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Abstract: Background: Sepsis in patients after cardiovascular surgery with cardiopulmonary bypass
(CPB) has a high rate of mortality. We sought to determine whether changes in lipidomics can predict
sepsis after cardiac surgery. Methods: We used high-performance liquid chromatography coupled to
tandem mass spectrometry to explore global lipidome changes in samples from a prospective case-
control cohort (30 sepsis vs. 30 nonsepsis) hospitalized with cardiovascular surgery. All patients were
sampled before and within 48–72 h after surgery. A bioinformatic pipeline was applied to acquire
reliable features and MS/MS-driven identifications. Furthermore, a multiple-step machine learning
framework was performed for signature discovery and performance evaluation. Results: Compared
with preoperative samples, 94 features were upregulated and 282 features were downregulated in the
postoperative samples of the sepsis group, and 73 features were upregulated and 265 features were
downregulated in the postoperative samples of the nonsepsis group. “Autophagy”, “pathogenic
Escherichia coli infection” and “glycosylphosphatidylinositol-anchor biosynthesis” pathways were
significantly enriched in the pathway enrichment analysis. A multistep machine learning framework
further confirmed that two cholesterol esters, CE (18:0) and CE (16:0), were significantly decreased
in the sepsis group (p < 0.05). In addition, oleamide and stearamide were increased significantly in
the postoperative sepsis group (p < 0.001). Conclusions: This study revealed characteristic lipidomic
changes in the plasma of septic patients before and after cardiac surgery with CPB. We discovered
two cholesterol esters and two amides from peripheral blood that could be promising signatures for
sepsis within a dynamic detection between the preoperative and postoperative groups.

Keywords: lipidomics; cardiac surgery; sepsis; machine learning; signature

1. Introduction

Systemic inflammatory response syndrome (SIRS) and sepsis occur frequently after
cardiac surgery with cardiopulmonary bypass (CPB). The mortality rate of sepsis varies
from 17% to 79%, as previously reported [1]. Contact with artificial surfaces, myocardial
and pulmonary ischemia/reperfusion, and surgery were considered to be the main causes
of postoperative SIRS [2], while sepsis with suspected or proven infection was diagnosed
in 4.7% and 4.8% of patients, respectively [3]. It is difficult to distinguish noninfective SIRS
from sepsis after surgery. Delayed diagnosis will directly affect the prognosis of patients.
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The mechanism of sepsis in patients after cardiopulmonary bypass is still unclear.
It was reported that most of the early bloodstream infections for patients undergoing
CPB were caused by Gram-negative bacteria [4], while prolonged CPB could increase
intestinal permeability and lead to endotoxin or bacterial translocation from the intestine
to the bloodstream [5]. Previous studies have revealed that disorders of the intestinal
flora and metabolites may cause systemic inflammatory reactions and eventually lead to
sepsis [6]. The gut microbiota has been shown to affect lipid metabolism and lipid levels in
blood and tissues in humans [7]. Moreover, in terms of carriers of cholesterol, intravenous
application of reconstituted HDL reduced inflammation in both plasma and organs in
endotoxemic rodent models [8], and low cholesterol levels before cardiac surgery with CPB
are a potential signature to evaluate the risk of sepsis [9,10], indicating that sepsis after
cardiac surgery may be closely related to lipid metabolism. Furthermore, lipid peroxidation
increases the concentrations of superoxide (O2

-) and peroxynitrite (ONOO-), which are
frequently linked to poor clinical outcomes, including in-hospital death, development of
postoperative myocardial infarction and postoperative atrial fibrillation [11–14]. In addition,
lipid metabolites such as circulating ketones and β-hydroxybutyrate could protect patients
against heart failure by reducing inflammation [15]. Therefore, it is interesting to explore
the global lipid signatures associated with sepsis after cardiac surgery.

In this study, we performed plasma lipidomic analysis of patients after cardiac surgery
with extracorporeal circulation to explore sepsis-related lipid signatures. We conducted
bioinformatic analyses and machine learning methods to explore the biological significance
of novel lipidomic markers in patients with sepsis and to illustrate the mechanism of the
inflammatory response after cardiac surgery with CPB.

