Impact of Glucocorticoids on Cardiovascular System—The Yin Yang Effect
Abstract
:1. Introduction
2. Role of GC during Stages of Development
3. Role of GC in Heart at Young Stage or in Pediatric Population
4. Role of GC in Adult Hearts
5. Recent Role of GCs in Combating Viral Infections Including COVID-19—Impact and Consequences
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johns, E.C.; Denison, F.C.; Reynolds, R.M. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.S.; Matrone, G.; Livingstone, D.E.; Al-Dujaili, E.A.; Mullins, J.J.; Tucker, C.S.; Hadoke, P.W.; Kenyon, C.J.; Denvir, M.A. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio). J. Physiol. 2013, 591, 6209–6220. [Google Scholar] [CrossRef]
- Kewalramani, G.; Puthanveetil, P.; Kim, M.S.; Wang, F.; Lee, V.; Hau, N.; Beheshti, E.; Ng, N.; Abrahani, A.; Rodrigues, B. Acute dexamethasone-induced increase in cardiac lipoprotein lipase requires activation of both Akt and stress kinases. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E137–E147. [Google Scholar] [CrossRef] [Green Version]
- Puthanveetil, P.; Rodrigues, B. Glucocorticoid excess induces accumulation of cardiac glycogen and triglyceride: Suggested role for AMPK. Curr. Pharm. Des. 2013, 19, 4818–4830. [Google Scholar] [CrossRef]
- Puthanveetil, P.; Wang, F.; Kewalramani, G.; Kim, M.S.; Hosseini-Beheshti, E.; Ng, N.; Lau, W.; Pulinilkunnil, T.; Allard, M.; Abrahani, A.; et al. Cardiac glycogen accumulation after dexamethasone is regulated by AMPK. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H1753–H1762. [Google Scholar] [CrossRef] [Green Version]
- Puthanveetil, P.; Wang, Y.; Wang, F.; Kim, M.S.; Abrahani, A.; Rodrigues, B. The increase in cardiac pyruvate dehydrogenase kinase-4 after short-term dexamethasone is controlled by an Akt-p38-forkhead box other factor-1 signaling axis. Endocrinology 2010, 151, 2306–2318. [Google Scholar] [CrossRef] [Green Version]
- Tamhane, S.; Rodriguez-Gutierrez, R.; Iqbal, A.M.; Prokop, L.J.; Bancos, I.; Speiser, P.W.; Murad, M.H. Cardiovascular and Metabolic Outcomes in Congenital Adrenal Hyperplasia: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2018, 103, 4097–4103. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, T.; Shuja, H.; Zaidi, S.R.; Haque, A. Glucocorticoid-induced cardiomyopathy: Unexpected conclusion. BMJ Case Rep. 2020, 13, e237173. [Google Scholar] [CrossRef]
- Prete, A.; Subramanian, A.; Bancos, I.; Chortis, V.; Tsagarakis, S.; Lang, K.; Macech, M.; Delivanis, D.A.; Pupovac, I.D.; Reimondo, G.; et al. Cardiometabolic Disease Burden and Steroid Excretion in Benign Adrenal Tumors: A Cross-Sectional Multicenter Study. Ann. Intern. Med. 2022, 175, 325–334. [Google Scholar] [CrossRef]
- Pivonello, R.; De Martino, M.C.; Iacuaniello, D.; Simeoli, C.; Muscogiuri, G.; Carlomagno, F.; De Leo, M.; Cozzolino, A.; Colao, A. Metabolic Alterations and Cardiovascular Outcomes of Cortisol Excess. Front. Horm. Res. 2016, 46, 54–65. [Google Scholar]
- Mateos, R.M.; Jimenez, G.; Alvarez-Gil, C.; Visiedo, F.; Rivera-Rodriguez, F.; Santos-Rosendo, C.; Rodriguez-Pareja, A.; Perdomo, G.; Lechuga-Sancho, A.M. Excess Hydrocortisone Hampers Placental Nutrient Uptake Disrupting Cellular Metabolism. Biomed. Res. Int. 2018, 2018, 5106174. [Google Scholar] [CrossRef] [PubMed]
- Kipfer, B.; Daikeler, T.; Kuchen, S.; Hallal, M.; Andina, N.; Allam, R.; Bonadies, N. Increased cardiovascular comorbidities in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia presenting with systemic inflammatory and autoimmune manifestations. Semin. Hematol. 2018, 55, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.G.; Mendonca, B.B.; Bachega, T. Long-term cardio-metabolic outcomes in patients with classical congenital adrenal hyperplasia: Is the risk real? Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Ferrau, F.; Korbonits, M. Metabolic Syndrome in Cushing’s Syndrome Patients. Front. Horm. Res. 2018, 49, 85–103. [Google Scholar]
