Effect of Dialysis Modalities on All-Cause Mortality and Cardiovascular Mortality in End-Stage Kidney Disease: A Taiwan Renal Registry Data System (TWRDS) 2005–2012 Study
Abstract
:1. Introduction
2. Methods
2.1. Taiwan Renal Registry Data System
2.2. Patient Enrollment
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Kaplan–Meier Curves
3.3. Hazard Ratio of Mortality between HD and PD in the Multivariate Cox Regression Model
3.4. DM and Comorbidities: Subgroup Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selby, N.M.; Kazmi, I. Peritoneal dialysis has optimal intradialytic hemodynamics and preserves residual renal function: Why isn’t it better than hemodialysis? Semin. Dial. 2019, 32, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Luijtgaarden, M.W.; Jager, K.J.; Stel, V.S.; Kramer, A.; Cusumano, A.; Elliott, R.F.; Geue, C.; MacLeod, A.M.; Stengel, B.; Covic, A.; et al. Global differences in dialysis modality mix: The role of patient characteristics, macroeconomics and renal service indicators. Nephrol. Dial. Transplant. 2013, 28, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Jansen, M.A.; Hart, A.A.; Korevaar, J.C.; Dekker, F.W.; Boeschoten, E.W.; Krediet, R.T. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int. 2002, 62, 1046–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polinder-Bos, H.A.; García, D.V.; Kuipers, J.; Elting, J.W.J.; Aries, M.J.; Krijnen, W.P.; Groen, H.; Willemsen, A.T.; Van Laar, P.J.; Strijkert, F.; et al. Hemodialysis Induces an Acute Decline in Cerebral Blood Flow in Elderly Patients. J. Am. Soc. Nephrol. 2018, 29, 1317–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, M.; Kawaguchi, Y.; Yamada, K.; Hasegawa, T.; Takazoe, K.; Katoh, N.; Hayakawa, H.; Osaka, N.; Yamamoto, H.; Ogawa, A.; et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int. 1997, 51, 182–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torlén, K.; Kalantar-Zadeh, K.; Molnar, M.Z.; Vashistha, T.; Mehrotra, R. Serum potassium and cause-specific mortality in a large peritoneal dialysis cohort. Clin. J. Am. Soc. Nephrol. 2012, 7, 1272–1284. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.A.; Finkelstein, F.O.; Iyasere, O.U.; Kliger, A.S. Peritoneal or hemodialysis for the frail elderly patient, the choice of 2 evils? Kidney Int. 2017, 91, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Lukowsky, L.R.; Mehrotra, R.; Kheifets, L.; Arah, O.A.; Nissenson, A.R.; Kalantar-Zadeh, K. Comparing mortality of peritoneal and hemodialysis patients in the first 2 years of dialysis therapy: A marginal structural model analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 619–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klinger, M.; Madziarska, K. Mortality predictor pattern in hemodialysis and peritoneal dialysis in diabetic patients. Adv. Clin. Exp. Med. 2019, 28, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Jaar, B.G. The Achilles heel of mortality risk by dialysis modality is selection bias. J. Am. Soc. Nephrol. 2011, 22, 1398–1400. [Google Scholar] [CrossRef]