2. Materials and Methods
2.1. Study Design Patients and Setting

This study was designed as a prospective observational case-control study according
to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
guidelines. Patients who underwent sternotomy and CPB due to cardiac surgery was
performed by the Department of Cardiac Surgery of Peking Union Medical College Hospital.
The protocol was ethically approved by the ethics committee of Peking Union Medical
College (ID: ZS-1612) and filed at ClinicalTrials.gov (NCT04032938); accessed on 29 July
2019. All participants gave informed consent. The study was performed in accordance
with the Declaration of Helsinki. Patients admitted to the intensive care unit (ICU) after
cardiac surgery with CPB were divided into two groups based on their clinical diagnosis:
the sepsis group and the nonsepsis Group 48–72 h after surgery. After fasting for at least
6 h but not more than 10 h, venous blood was collected (without anticoagulation) by direct
venepuncture or established venous access from enrolled patients. Plasma was taken
from the blood and aliquoted in 4 Eppendorf tubes to remain at −80 ◦C for 1 h. Blood
samples were obtained 24 h before surgery and 48–72 h after surgery. Sepsis was defined
when the patients were treated with systemic therapeutic administration of antibiotics
due to suspected or proven infection and with an increase in SOFA score by 2 or more
points [16]. Suspected infection could be defined as the preventive administration of oral
or parenteral antibiotics and sampling of body fluid cultures (blood, urine, cerebrospinal
fluid, peritoneal, etc.). Patients with proven infection were identified as those who had
body fluids sampled for culture with pathogenic organisms. Patients were excluded if
they (1) had a fever before surgery, regardless of the etiological evidence of infection;
(2) had anti-infective treatment before surgery; (3) had a history of CPB in 6 months; or
(4) rejected or abandoned ICU therapeutic intervention. Sample collection was terminated
when both groups received 30 cases. The flowchart is shown in Figure 1. Finally, a total of
60 consecutive patients were enrolled.

ClinicalTrials.gov
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Figure 1. Clinical trial flowchart.

2.2. Study Procedures and Blood Sampling

Detailed baseline and clinical information were recorded from the subject/proxy
and bedside assessments were performed using medical records. Patient identification
information was removed and replaced with sample numbers. Blood samples were drawn
into pyrogen-free tubes, and plasma was separated by centrifugation into Eppendorf tubes.
Samples were stored frozen at −80 ◦C until subsequent analyses.

2.3. Sample Preparation and Lipid Extraction

Prior to the experiment, samples were left at −20 ◦C for 30 min and then thawed
at 4 ◦C until no ice was observed in the tubes. The lipid extraction method followed
a previously published paper [17]. Briefly, 40 µL of plasma and 1 µL of stable isotopic
lipid standards (Avanti Polar Lipids, Alabaster, AL, USA) were extracted with 120 µL
precooled isopropanol (IPA) and then vortexed for 1 min. After incubation for 10 min at
room temperature, the mixture was stored overnight in a refrigerator at −20 ◦C to improve
protein precipitation. Samples were centrifuged for 20 min at 14,000× g, and then the
supernatant was further diluted with IPA/acetonitrile (ACN)/H2O (2:1:1 v:v:v) and stored
at −80 ◦C until LC–MS analysis. Equal amounts of all samples were pooled as a QC sample
for LC–MS system conditioning and quality control [18].

2.4. Lipid Detection with UPLC–MS/MS

The extracted lipids were separated on an Ultimate 3000 RSLC system (Thermo Fisher
Scientific, Waltham, MA, USA) with an ACQUITY UPLC CSH C18 column (2.1 × 100 mm,
1.7 µm, Waters, Milford, MA, USA) and emitted into a Q-Exactive mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). Mobile phase A consisted of 10 mM
ammonium formate and 0.1% formic acid (ACN:H2O = 60:40, v/v), and mobile phase B
consisted of 10 mM ammonium formate and 0.1% formic acid (IPA:ACN = 90:10, v/v).
A flow rate of 0.4 mL/min was used. The initial elution was started at 40% B and was
immediately increased by a linear gradient to 43% B for the first 2 min, followed by an
increase to 50% B within 0.1 min. Over the next 3.9 min, the gradient was increased to 54%
B, and the amount of B was increased to 70% during the next 0.1 min. In the final part of
the gradient, B was increased to 99% and maintained for 1.9 min. Finally, B was returned to
40% over the next 0.1 min and equilibrated for 1.9 min for the next injection. To enhance
lipid detection coverage, the Q-Exactive was set to both positive and negative modes in a
top-3 configuration to acquire data in DDA mode.
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2.5. Data Processing