- Constantinescu, G.; Langton, K.; Conrad, C.; Amar, L.; Assie, G.; Gimenez-Roqueplo, A.P.; Blanchard, A.; Larsen, C.K.; Mulatero, P.; Williams, T.A.; et al. Glucocorticoid Excess in Patients with Pheochromocytoma Compared with Paraganglioma and Other Forms of Hypertension. J. Clin. Endocrinol. Metab. 2020, 105, e3374–e3383. [Google Scholar] [CrossRef]
- Barbot, M.; Mazzeo, P.; Lazzara, M.; Ceccato, F.; Scaroni, C. Metabolic syndrome and cardiovascular morbidity in patients with congenital adrenal hyperplasia. Front. Endocrinol. 2022, 13, 934675. [Google Scholar] [CrossRef]
- Antolic, A.; Wood, C.E.; Keller-Wood, M. Chronic maternal hypercortisolemia in late gestation alters fetal cardiac function at birth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R342–R352. [Google Scholar] [CrossRef]
- Adolf, C.; Kohler, A.; Franke, A.; Lang, K.; Riester, A.; Low, A.; Heinrich, D.A.; Bidlingmaier, M.; Treitl, M.; Ladurner, R.; et al. Cortisol Excess in Patients With Primary Aldosteronism Impacts Left Ventricular Hypertrophy. J. Clin. Endocrinol. Metab. 2018, 103, 4543–4552. [Google Scholar] [CrossRef] [Green Version]
- Fowden, A.L.; Forhead, A.J. Endocrine mechanisms of intrauterine programming. Reproduction 2004, 127, 515–526. [Google Scholar] [CrossRef]
- Wood, C.L.; Soucek, O.; Wong, S.C.; Zaman, F.; Farquharson, C.; Savendahl, L.; Ahmed, S.F. Animal models to explore the effects of glucocorticoids on skeletal growth and structure. J. Endocrinol. 2018, 236, R69–R91. [Google Scholar] [CrossRef] [Green Version]
- Scheschowitsch, K.; Leite, J.A.; Assreuy, J. New Insights in Glucocorticoid Receptor Signaling-More Than Just a Ligand-Binding Receptor. Front. Endocrinol. 2017, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnew, E.J.; Ivy, J.R.; Stock, S.J.; Chapman, K.E. Glucocorticoids, antenatal corticosteroid therapy and fetal heart maturation. J. Mol. Endocrinol. 2018, 61, R61–R73. [Google Scholar] [CrossRef]
- Swiatkowska-Stodulska, R.; Berlinska, A.; Stefanska, K.; Zielinski, M.; Kwiatkowski, S.; Polom, J.; Andrysiak-Mamos, E.; Wydra, P.; Sworczak, K. Endocrine Autoimmunity in Pregnancy. Front. Immunol. 2022, 13, 907561. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Moroni, G. Immunosuppression in pregnant women with systemic lupus erythematosus. Expert Rev. Clin. Immunol. 2015, 11, 549–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmsten, K.; Rolland, M.; Hebert, M.F.; Clowse, M.E.B.; Schatz, M.; Xu, R.; Chambers, C.D. Patterns of prednisone use during pregnancy in women with rheumatoid arthritis: Daily and cumulative dose. Pharmacoepidemiol. Drug Saf. 2018, 27, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Nagakawa, A.; Arata, N.; Mito, A.; Kaneshige, T.; Kitami, M.; Sago, H.; Murashima, A. Lupus enteritis during pregnancy: A case-based review. Mod. Rheumatol. 2017, 27, 1089–1092. [Google Scholar] [CrossRef]
- Jakobiec, F.A.; Syed, Z.A.; Stagner, A.M.; Harris, G.J.; Rootman, J.; Yoon, M.K.; Mombaerts, I. Orbital Inflammation in Pregnant Women. Am. J. Ophthalmol. 2016, 166, 91–102. [Google Scholar] [CrossRef]
