Combined Assay of rDNA and SatIII Copy Numbers as an Individual Profile of Stress Resistance, Longevity, Fertility and Disease Predisposition
Abstract
:1. Introduction
2. The Importance of Ribosomal Repeat Abundance
3. The Role of Satellite Repeat Abundance in Modulating Stress, Aging and Pathology
4. Psychoemotional (Affective) Stress-Induced Changes in the Abundance of SatIII (1q12) and Ribosomal Repeats
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iskow, R.C.; Gokcumen, O.; Lee, C. Exploring the role of copy number variants in human adaptation. Trends Genet. 2012, 28, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T. How does genome instability affect lifespan? Genes Cells 2011, 16, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ide, S.; Miyazaki, T.; Maki, H.; Kobayashi, T. Abundance of ribosomal RNA gene copies maintains genome integrity. Science 2010, 327, 693–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Symonová, R. Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome. Genes 2019, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Moss, T.; Stefanovsky, V.Y. At the center of eukaryotic life. Cell 2002, 109, 545–548. [Google Scholar] [CrossRef] [Green Version]
- Hannan, R.D.; Rothblum, L.I. Regulation of ribosomal DNA transcription during neonatal cardiomyocyte hypertrophy. Cardiovasc. Res. 1995, 30, 501–510. [Google Scholar] [CrossRef]
- Russell, J.; Zomerdijk, J.C. The RNA polymerase I transcription machinery. Biochem. Soc. Symp. 2006, 73, 203–216. [Google Scholar]
- Hein, A.M.; O’Banion, M.K. Neuroinflammation and cognitive dysfunction in chronic disease and aging. J. Neuroimmune Pharmacol. 2012, 7, 3–6. [Google Scholar] [CrossRef]
- Hannan, K.M.; Sanij, E.; Rothblum, L.I.; Hannan, R.D.; Pearson, R.B. Dysregulation of RNA polymerase I transcription during disease. Biochim. Biophys. Acta 2013, 1829, 342–360. [Google Scholar] [CrossRef] [Green Version]
- Grummt, I.; Ladurner, A.G. A metabolic throttle regulates the epigenetic state of rDNA. Cell 2008, 133, 577–580. [Google Scholar] [CrossRef] [Green Version]
- Vourc’h, C.; Dufour, S.; Timcheva, K.; Seigneurin-Berny, D.; Verdel, A. HSF1-Activated Non-Coding Stress Response: Satellite lncRNAs and Beyond, an Emerging Story with a Complex Scenario. Genes 2022, 13, 597. [Google Scholar] [CrossRef] [PubMed]
- Jolly, C.; Metz, A.; Govin, J.; Vigneron, M.; Turner, B.M.; Khochbin, S.; Vourc’H, C. Stress-induced transcription of satellite III repeats. J. Cell Biol. 2003, 164, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metz, A.; Soret, J.; Vourc’H, C.; Tazi, J.; Jolly, C. A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J. Cell Sci. 2004, 117, 4551–4558. [Google Scholar] [CrossRef] [Green Version]
- Fritah, S.; Col, E.; Boyault, C.; Govin, J.; Sadoul, K.; Chiocca, S.; Christians, E.; Khochbin, S.; Jolly, C.; Vourc’H, C. Heat-Shock Factor 1 Controls Genome-wide Acetylation in Heat-shocked Cells. Mol. Biol. Cell 2009, 20, 4976–4984. [Google Scholar] [CrossRef] [Green Version]
- Liapunova, N.A.; Egolina, N.A.; Tsvetkova, T.G.; Veĭko, N.N.; Kravets-Mandron, I.A.; Gromova, E.V.; Kosiakova, N.V.; Viktorov, V.V.; Malinovskaia, T.N. Ribosomal genes in the human genome: Contribution to genetic individuality and phenotypic manifestation of gene dosage. Vestn. Ross. Akad. Meditsinskikh Nauk. 2000, 5, 19–23. [Google Scholar]
- Porokhovnik, L.N.; Lyapunova, N.A. Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosome Res. 2019, 27, 5–17. [Google Scholar] [CrossRef]