LC−MS raw data files were converted into mzXML format and then processed by
the XCMS [19] and metaX [20] toolboxes implemented with R language. The acquired MS
data pretreatments, including peak picking, peak grouping, retention time correction and
second peak grouping, were performed using the XCMS package. Each ion was identified
by combining retention time (RT) and m/z data. The intensities of each peak were recorded,
and a three-dimensional matrix containing arbitrarily assigned peak indices (retention
time-m/z pairs), sample names (observations) and ion intensity information (variables)
was generated. The intensity of the peak data was further processed by metaX. Those
features that were detected in less than 50% of QC samples or 80% of biological samples
were removed, and the remaining peaks with missing values were imputed with the k-
nearest neighbor algorithm and normalized using the probabilistic quotient normalization
method. Quality control-based robust LOESS signal correction was fitted to the QC data
with respect to the order of injection to minimize signal intensity drift over time [18]. In
addition, the relative standard deviations of the metabolic features were calculated across
all QC samples, and those >50% were then removed.

2.6. Lipid Identification

Lipids were identified with fragment spectrum matching using MSDIAL 2.94 soft-
ware(RIKEN Center for Sustainable Resource Science, Yokohama City, Kanagawa, Japan)
against a combination MS2 database (Lipidblast, MetDNA, Massbank, HMDB). We set
mass tolerance to 0.01 for MS1 and 0.05 for MS2. The identification score cut-off was set
to 0.75.

2.7. Statistical Analysis

All statistical analyses were performed using the R platform for statistical computing
and graphics (R version 4.0.2, Revolution Analytics, Mountain View, CA, USA). Univariate
analysis and multivariate analysis were performed by metaX. PCA was performed to detect
outliers, and PLSDA was applied using log transformation and Pareto scaling. Permutation
testing (200 times) on the R2 and Q2 of the PLSDA was used to assess the reliability of
the PLS-DA model [21]. The unpaired Wilcoxon test was performed to test significant
differences between the control and experimental groups, and the p value was adjusted for
multiple hypothesis testing using the Benjamini–Hochberg method. Differential lipids were
obtained using the Wilcoxon test with the criteria of fold change (FC) ≥1.5 and adjusted
p value ≤ 0.05.

2.8. Sepsis Related-Signature Discovery

The same filtered and normalized lipid abundance matrix used in the differential
expression analysis was also used as input for signature discovery and performance evalu-
ation. The candidate lipids were first selected by a two-way ANOVA model with an FDR
cut-off ≤0.05 between sepsis and nonsepsis samples. The significant lipids are reported
in Table S4, and the corresponding hierarchical clustering-based heatmap was generated
by the “pheatmap” R package. Next, we used a Monte Carlo cross validation (MCCV)
framework in MetaboAnalyst [22], coupled with a random forest algorithm, to construct
the discriminative model. Two-thirds of the samples are used in each MCCV for deter-
mining feature importance. The top 2, 3, 5 . . . Forty-three (max) important features are
separately utilized to construct corresponding classification models. Specifically, each
classification tree in RF is developed by a random feature selection from a bootstrap sample
at each branch. The majority vote of the ensemble is used to determine the class prediction.
Other relevant information provided by RF include OOB (out-of-bag) error and variable
importance measure. Approximately one-third of the samples are left out of the boot-
strap instance during tree construction. This OOB data is then utilized as a test sample
to calculate an unbiased estimation of the classification error (OOB error). A variable is
considered important in permutation analysis if it has a favorable impact on prediction
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accuracy, estimated by the OOB prediction error. The ROC curve and radar chart were
created by ROCR [23] and ggradar packages with the R environment, respectively.

3. Results
3.1. Patient Characteristics

All relevant clinical and monitoring data were prospectively collected from 371 adult
patients admitted to the Department of Critical Care Medicine after cardiac surgery at
Peking Union Medical College Hospital of China between August 2019 and September 2020.
A total of 60 patients were enrolled based on exclusion criteria. Among them, 30 patients
were diagnosed with sepsis (as the case group), and 30 were diagnosed with nonsepsis
(Figure 1). Complete patient (n = 30:30) characteristics for the study population are shown
in Table 1. There was a tendency towards higher levels of APACHE II and PCT in the sepsis
group. The duration of mechanical ventilation time and ICU stay in the sepsis group were
significantly longer than those in the nonsepsis group (p = 0.042, p < 0.001).

Table 1. Clinical characteristics of the subjects.