- Marshall, M.R. The benefit of early survival on PD versus HD-Why this is (still) very important. Perit. Dial. Int. 2020, 40, 405–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zazzeroni, L.; Pasquinelli, G.; Nanni, E.; Cremonini, V.; Rubbi, I. Comparison of Quality of Life in Patients Undergoing Hemodialysis and Peritoneal Dialysis: A Systematic Review and Meta-Analysis. Kidney Blood Press Res. 2017, 42, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Gallieni, M.; Giordano, A.; Ricchiuto, A.; Gobatti, D.; Cariati, M. Dialysis access: Issues related to conversion from peritoneal dialysis to hemodialysis and vice versa. J. Vasc. Access. 2017, 18 (Suppl. 1), 41–46. [Google Scholar] [CrossRef] [PubMed]
- Arslan, Z.; Khurram, M.A.; Sinha, M.D. Renal replacement therapy and conservative management: NICE guideline (NG 107) October 2018. Arch. Dis. Child Educ. Pract. Ed. 2020, 105, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Li, H.; Zhou, Q.; Wen, S.; Zhou, Q.; Chen, W. Comparison of peritoneal dialysis with hemodialysis on survival of diabetic patients with end-stage kidney disease: A meta-analysis of cohort studies. Ren. Fail. 2019, 41, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Gregoor, P.J. The differential impact of risk factors on mortality in hemodialysis and peritoneal dialysis. Kidney Int. 2005, 67, 2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, R.R.; Hux, J.E.; Oliver, M.J.; Austin, P.C.; Tonelli, M.; Laupacis, A. Selection bias explains apparent differential mortality between dialysis modalities. J. Am. Soc. Nephrol. 2011, 22, 1534–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-Buxo, J.A.; Lowrie, E.G.; Lew, N.L.; Zhang, H.; Lazarus, J. Quality-of-life evaluation using Short Form 36: Comparison in hemodialysis and peritoneal dialysis patients. Am. J. Kidney Dis. 2000, 35, 293–300. [Google Scholar] [CrossRef]
- Weinhandl, E.D.; Foley, R.N.; Gilbertson, D.T.; Arneson, T.J.; Snyder, J.J.; Collins, A.J. Propensity-matched mortality comparison of incident hemodialysis and peritoneal dialysis patients. J. Am. Soc. Nephrol. 2010, 21, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liem, Y.; Wong, J.; Hunink, M.M.; de Charro, F.; Winkelmayer, W. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int. 2007, 71, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, K.H.; Park, K.; Kang, S.W.; Yoo, T.H.; Ahn, S.V.; Ahn, H.S.; Hann, H.J.; Lee, S.; Ryu, J.H.; et al. A population-based approach indicates an overall higher patient mortality with peritoneal dialysis compared to hemodialysis in Korea. Kidney Int. 2014, 86, 991–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, S.P.; Marshall, M.R.; Johnson, D.W.; Polkinghorne, K.R. Relationship between dialysis modality and mortality. J. Am. Soc. Nephrol. 