- Malinovskaya, E.M.; Ershova, E.S.; Golimbet, V.E.; Porokhovnik, L.N.; Lyapunova, N.A.; Kutsev, S.I.; Veiko, N.N.; Kostyuk, S.V. Copy Number of Human Ribosomal Genes With Aging: Unchanged Mean, but Narrowed Range and Decreased Variance in Elderly Group. Front. Genet. 2018, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Hallgren, J.; Pietrzak, M.; Rempala, G.; Nelson, P.T.; Hetman, M. Neurodegeneration-associated instability of ribosomal DNA. Biochim. Biophys. Acta 2014, 1842, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Porokhovnik, L.N.; Passekov, V.P.; Gorbachevskaya, N.L.; Sorokin, A.B.; Veiko, N.N.; Lyapunova, N.A. Active ribosomal genes, translational homeostasis and oxidative stress in the pathogenesis of schizophrenia and autism. Psychiatr. Genet. 2015, 25, 79–87. [Google Scholar] [CrossRef]
- Lyapunova, N.A.; Porokhovnik, L.N.; Kosyakova, N.V.; Mandron, I.A.; Tsvetkova, T.G. Effects of the copy number of ribosomal genes (genes for rRNA) on viability of subjects with chromosomal abnormalities. Gene 2017, 611, 47–53. [Google Scholar] [CrossRef]
- Porokhovnik, L.N.; Veiko, N.N.; Ershova, E.S.; Poletkina, A.A.; Shmarina, G.V.; Dolgikh, O.A.; Klimenko, P.A.; Klimenko, M.P.; Avetisova, K.G.; Kostyuk, E.V.; et al. Copy number of ribosomal genes in woman’s genome is associated with IVF outcome and pregnancy complications. Med. Genet. 2019, 18, 14–25. [Google Scholar]
- Mandron, I.A.; Suchilina, M.A.; Tsvetkova, T.G.; Kosyakova, N.V. Genomic dosage of active ribosomal genes and severity of dentogenous phlegmons. In Proceedings of the VI Congress of Russian Society of Medical Geneticists, Rostov-On-Don, Russia, 2010; p. 110. [Google Scholar]
- Chestkov, I.V.; Jestkova, E.M.; Ershova, E.S.; Golimbet, V.E.; Lezheiko, T.V.; Kolesina, N.Y.; Porokhovnik, L.N.; Lyapunova, N.A.; Izhevskaya, V.L.; Kutsev, S.I.; et al. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr. Res. 2018, 197, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Oken, R.J.; Schulzer, M. At issue: Schizophrenia and rheumatoid arthritis: The negative association revisited. Schizophr. Bull. 1999, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Eaton, W.W.; Hayward, C.; Ram, R. Schizophrenia and rheumatoid arthritis: A review. Schizophr. Res. 1992, 6, 181–192. [Google Scholar] [CrossRef]
- Eaton, W.W.; Byrne, M.; Ewald, H.; Mors, O.; Chen, C.Y.; Agerbo, E.; Mortensen, P.B. Association of schizophrenia and autoimmune diseases: Linkage of Danish national registers. Am. J. Psychiatry 2006, 163, 521–528. [Google Scholar] [CrossRef]
- Gorwood, P.; Pouchot, J.; Vinceneux, P.; Puéchal, X.; Flipo, R.M.; de Bandt, M.; Adès, J. Club Rhumatisme et Inflammation. Rheumatoid arthritis and schizophrenia: A negative association at a dimensional level. Schizophr. Res. 2004, 66, 21–29. [Google Scholar] [CrossRef]
- Shubaeva, N.O. Molecular Genetic Characteristics of Ribosomal Genes and Cell Death Rates in Patient with Rheumatoid Arthritis. Ph.D. Thesis, Research Centre for Medical Genetics, Moscow, Russia, 2004. [Google Scholar]
- Veiko, N.N.; Shubaeva, N.O.; Tsvetkova, T.G.; Mandron, I.A. The peculiarities of quantitative characteristics of the ribosomal gene complex in patient with severe forms of rheumatoid arthritis. Med. Genet. 2005, 4, 166–167. [Google Scholar]
- Ding, Q.; Markesbery, W.R.; Chen, Q.; Li, F.; Keller, J.N. Ribosome dysfunction is an early event in Alzheimer’s disease. J. Neurosci. 2005, 25, 9171–9175. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak, M.; Rempala, G.; Nelson, P.T.; Zheng, J.J.; Hetman, M. Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease. PLoS ONE 2011, 6, e22585. [Google Scholar] [CrossRef]