- Izumi, Y.; Miyashita, T.; Migita, K. Safety of tacrolimus treatment during pregnancy and lactation in systemic lupus erythematosus: A report of two patients. Tohoku J. Exp. Med. 2014, 234, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gieras, A.; Gehbauer, C.; Perna-Barrull, D.; Engler, J.B.; Diepenbruck, I.; Glau, L.; Joosse, S.A.; Kersten, N.; Klinge, S.; Mittrucker, H.W.; et al. Prenatal Administration of Betamethasone Causes Changes in the T Cell Receptor Repertoire Influencing Development of Autoimmunity. Front. Immunol. 2017, 8, 1505. [Google Scholar] [CrossRef]
- Doti, P.I.; Escoda, O.; Cesar-Diaz, S.; Palasti, S.; Teixido, I.; Sarquella-Brugada, G.; Gomez, O.; Martinez, J.M.; Espinosa, G. Congenital heart block related to maternal autoantibodies: Descriptive analysis of a series of 18 cases from a single center. Clin. Rheumatol. 2016, 35, 351–356. [Google Scholar] [CrossRef]
- Colla, L.; Diena, D.; Rossetti, M.; Manzione, A.M.; Marozio, L.; Benedetto, C.; Biancone, L. Immunosuppression in pregnant women with renal disease: Review of the latest evidence in the biologics era. J. Nephrol. 2018, 31, 361–383. [Google Scholar] [CrossRef] [PubMed]
- Kemp, M.W.; Newnham, J.P.; Challis, J.G.; Jobe, A.H.; Stock, S.J. The clinical use of corticosteroids in pregnancy. Hum. Reprod. Updat. 2016, 22, 240–259. [Google Scholar] [CrossRef] [PubMed]
- Hodyl, N.A.; Stark, M.J.; Osei-Kumah, A.; Bowman, M.; Gibson, P.; Clifton, V.L. Fetal glucocorticoid-regulated pathways are not affected by inhaled corticosteroid use for asthma during pregnancy. Am. J. Respir. Crit. Care Med. 2011, 183, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Langdown, M.L.; Holness, M.J.; Sugden, M.C. Effects of prenatal glucocorticoid exposure on cardiac calreticulin and calsequestrin protein expression during early development and in adulthood. Biochem. J. 2003, 371, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, R.; Hu, X.Q.; Zhang, L. Glucocorticoids and programming of the microenvironment in heart. J. Endocrinol. 2019, 242, T121–T133. [Google Scholar] [CrossRef]
- Motta, K.; Gomes, P.R.L.; Sulis, P.M.; Bordin, S.; Rafacho, A. Dexamethasone Administration During Late Gestation Has No Major Impact on Lipid Metabolism, but Reduces Newborn Survival Rate in Wistar Rats. Front. Physiol. 2018, 9, 783. [Google Scholar] [CrossRef] [Green Version]
- Walejko, J.M.; Antolic, A.; Koelmel, J.P.; Garrett, T.J.; Edison, A.S.; Keller-Wood, M. Chronic maternal cortisol excess during late gestation leads to metabolic alterations in the newborn heart. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E546–E556. [Google Scholar] [CrossRef]
- Kim, M.Y.; Eiby, Y.A.; Lumbers, E.R.; Wright, L.L.; Gibson, K.J.; Barnett, A.C.; Lingwood, B.E. Effects of glucocorticoid exposure on growth and structural maturation of the heart of the preterm piglet. PLoS ONE 2014, 9, e93407. [Google Scholar] [CrossRef] [Green Version]
- Blain, H.; Sinaii, N.; Zeltser, D.; Lyssikatos, C.; Belyavskaya, E.; Keil, M.; Bluemke, D.A.; Stratakis, C.; Bandettini, W.P.; Lodish, M. Aortic pulse wave velocity in children with Cushing syndrome: A window into a marker of early cardiovascular disease. Endocrinol. Diabetes Metab. 2019, 2, e00054. [Google Scholar] [CrossRef]
- Bal, M.P.; de Vries, W.B.; van Oosterhout, M.F.; Baan, J.; van der Wall, E.E.; van Bel, F.; Steendijk, P. Long-term cardiovascular effects of neonatal dexamethasone treatment: Hemodynamic follow-up by left ventricular pressure-volume loops in rats. J. Appl. Physiol. 2008, 104, 446–450. [Google Scholar] [CrossRef] [Green Version]