2009, 20, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.J.; Hao, W.; Xia, H.; Ebben, J.P.; Everson, S.E.; Constantini, E.G.; Ma, J.Z. Mortality risks of peritoneal dialysis and hemodialysis. Am. J. Kidney Dis. 1999, 34, 1065–1074. [Google Scholar] [CrossRef]
- Wong, B.; Ravani, P.; Oliver, M.J.; Holroyd-Leduc, J.; Venturato, L.; Garg, A.X.; Quinn, R.R. Comparison of Patient Survival between Hemodialysis and Peritoneal Dialysis among Patients Eligible for Both Modalities. Am. J. Kidney Dis. 2018, 71, 344–351. [Google Scholar] [CrossRef]
- Kumar, V.A.; Sidell, M.A.; Jones, J.P.; Vonesh, E.F. Survival of propensity matched incident peritoneal and hemodialysis patients in a United States health care system. Kidney Int. 2014, 86, 1016–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Luijtgaarden, M.W.; Noordzij, M.; Stel, V.S.; Ravani, P.; Jarraya, F.; Collart, F.; Schön, S.; Leivestad, T.; Puttinger, H.; Wanner, C.; et al. Effects of comorbid and demographic factors on dialysis modality choice and related patient survival in Europe. Nephrol. Dial. Transplant. 2011, 26, 2940–2947. [Google Scholar] [CrossRef]
PD (N = 4529) | HD (N = 48,371) | ||
---|---|---|---|
Variables | Means ± SD | Means ± SD | p-Value |
Age (yr) | 53.74 ± 14.68 | 62.02 ± 13.54 | <0.001 |
W.B.C. (×1000/μL) | 7.07 ± 2.77 | 7.11 ± 3.53 | 0.066 |
R.B.C. (×106/μL) | 3.40 ± 0.58 | 3.42 ± 3.69 | <0.001 |
Hbc (g/dL) | 10.08 ± 1.46 | 9.80 ± 1.40 | <0.001 |
MCV (fL) | 89.25 ± 6.96 | 91.40 ± 7.22 | <0.001 |
Platelet (×1000/μL) | 220.37± 79.85 | 202.08 ± 78.56 | <0.001 |
Albumin (gm/dL) | 3.65 ± 0.50 | 3.72 ± 0.47 | <0.001 |
A.S.T.[GOT] (IU/L) | 23.58 ± 16.64 | 22.51 ± 15.92 | <0.001 |
Alkaline-P (IU/L) | 121.44 ± 107.90 | 121.93 ± 102.59 | 0.626 |
Total Bilirubin (mg/dL) | 0.39 ± 0.52 | 0.45 ± 0.65 | <0.001 |
Cholesterol (mg/dL) | 194.63 ± 49.19 | 172.09 ± 0.65 | <0.001 |
Triglyceride(mg/dL) | 153.08 ± 112.25 | 154.40 ± 114.58 | 0.572 |
Glucose[AC] (mg/dL) | 127.34 ± 69.24 | 152.24 ± 83.17 | <0.001 |
BUN (mg/dL) | 68.79 ± 23.57 | 72.19 ± 22.26 | <0.001 |
Creatinine (mg/dL) | 9.51 ± 3.02 | 9.01 ± 2.71 | <0.001 |
Uric acid (mg/dL) | 7.20 ± 1.53 | 7.22 ± 1.51 | 0.117 |
Na (meq/L) | 137.53 ± 4.20 | 137.22 ± 3.89 | <0.001 |
K (meq/L) | 4.01 ± 0.73 | 4.55 ± 0.84 | <0.001 |
Ca (mg/dL) | 9.15 ± 0.92 | 9.15 ± 0.92 | 0.0307 |
P (mg/dL) | 5.00 ± 1.47 | 4.84 ± 1.61 | <0.001 |
CCr (mL/min) | 5.92 ± 2.21 | 6.67 ± 2.48 | <0.001 |
Ferritin (ng/mL) | 316.60 ± 240.21 | 365.65 ± 246.22 | <0.001 |
Tranferrin saturation (%) | 27.90 ± 14.29 | 26.93 ± 13.21 | <0.001 |
intact-PTH (pg/mL) | 307.27 ± 230.19 | 230.36 ± 204.18 | <0.001 |