- Iacono, D.; O’Brien, R.; Resnick, S.M.; Zonderman, A.B.; Pletnikova, O.; Rudow, G.; An, Y.; West, M.J.; Crain, B.; Troncoso, J.C. Neuronal hypertrophy in asymptomatic Alzheimer disease. J. Neuropathol. Exp. Neurol. 2008, 67, 578–589. [Google Scholar] [CrossRef]
- Payão, S.L.; Smith, M.; Kormann-Bortolotto, M.H.; Toniolo, J. Investigation of the nucleolar organizer regions in Alzheimer’s disease. Gerontology 1994, 40, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med. 2017, 33, 325–337. [Google Scholar] [CrossRef]
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. Am. J. Alzheimer’s Dis. Other Dement. 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Veiko, N.N.; Ershova, E.; Veiko, R.V.; Umriukhin, P.E.; Kurmyshev, M.V.; Kostyuk, G.P.; Kutsev, S.I.; Kostyuk, S.V. Mild cognitive impairment is associated with low copy number of ribosomal genes in the genomes of elderly people. Front. Genet. 2022, in press. [CrossRef] [PubMed]
- Larson, D.E.; Zahradka, P.; Sells, B.H. Control points in eukaryotic ribosome biogenesis. Biochem. Cell Biol. 1991, 69, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Ritossa, F.M.; Atwood, K.C.; Lindsley, D.L.; Spiegelman, S. On the chromosomal distribution of DNA complementary to ribosomal and soluble RNA. Natl. Cancer Inst. Monogr. 1966, 23, 449–471. [Google Scholar] [PubMed]
- Ritossa, F.M. Unstable redundancy of genes for ribosomal RNA. Proc. Natl. Acad. Sci. USA 1968, 60, 509–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, J.; Ritossa, F.M. Regulation of ribosomal RNA synthesis and its bearing on the bobbed phenotype in Drosophila melanogaster. Dev. Biol. 1970, 22, 495–512. [Google Scholar] [CrossRef]
- Delany, M.E.; Muscarella, D.E.; Bloom, S.E. Effects of rRNA gene copy number and nucleolar variation on early development: Inhibition of gastrulation in rDNA deficient chick embryos. J. Hered. 1994, 85, 211–217. [Google Scholar] [CrossRef]
- Su, M.H.; Delany, M.E. Ribosomal RNA gene copy number and nucleolar-size polymorphisms within and among chicken lines selected for enhanced growth. Poult. Sci. 1998, 77, 1748–1754. [Google Scholar] [CrossRef]
- Eriksson, M.; Brown, W.T.; Gordon, L.B.; Glynn, M.W.; Singer, J.; Scott, L.; Erdos, M.R.; Robbins, C.M.; Moses, T.Y.; Berglund, P.; et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003, 423, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Goldman, R.D.; Shumaker, D.K.; Erdos, M.R.; Eriksson, M.; Goldman, A.E.; Gordon, L.B.; Gruenbaum, Y.; Khuon, S.; Mendez, M.; Varga, R.; et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 2004, 101, 8963–8968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumaker, D.K.; Dechat, T.; Kohlmaier, A.; Adam, S.A.; Bozovsky, M.R.; Erdos, M.R.; Eriksson, M.; Goldman, A.E.; Khuon, S.; Collins, F.S.; et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA 2006, 103, 8703–8708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchwalter, A.; Hetzer, M.W. Nucleolar expansion and elevated protein translation in premature aging. Nat. Commun. 2017, 8, 328. [Google Scholar] [CrossRef] [PubMed]
- MacInnes, A. The role of the ribosome in the regulation of longevity and lifespan extension. Wiley Interdiscip. Rev. RNA 2016, 7, 198–212. [Google Scholar] [CrossRef]
- Abdenur, J.; Brown, W.T.; Friedman, S.; Smith, M.; Lifshitz, F. Response to nutritional and growth hormone treatment in progeria. Metabolism 1997, 46, 851–856. [Google Scholar] [CrossRef]