- van der Pas, R.; de Bruin, C.; Leebeek, F.W.; de Maat, M.P.; Rijken, D.C.; Pereira, A.M.; Romijn, J.A.; Netea-Maier, R.T.; Hermus, A.R.; Zelissen, P.M.; et al. The hypercoagulable state in Cushing’s disease is associated with increased levels of procoagulant factors and impaired fibrinolysis, but is not reversible after short-term biochemical remission induced by medical therapy. J. Clin. Endocrinol. Metab. 2012, 97, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Gay, M.S.; Li, Y.; Xiong, F.; Lin, T.; Zhang, L. Dexamethasone Treatment of Newborn Rats Decreases Cardiomyocyte Endowment in the Developing Heart through Epigenetic Modifications. PLoS ONE 2015, 10, e0125033. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms. Clin. Sci. 1998, 94, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenton, C.; Martin, C.; Jones, R.; Croft, A.; Campos, J.; Naylor, A.J.; Taylor, A.E.; Chimen, M.; Cooper, M.; Lavery, G.G.; et al. Local steroid activation is a critical mediator of the anti-inflammatory actions of therapeutic glucocorticoids. Ann. Rheum. Dis. 2021, 80, 250–260. [Google Scholar] [CrossRef]
- Abraham, M.N.; Jimenez, D.M.; Fernandes, T.D.; Deutschman, C.S. Cecal Ligation and Puncture Alters Glucocorticoid Receptor Expression. Crit. Care Med. 2018, 46, e797–e804. [Google Scholar] [CrossRef]
- Van Looveren, K.; Wallaeys, C.; Libert, C. Potential of glucocorticoids to treat intestinal inflammation during sepsis. Curr. Opin. Pharmacol. 2020, 53, 1–7. [Google Scholar] [CrossRef]
- Bouazza, Y.; Sennoun, N.; Strub, C.; Regnault, V.; Gibot, S.; Meziani, F.; Lacolley, P.; Levy, B. Comparative effects of recombinant human activated protein C and dexamethasone in experimental septic shock. Intensive Care Med. 2011, 37, 1857–1864. [Google Scholar] [CrossRef]
- Palladini, G.; Russo, P.; Lavatelli, F.; Nuvolone, M.; Albertini, R.; Bosoni, T.; Perfetti, V.; Obici, L.; Perlini, S.; Moratti, R.; et al. Treatment of patients with advanced cardiac AL amyloidosis with oral melphalan, dexamethasone, and thalidomide. Ann. Hematol. 2009, 88, 347–350. [Google Scholar] [CrossRef] [Green Version]
- Kuropka, P.; Dobrzynski, M.; Gamian, A.; Gostomska-Pampuch, K.; Kuryszko, J.; Calkosinski, I. Effect of Glucocorticoids on Ultrastructure of Myocardial Muscle in the Course of Experimentally Induced Acute Myocardial Ischemia. Biomed. Res. Int. 2017, 2017, 2108497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, J.; Novosad, S.A.; Winthrop, K.L. Infection Risk and Safety of Corticosteroid Use. Rheum. Dis. Clin. N. Am. 2016, 42, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; MacDonald, T.M.; Walker, B.R. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann. Intern. Med. 2004, 141, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Johannesdottir, S.A.; Horvath-Puho, E.; Dekkers, O.M.; Cannegieter, S.C.; Jorgensen, J.O.; Ehrenstein, V.; Vandenbroucke, J.P.; Pedersen, L.; Sorensen, H.T. Use of glucocorticoids and risk of venous thromboembolism: A nationwide population-based case-control study. JAMA Intern. Med. 2013, 173, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Pujades-Rodriguez, M.; Morgan, A.W.; Cubbon, R.M.; Wu, J. Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: A population-based cohort study. PLoS Med. 2020, 17, e1003432. [Google Scholar] [CrossRef] [PubMed]
- Boers, M.; Hartman, L.; Opris-Belinski, D.; Bos, R.; Kok, M.R.; Da Silva, J.A.; Griep, E.N.; Klaasen, R.; Allaart, C.F.; Baudoin, P.; et al. Low dose, add-on prednisolone in patients with rheumatoid arthritis aged 65+: The pragmatic randomised, double-blind placebo-controlled GLORIA trial. Ann. Rheum. Dis. 2022, 81, 925–936. [Google Scholar] [CrossRef]
- Vasheghani-Farahani, A.; Sahraian, M.A.; Darabi, L.; Aghsaie, A.; Minagar, A. Incidence of various cardiac arrhythmias and conduction disturbances due to high dose intravenous methylprednisolone in patients with multiple sclerosis. J. Neurol. Sci. 2011, 309, 75–78. [Google Scholar] [CrossRef]