(A) | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
PD vs. HD | 1.58 | 1.34–1.88 | <.0001 | 1.46 | 1.23–1.74 | <0.001 | 1.49 | 1.25–1.77 | <0.001 |
Age | 1.06 | 1.06–1.07 | <.0001 | 1.06 | 1.05–1.06 | <0.001 | 1.06 | 1.05–1.06 | <0.001 |
Gender (male) | 1.18 | 1.06–1.27 | <0.001 | 1.15 | 1.05–1.26 | <0.001 | 1.18 | 1.07–1.29 | <0.001 |
Hb < 10 g/dL | 1.21 | 1.10–1.33 | <0.001 | 0.98 | 0.89–1.08 | 0.66 | |||
Hb between 10–12 g/dL | 1 | 1 | |||||||
Hypertension | 0.83 | 0.74–0.93 | <0.01 | 0.85 | 0.75–0.95 | <0.01 | |||
Myocardial infarction | 1.64 | 1.21–2.22 | <0.01 | 1.40 | 0.69–2.83 | 0.35 | |||
Coronary artery disease | 1.74 | 1.37–2.21 | <0.001 | 1.49 | 0.85–2.61 | 0.17 | |||
Diabetes mellitus | 1.83 | 1.67–2.01 | <0.001 | 1.79 | 1.46–2.19 | <0.001 | |||
Albumin | |||||||||
Alb < 3.5 mg/dL | 1.64 | 1.48–1.82 | <0.001 | ||||||
Alb = 3.5–4.0 mg/dL | 1 | ||||||||
Alb > 4.0 mg/dL | 0.63 | 0.54–0.72 | <0.001 | ||||||
Fe Saturation (%) | 0.99 | 0.98–1.00 | 0.22 | ||||||
Ferritin level | |||||||||
<100 mg/dL | 0.81 | 0.70–0.94 | <0.001 | ||||||
100–499 mg/dL | 1 | - | - | ||||||
400–800 mg/dL | 1.06 | 0.94–1.19 | 0.36 | ||||||
>800 mg/dL | 1.22 | 1.02–1.45 | 0.03 | ||||||
(B) | Model 1 | Model 2 | Model 3 | ||||||
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
PD vs. HD | 1.51 | 1.12–2.04 | <0.01 | 1.46 | 1.08–1.98 | 0.01 | 1.61 | 1.15–2.24 | <0.01 |
Age | 1.06 | 1.05–1.07 | <0.001 | 1.06 | 1.05–1.07 | <0.001 | 1.06 | 1.05–1.07 | <0.001 |
Gender (male) | 1.18 | 1.01–1.38 | 0.04 | 1.18 | 1.00–1.38 | 0.04 | 1.18 | 0.97–1.45 | 0.10 |
Hb < 10 g/dL | 1.04 | 0.96–1.12 | 0.36 | 1.05 | 0.80–1.35 | 0.66 | |||
Hb 10–12 g/dL | 1 | 1 | |||||||
Hypertension | 0.94 | 0.77–1.14 | 0.50 | 0.88 | 0.69–1.23 | 0.29 | |||
Myocardial infarction | 1.24 | 0.70–2.20 | 0.13 | 1.40 | 0.69–2.83 | 0.35 | |||
Coronary artery disease | 1.51 | 0.90–2.19 | 0.13 | 1.49 | 0.85–2.61 | 0.35 | |||
Diabetes mellitus | 1.86 | 1.58–2.19 | <0.001 | 1.79 | 1.46–2.20 | <0.001 | |||
Alb < 3.5 mg/dL | 1.49 | 1.19–1.88 | <0.001 | ||||||
Alb = 3.5–4.0 mg/dL | 1 | - | - | ||||||
Alb > 4.0 mg/dL | 0.82 | 0.62–1.10 | 0.16 | ||||||
Ca < 8.5 (mg/dL) | 0.97 | 0.75–1.26 | 0.84 | ||||||
Ca 8.5–10.2 (mg/dL) | 1 | - | - | ||||||
Ca > 10.2 (mg/dL) | 0.75 | 0.52–1.08 | 0.12 | ||||||
P < 2.5 (mg/dL) | 1.35 | 0.83–1.38 | 0.12 | ||||||
P 2.5–4.5 (mg/dL) | 1 | - | - | ||||||
P > 4.5 (mg/dL) | 1.02 | 0.82–1.26 | 0.86 | ||||||
ALK-P | 1.001 | 1–1.002 | <0.01 | ||||||
Intact PTH < 150 pg/dL | 1.07 | 0.84–1.36 | 0.57 | ||||||
Intact PTH 150–300 pg/dL | 1 | - | - | ||||||
Intact PTH 300–450 pg/dL | 0.84 | 0.591.20 | 0.34 | ||||||
Intact PTH > 450 pg/dL | 0.93 | 0.65–1.33 | 0.70 |
(A) | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
PD vs. HD | 1.59 | 1.38–1.84 | <0.001 | 1.48 | 1.28–1.71 | <0.001 | 1.49 | 1.25–1.77 | <0.001 |