- Merideth, M.A.; Gordon, L.B.; Clauss, S.; Sachdev, V.; Smith, A.C.; Perry, M.B.; Brewer, C.C.; Zalewski, C.; Kim, H.J.; Solomon, B.; et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 2008, 358, 592–604. [Google Scholar] [CrossRef] [Green Version]
- Tiku, V.; Jain, C.; Raz, Y.; Nakamura, S.; Heestand, B.; Liu, W.; Späth, M.; Suchiman, H.E.D.; Müller, R.U.; Slagboom, P.E.; et al. Small nucleoli are a cellular hallmark of longevity. Nat. Commun. 2016, 8, 16083. [Google Scholar] [CrossRef] [Green Version]
- Courgeon, A.M.; Maisonhaute, C.; Best-Belpomme, M. Heat shock proteins are induced by cadmium in Drosophila cells. Exp. Cell Res. 1984, 153, 515–521. [Google Scholar] [CrossRef]
- Heikkila, J.J.; Schultz, G.A.; Iatrou, K.; Gedamu, L. Expression of a set of fish genes following heat or metal ion exposure. J. Biol. Chem. 1982, 257, 12000–12005. [Google Scholar] [CrossRef]
- Michel, G.P.; Starka, J. Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J. Bacteriol. 1986, 165, 1040–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yura, T.; Tobe, T.; Ito, K.; Osawa, T. Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. Proc. Natl. Acad. Sci. USA 1984, 81, 6803–6807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, S.; Parihar, R.; Ganesh, S. Satellite III non-coding RNAs show distinct and stress-specific patterns of induction. Biochem. Biophys. Res. Commun. 2009, 382, 102–107. [Google Scholar] [CrossRef]
- Valgardsdottir, R.; Chiodi, I.; Giordano, M.; Rossi, A.; Bazzini, S.; Ghigna, C.; Riva, S.; Biamonti, G. Transcription of Satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res. 2007, 36, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Åkerfelt, M.; Morimoto, R.I.; Sistonen, L. Heat shock factors: Integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 2010, 11, 545–555. [Google Scholar] [CrossRef]
- Morimoto, R. Cells in stress: Transcriptional activation of heat shock genes. Science 1993, 259, 1409–1410. [Google Scholar] [CrossRef]
- Mathew, A.; Mathur, S.K.; Jolly, C.; Fox, S.G.; Kim, S.; Morimoto, R.I. Stress-Specific Activation and Repression of Heat Shock Factors 1 and 2. Mol. Cell. Biol. 2001, 21, 7163–7171. [Google Scholar] [CrossRef] [Green Version]
- Cotto, J.J.; Morimoto, R.I. Stress-induced activation of the heat-shock response: Cell and molecular biology of heat-shock factors. Biochem. Soc. Symp. 1999, 64, 105–118. [Google Scholar]
- Penin, J.; Dufour, S.; Faure, V.; Fritah, S.; Seigneurin-Berny, D.; Col, E.; Verdel, A.; Vourc’H, C. Chromosome Y pericentric heterochromatin is a primary target of HSF1 in male cells. Chromosoma 2021, 130, 53–60. [Google Scholar] [CrossRef]
- Eymery, A.; Souchier, C.; Vourc’H, C.; Jolly, C. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells. Exp. Cell Res. 2010, 316, 1845–1855. [Google Scholar] [CrossRef]
- Bersani, F.; Lee, E.; Kharchenko, P.V.; Xu, A.W.; Liu, M.; Xega, K.; MacKenzie, O.C.; Brannigan, B.W.; Wittner, B.S.; Jung, H.; et al. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc. Natl. Acad. Sci. USA 2015, 112, 15148–15153. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Chai, H.; Ji, W.; Lu, Y.; Wu, S.; Zhao, H.; Li, P.; Hu, Q. Correlating genomic copy number alterations with clinicopathologic findings in 75 cases of hepatocellular carcinoma. BMC Med. Genom. 2021, 14, 150. [Google Scholar] [CrossRef]