- Sholter, D.E.; Armstrong, P.W. Adverse effects of corticosteroids on the cardiovascular system. Can. J. Cardiol. 2000, 16, 505–511. [Google Scholar]
- Quatrini, L.; Wieduwild, E.; Escaliere, B.; Filtjens, J.; Chasson, L.; Laprie, C.; Vivier, E.; Ugolini, S. Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat. Immunol. 2018, 19, 954–962. [Google Scholar] [CrossRef]
- He, C.; Maniyar, R.R.; Avraham, Y.; Zappasodi, R.; Rusinova, R.; Newman, W.; Heath, H.; Wolchok, J.D.; Dahan, R.; Merghoub, T.; et al. Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism. Sci. Adv. 2022, 8, eabm4552. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Fan, G.; Zhou, F.; Wang, Y.; Huang, L.; Yu, J.; Yang, L.; Shang, L.; Xie, K.; et al. Low-to-moderate dose corticosteroids treatment in hospitalized adults with COVID-19. Clin. Microbiol. Infect. 2021, 27, 112–117. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, W.; Liang, W.; Xu, C.; Sun, W.; Yi, Y. Severe exacerbation of immune thrombocytopenia and COVID-19: The favorable response to corticosteroid-based therapy-a case report. Ann. Hematol. 2021, 100, 2135–2137. [Google Scholar] [CrossRef]
- Edalatifard, M.; Akhtari, M.; Salehi, M.; Naderi, Z.; Jamshidi, A.; Mostafaei, S.; Najafizadeh, S.R.; Farhadi, E.; Jalili, N.; Esfahani, M.; et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: Results from a randomised controlled clinical trial. Eur. Respir J. 2020, 56, 2002808. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, C.M.P.; Farias, M.E.L.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Safe, I.P.; Borba, M.G.S.; Netto, R.L.A.; Maciel, A.B.S.; et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With Coronavirus Disease 2019 (COVID-19; Metcovid): A Randomized, Double-blind, Phase IIb, Placebo-controlled Trial. Clin. Infect Dis. 2021, 72, e373–e381. [Google Scholar] [CrossRef] [PubMed]
- Group, W.H.O.R.E.A.f.C.-T.W.; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar]
- Group, R.C.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Iacobellis, G.; Malavazos, A.E.; Basilico, S.; Tresoldi, S.; Rinaldo, R.F.; Dubini, C.; Capitanio, G.; Serpi, F.; Schiaffino, S.; Oliva, O.A.; et al. Epicardial fat inflammation response to COVID-19 therapies. Obesity 2021, 29, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Gans, I.M.; Coffman, J.A. Glucocorticoid-Mediated Developmental Programming of Vertebrate Stress Responsivity. Front. Physiol. 2021, 12, 812195. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelley, C.; Vander Molen, J.; Choi, J.; Bhai, S.; Martin, K.; Cochran, C.; Puthanveetil, P. Impact of Glucocorticoids on Cardiovascular System—The Yin Yang Effect. J. Pers. Med. 2022, 12, 1829. https://doi.org/10.3390/jpm12111829
Kelley C, Vander Molen J, Choi J, Bhai S, Martin K, Cochran C, Puthanveetil P. Impact of Glucocorticoids on Cardiovascular System—The Yin Yang Effect. Journal of Personalized Medicine. 2022; 12(11):1829. https://doi.org/10.3390/jpm12111829
Chicago/Turabian StyleKelley, Chase, Jonathan Vander Molen, Jennifer Choi, Sahar Bhai, Katelyn Martin, Cole Cochran, and Prasanth Puthanveetil. 2022. "Impact of Glucocorticoids on Cardiovascular System—The Yin Yang Effect" Journal of Personalized Medicine 12, no. 11: 1829. https://doi.org/10.3390/jpm12111829
APA StyleKelley, C., Vander Molen, J., Choi, J., Bhai, S., Martin, K., Cochran, C., & Puthanveetil, P. (2022). Impact of Glucocorticoids on Cardiovascular System—The Yin Yang Effect. Journal of Personalized Medicine, 12(11), 1829. https://doi.org/10.3390/jpm12111829