Age | 1.07 | 1.06–1.07 | <0.001 | 1.06 | 1.06–1.06 | <0.001 | 1.06 | 1.05–1.06 | <0.001 |
Gender (male) | 1.19 | 1.10–1.28 | <0.001 | 1.18 | 1.09–1.27 | <0.001 | 1.18 | 1.07–1.29 | <0.001 |
AnemiaHb < 10 g/dL | 1.04 | 0.96–1.12 | 0.36 | 0.98 | 0.89–1.08 | 0.66 | |||
Hb between 10–12 g/dL | 1 | 1 | |||||||
Hypertension | 0.87 | 0.79–0.96 | 0.004 | 0.85 | 0.75–0.95 | <0.01 | |||
Myocardial infarction | 1.51 | 1.18–1.94 | 0.001 | 1.40 | 0.69–2.83 | 0.35 | |||
Coronary artery disease | 1.62 | 1.32–1.99 | <0.0001 | 1.49 | 0.85–2.61 | 0.17 | |||
Diabetes mellitus | 1.80 | 1.66–1.94 | <0.0001 | 1.79 | 1.46–2.19 | <0.001 | |||
Albumin | |||||||||
Alb < 3.5 mg/dL | 1.64 | 1.51–1.79 | <0.001 | ||||||
Alb = 3.5–4.0 mg/dL | 1 | - | - | ||||||
Alb > 4.0 mg/dL | 0.63 | 0.56–0.70 | <0.001 | ||||||
Fe Saturation (%) | 0.99 | 0.98–0.99 | 0.04 | ||||||
Ferritin | |||||||||
<100 mg/dL | 0.82 | 0.73–0.92 | <0.001 | ||||||
100–499 mg/dL | 1 | - | - | ||||||
400–800 mg/dL | 1.00 | 0.91–1.11 | 0.95 | ||||||
>800 mg/dL | 1.06 | 0.92–1.24 | 0.42 | ||||||
(B) | Model 1 | Model 2 | Model 3 | ||||||
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
PD vs. HD | 1.59 | 1.38–1.84 | <0.001 | 1.48 | 1.28–1.71 | <0.001 | 1.70 | 1.29–2.24 | <0.001 |
Age | 1.06 | 1.06–1.07 | <0.001 | 1.06 | 1.06–1.06 | <0.001 | 1.06 | 1.05–1.07 | <0.001 |
Gender (male) | 1.22 | 1.08–1.39 | <0.01 | 1.18 | 1.09–1.27 | <0.001 | 1.2 | 1.02–1.41 | 0.03 |
Hb < 10 g/dL vs. Hb 10–12 g/dL) | 1.04 | 0.96–1.12 | 0.36 | 1.07 | 0.90–1.28 | 0.42 | |||
Hypertension | 0.87 | 0.79–0.96 | <0.01 | 0.88 | 0.72–1.07 | 0.21 | |||
Myocardial infarction | 1.51 | 1.18–1.94 | <0.01 | 1.23 | 0.66–2.31 | 0.51 | |||
Coronary artery disease | 1.62 | 1.32–1.91 | <0.001 | 1.50 | 0.93–2.41 | 0.10 | |||
Diabetes mellitus | 1.80 | 1.66–1.94 | <0.001 | 2.03 | 1.71–2.40 | <0.001 | |||
Alb < 3.5 mg/dL | 1.49 | 1.23–1.79 | <0.001 | ||||||
Alb = 3.5–4.0 mg/dL | 1 | - | - | ||||||
Alb > 4.0 mg/dL | 0.88 | 0.70–1.10 | 0.25 | ||||||
Ca < 8.5 (mg/dL) | 0.91 | 0.73–1.13 | 0.37 | ||||||
Ca 8.5–10.2 (mg/dL) | 1 | - | - | ||||||
Ca > 10.2 (mg/dL) | 0.92 | 0.70–1.21 | 0.56 | ||||||
P < 2.5 (mg/dL) | 1.18 | 0.84–1.64 | 0.34 | ||||||
P 2.5–4.5 (mg/dL) | 1 | - | - | ||||||
P > 4.5 (mg/dL) | 0.96 | 0.81–1.14 | 0.67 | ||||||
ALK-P | 1.001 | 1–1.002 | <0.01 | ||||||
Intact PTH < 150 pg/dL | 1 | 0.82–1.22 | 1.00 | ||||||
Intact PTH 150–300 pg/dL | 1 | - | - | ||||||
Intact PTH 300–450 pg/dL | 0.89 | 0.67–1.18 | 0.42 | ||||||
Intact PTH > 450 pg/dL | 0.98 | 0.74–1.31 | 0.912 |
Comorbid Condition | DM | Age | HD | PD | Relative Risk (PD vs. HD) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Deaths | Death Rate (%) | 95% CI | Deaths | Death Rate (%) | 95% CI | Patient % | Crud RR | Adjust RR | |||
None | Non_DM | 20–44 | 59 | 0.42 | 0.32–0.54 | 13 | 0.47 | 0.27–0.81 | 7% | 1.41 (0.75–2.58) | 1.35 (0.72–2.50) |