- Wong, N.; Lam, W.-C.; Lai, P.B.-S.; Pang, E.; Lau, W.-Y.; Johnson, P.J. Hypomethylation of Chromosome 1 Heterochromatin DNA Correlates with q-Arm Copy Gain in Human Hepatocellular Carcinoma. Am. J. Pathol. 2001, 159, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Bibi, F.; Ali, I.; Naseer, M.I.; Mohamoud, H.S.A.; Yasir, M.; Alvi, S.A.; Jiman-Fatani, A.A.; Sawan, A.; Azhar, E. Detection of genetic alterations in gastric cancer patients from Saudi Arabia using comparative genomic hybridization (CGH). PLoS ONE 2018, 13, e0202576. [Google Scholar] [CrossRef] [PubMed]
- Le Baccon, P.; Leroux, D.; Dascalescu, C.; Duley, S.; Marais, D.; Esmenjaud, E.; Sotto, J.J.; Callanan, M. Novel evidence of a role for chromosome 1 pericentric heterochromatin in the pathogenesis of B-cell lymphoma and multiple myeloma. Genes Chromosom. Cancer 2001, 32, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Sy, S.M.-H.; Wong, N.; Lai, P.B.-S.; To, K.-F.; Johnson, P.J. Regional over-representations on chromosomes 1q, 3q and 7q in the progression of hepatitis B virus-related hepatocellular carcinoma. Mod. Pathol. 2004, 18, 686–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ershova, E.S.; Malinovskaya, E.M.; Konkova, M.S.; Veiko, R.V.; Umriukhin, P.E.; Martynov, A.V.; Kutsev, S.I.; Veiko, N.N.; Kostyuk, S.V. Copy number variation of human satellite III (1q12) with aging. Front. Genet. 2019, 10, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korzeneva, I.B.; Kostuyk, S.V.; Ershova, E.; Skorodumova, E.N.; Zhuravleva, V.F.; Pankratova, G.V.; Volkova, I.V.; Stepanova, E.V.; Porokhovnik, L.N.; Veiko, N.N. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation. Mutat. Res. Mol. Mech. Mutagen. 2016, 791–792, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ji, S. Cellular senescence: Molecular mechanisms and pathogenicity. J. Cell. Physiol. 2018, 233, 9121–9135. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, Y.; Cao, P.; Tan, K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2021, 1876, 188591. [Google Scholar] [CrossRef]
- Surman, M.; Janik, M.E. Stress and its molecular consequences in cancer progression. Postep. Hig. Med. Dosw. 2017, 71, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Eymery, A.; Callanan, M.; Vourc’h, C. The secret message of heterochromatin: New insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int. J. Dev. Biol. 2009, 53, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.; Lipson, D.; Paul, S.; Brannigan, B.W.; Akhavanfard, S.; Coffman, E.J.; Contino, G.; Deshpande, V.; Iafrate, A.J.; Letovsky, S.; et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 2011, 331, 593–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ershova, E.S.; Agafonova, O.N.; Zakharova, N.; Bravve, L.V.; Jestkova, E.M.; Golimbet, V.E.; Lezheiko, T.V.; Morozova, A.Y.; Martynov, A.V.; Veiko, R.V.; et al. Copy number variation of satellite III (1q12) in patients with schizophrenia. Front. Genet. 2019, 10, 1132. [Google Scholar] [CrossRef]
- Emiliani, F.E.; Sedlak, T.W.; Sawa, A. Oxidative stress and schizophrenia: Recent breakthroughs from an old story. Curr. Opin. Psychiatry 2014, 27, 185–190. [Google Scholar] [CrossRef]
- Copoglu, U.S.; Virit, O.; Kokacya, M.H.; Orkmez, M.; Bulbul, F.; Erbagci, A.B.; Semiz, M.; Alpak, G.; Unal, A.; Ari, M.; et al. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients. Psychiatry Res. 2015, 229, 200–205. [Google Scholar] [CrossRef]
- Smaga, I.; Niedzielska-Andres, E.; Gawlik, M.; Moniczewski, A.; Krzek, J.; Przegalinski, E.; Pera, J.; Filip, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol. Rep. 2015, 67, 569–580. [Google Scholar] [CrossRef]
