
- De Bock, R.; Mackintosh, A.J.; Maier, F.; Borgwardt, S.; Riecher-Rössler, A.; Andreou, C. EEG microstates as biomarker for psychosis in ultra-high-risk patients. Transl. Psychiatry 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Tada, M.; Kirihara, K.; Mizutani, S.; Uka, T.; Kunii, N.; Koshiyama, D.; Fujioka, M.; Usui, K.; Nagai, T.; Araki, T.; et al. Mismatch negativity (MMN) as a tool for translational investigations into early psychosis: A review. Int. J. Psychophysiol. 2019, 145, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.; Harms, L.; Schall, U.; Michie, P.T. Mismatch negativity: Translating the potential. Front. Psychiatry 2013, 4, 171. [Google Scholar] [CrossRef] [Green Version]
- Javitt, D.C.; Steinschneider, M.; Schroeder, C.E.; Arezzo, J.C. Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proc. Natl. Acad. Sci. USA 1996, 93, 11962–11967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.S.; Kim, J.S. Implication of Electrophysiological Biomarkers in Psychosis: Focusing on Diagnosis and Treatment Response. J. Pers. Med. 2022, 12, 31. https://doi.org/10.3390/jpm12010031
Lee HS, Kim JS. Implication of Electrophysiological Biomarkers in Psychosis: Focusing on Diagnosis and Treatment Response. Journal of Personalized Medicine. 2022; 12(1):31. https://doi.org/10.3390/jpm12010031
Chicago/Turabian StyleLee, Ho Sung, and Ji Sun Kim. 2022. "Implication of Electrophysiological Biomarkers in Psychosis: Focusing on Diagnosis and Treatment Response" Journal of Personalized Medicine 12, no. 1: 31. https://doi.org/10.3390/jpm12010031
APA StyleLee, H. S., & Kim, J. S. (2022). Implication of Electrophysiological Biomarkers in Psychosis: Focusing on Diagnosis and Treatment Response. Journal of Personalized Medicine, 12(1), 31. https://doi.org/10.3390/jpm12010031