45–64 | 342 | 0.96 | 0.86–1.07 | 34 | 0.92 | 0.66–1.29 | 17% | 1.16 (0.82–1.67) | 1.12 (0.78–1.60) | ||
≥65 | 904 | 3.11 | 2.91–3.32 | 47 | 3.82 | 2.87–5.09 | 18% | 1.42 (1.06–1.90) * | 1.28 (0.95–1.71) | ||
DM | 20–44 | 47 | 1.61 | 1.21–2.15 | 5 | 1.45 | 0.6–3.49 | 2% | 1.22 (0.48–3.12) | 0.95 (0.37–2.47) | |
45–64 | 506 | 2.21 | 2.03–2.41 | 44 | 2.84 | 2.11–3.82 | 14% | 1.57 (1.15–2.15) * | 1.44 (1.05–1.97) * | ||
≥65 | 796 | 4.36 | 4.06–4.67 | 38 | 5.29 | 3.85–7.28 | 13% | 1.47 (1.02–1.95) * | 1.30 (0.93–1.81) | ||
One or more | Non_DM | 20–44 | 19 | 0.37 | 0.24–0.58 | 3 | 0.40 | 0.13–1.24 | 2% | 1.41 (0.41–4.88) | 1.49 (0.40–5.55) |
45–64 | 170 | 1.29 | 1.11–1.5 | 15 | 1.57 | 0.95–2.61 | 6% | 1.75 (1.03–2.99) * | 1.68 (0.98–2.86) | ||
≥65 | 336 | 3.44 | 3.09–3.82 | 8 | 3.31 | 1.66–6.63 | 6% | 1.33 (0.66–2.70) | 1.11 (0.55–2.27) | ||
DM | 20–44 | 21 | 1.53 | 1–2.35 | 1 | 0.63 | 0.09–4.46 | 1% | 0.58 (0.07–4.36) | 0.53 (0.07–4.03) | |
45–64 | 255 | 2.39 | 2.12–2.71 | 10 | 1.93 | 1.04–3.59 | 7% | 1.15 (0.61–2.18) | 1.02 (0.54–1.94) | ||
≥65 | 326 | 4.06 | 3.64~4.53 | 20 | 7.60 | 4.9~11.78 | 6% | 2.26 (1.43–3.52) ** | 1.96 (1.24–3.11) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, P.-C.; Zheng, C.-M.; Chen, C.-C.; Chiu, L.-Y.; Chang, H.-Y.; Tsai, M.-H.; Liao, C.-T.; Kao, C.-C.; Hsu, Y.-H.; Shen, C.-C.; et al. Effect of Dialysis Modalities on All-Cause Mortality and Cardiovascular Mortality in End-Stage Kidney Disease: A Taiwan Renal Registry Data System (TWRDS) 2005–2012 Study. J. Pers. Med. 2022, 12, 1715. https://doi.org/10.3390/jpm12101715
Su P-C, Zheng C-M, Chen C-C, Chiu L-Y, Chang H-Y, Tsai M-H, Liao C-T, Kao C-C, Hsu Y-H, Shen C-C, et al. Effect of Dialysis Modalities on All-Cause Mortality and Cardiovascular Mortality in End-Stage Kidney Disease: A Taiwan Renal Registry Data System (TWRDS) 2005–2012 Study. Journal of Personalized Medicine. 2022; 12(10):1715. https://doi.org/10.3390/jpm12101715
Chicago/Turabian StyleSu, Po-Cheng, Cai-Mei Zheng, Chien-Chou Chen, Li-Yun Chiu, Hao-Yun Chang, Meng-Hsu Tsai, Chia-Te Liao, Chih-Chin Kao, Yung-Ho Hsu, Che-Chou Shen, and et al. 2022. "Effect of Dialysis Modalities on All-Cause Mortality and Cardiovascular Mortality in End-Stage Kidney Disease: A Taiwan Renal Registry Data System (TWRDS) 2005–2012 Study" Journal of Personalized Medicine 12, no. 10: 1715. https://doi.org/10.3390/jpm12101715
APA StyleSu, P. -C., Zheng, C. -M., Chen, C. -C., Chiu, L. -Y., Chang, H. -Y., Tsai, M. -H., Liao, C. -T., Kao, C. -C., Hsu, Y. -H., Shen, C. -C., Hsu, C. -C., Wu, M. -S., & Lin, Y. -C. (2022). Effect of Dialysis Modalities on All-Cause Mortality and Cardiovascular Mortality in End-Stage Kidney Disease: A Taiwan Renal Registry Data System (TWRDS) 2005–2012 Study. Journal of Personalized Medicine, 12(10), 1715. https://doi.org/10.3390/jpm12101715