- Hardingham, G.; Do, K.Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat. Rev. Neurosci. 2016, 17, 125–134. [Google Scholar] [CrossRef]
- Koga, M.; Serritella, A.V.; Sawa, A.; Sedlak, T.W. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr. Res. 2016, 176, 52–71. [Google Scholar] [CrossRef]
- Barron, H.; Hafizi, S.; Andreazza, A.C.; Mizrahi, R. Neuroinflammation and Oxidative Stress in Psychosis and Psychosis Risk. Int. J. Mol. Sci. 2017, 18, 651. [Google Scholar] [CrossRef] [Green Version]
- Maas, D.; Valles, A.; Martens, G. Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl. Psychiatry 2017, 7, e1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.; Sharma, D.; Kalia, K.; Tiwari, V. Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: The dawn of new therapeutic approaches. Neurosci. Biobehav. Rev. 2017, 83, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Porokhovnik, L.N.; Veiko, N.N.; Ershova, E.S.; Kostyuk, S.V. The role of human satellite III (1q12) copy number variation in the adaptive response during aging, stress, and pathology: A pendulum model. Genes 2021, 12, 1524. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Sengupta, S.; Pandey, R.; Parihar, R.; Mohanta, G.C.; Mukerji, M.; Ganesh, S. Human satellite-III non-coding RNAs modulate heat shock-induced transcriptional repression. J. Cell Sci. 2016, 129, 3541–3552. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Martin, B.; Alvarez, E.G.; Baez-Ortega, A.; Zamora, J.; Supek, F.; Demeulemeester, J.; Santamarina, M.; Ju, Y.S.; Temes, J.; Garcia-Souto, D.; et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 2020, 52, 306–319. [Google Scholar] [CrossRef]
- Wylie, A.; Jones, A.E.; D’Brot, A.; Lu, W.J.; Kurtz, P.; Moran, J.V.; Rakheja, D.; Chen, K.S.; Hammer, R.E.; Comerford, S.A.; et al. P53 genes function to restrain mobile elements. Genes Dev. 2016, 30, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Leonova, K.I.; Brodsky, L.; Lipchick, B.; Pal, M.; Novototskaya, L.; Chenchik, A.A.; Sen, G.C.; Komarova, E.A.; Gudkov, A.V. P53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl. Acad. Sci. USA 2013, 110, E89–E98. [Google Scholar] [CrossRef] [Green Version]
- Umriukhin, P.E.; Ershova, E.S.; Filev, A.D.; Agafonova, O.N.; Martynov, A.V.; Zakharova, N.V.; Veiko, R.V.; Porokhovnik, L.N.; Kostyuk, G.P.; Kutsev, S.I.; et al. The psychoemotional stress-induced changes in the abundance of SatIII (1q12) and telomere repeats, but not ribosomal DNA, in human leukocytes. Genes 2022, 13, 343. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porokhovnik, L.N. Combined Assay of rDNA and SatIII Copy Numbers as an Individual Profile of Stress Resistance, Longevity, Fertility and Disease Predisposition. J. Pers. Med. 2022, 12, 1752. https://doi.org/10.3390/jpm12101752
Porokhovnik LN. Combined Assay of rDNA and SatIII Copy Numbers as an Individual Profile of Stress Resistance, Longevity, Fertility and Disease Predisposition. Journal of Personalized Medicine. 2022; 12(10):1752. https://doi.org/10.3390/jpm12101752
Chicago/Turabian StylePorokhovnik, Lev N. 2022. "Combined Assay of rDNA and SatIII Copy Numbers as an Individual Profile of Stress Resistance, Longevity, Fertility and Disease Predisposition" Journal of Personalized Medicine 12, no. 10: 1752. https://doi.org/10.3390/jpm12101752
APA StylePorokhovnik, L. N. (2022). Combined Assay of rDNA and SatIII Copy Numbers as an Individual Profile of Stress Resistance, Longevity, Fertility and Disease Predisposition. Journal of Personalized Medicine, 12(10), 1752. https://doi.org/10.3390/jpm12101752