Variable Sepsis Nonsepsis p Value

Age, mean (range), year. 52.6 (27–73) 51.7 (24–80) 0.806
Female sex, n (%) 15 (50) 16 (53.3) 0.796

Height, mean (SD), cm 163.7 (8.4) 164.7 (8.4) 0.635
Weight, mean (SD), kg 66.5 (11.7) 65.9 (12.8) 0.870

BMI, mean (SD), kg/m2 24.7 (3.3) 24.2 (3.6) 0.554
APACHE II (when entering the ICU) 13.7(5.5) 11.1 (4.9) 0.065

SOFA (48–72 h after surgery) 6.7 (3.3) 5.9 (3.6) 0.351
Duration of CPB, median (interquartile range), min 139.5 (96–175.5) 117.5 (79.5–154.3) 0.157
Requirement for renal replacement therapy, n (%) 2 (6.7) 2 (6.7) -

Duration of mechanical ventilation (range), h 93.9 (15–272) 58.3(5–259) 0.042
ICU duration, days 9.4 5.5 <0.001

PCT, ng/mL 16 6.3 0.057

SOFA, Sequential Organ Failure Assessment, APACHE II, Acute Physiology and Chronic Health Evaluation,
PCT, procalcitonin. The sepsis group and nonsepsis group were compared using the Wilcoxon signed rank test.
Proportions were compared using Chi square.

3.2. Case Characteristics

The Sepsis-3 criteria for sepsis were met by 30 patients. Sepsis with suspected infection
occurred in 18 patients (60%), and sepsis with proven infection was demonstrated in
12 (40%). Patients in the suspected infection group were identified as those who had
body fluids sampled for culture and received antibiotics but had a negative culture result.
Patients in the documented infection group were identified as those who had body fluids
sampled for culture with a positive result. The respiratory tract was the most frequent
source of both proven (75%) and suspected infection (72.2%). Other sources of infection are
shown in Table 2.

Table 2. Suspected or proven sources of infection in those diagnosed with sepsis.

Suspected Source Suspected Infection Proven Infection

Respiratory 13 9

Abdominal/gastrointestinal 0 1

Wound 2 0

Genitourinary 0 0

Bacteremia/catheters 3 2

CSF 0 –

Dental 0 –
CSF, cerebrospinal fluid.
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3.3. Data Quality Assessment

The untargeted lipidomic analysis yielded 25,883 features in positive ion mode (PIM)
and 25,734 features in negative ion mode (NIM). The majority of lipid features were located
in the 100–1200 m/z range (Figure 2A,B). The different distributions of lipids in positive
and negative modes indicated that there was good complementarity in the two detection
modes (Figure 2C,D). Principal component analysis (PCA) showed that all of the QC
samples spiked at certain intervals clustered together, verifying acceptable reproducibility
and stability of the results (Figure 2E,F). In addition to QC samples, we also evaluated the
reproducibility of seven stable isotope lipid standards spiked into samples before lipid
extraction with extracted ion chromatogram (Figure S1A), peak area (Figure S1B) and
retention time (Figure S1C). The trend of seven internal standards further highlighted the
high quality of the dataset, which paved the way for further statistical analyses.
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For the lipid identifications, there were 966 (positive mode) and 673 (negative mode)
features involved in more than 23 lipid subclasses annotated by accurate precursor mass



J. Pers. Med. 2022, 12, 1838 7 of 14

and MS/MS matching with the spectral library. The summary and detailed identifica-
tion information can be acquired in Table S1 and Table S2, respectively. The retention
time distribution shows that lipids of different classes can be well separated according to
hydrophobicity (Figure S2A). Furthermore, we explored the difference in retention time
between lipids in our experiment and the lipids in the Lipidblast library. The larger positive
correlation coefficients provided a higher confidence of relative identification (Figure S2B).

3.4. Differential Lipid Analysis for Surgery

To obtain the differentially expressed lipids, all detected features were evaluated using
the Wilcoxon test with the criteria of fold change (FC) ≥1.5 and adjusted p value ≤ 0.05.
Detailed statistical information, including FC and adjusted p value for each feature, can
be found in Table S2. Then, the lipid features with significant differences before and after
surgery are displayed in two volcano plots in Figure 3A,B. Specifically, 94 features were
upregulated and 282 features were downregulated in the SPost group (sepsis patients
after surgery) compared with their corresponding samples before surgery (SPre group).
For the NPost (control patients after surgery) group compared with the NPre (control
patients before surgery) group, 73 features were upregulated and 265 features were down-
regulated. Moreover, we used an UpSet plot to visualize the set intersections of different
groups. Remarkably, there were 39 features that were significantly increased in only septic
patients (Figure 3C). These features may have the potential to be important diagnostic
markers. To further explore the biological functions of the detected features, we performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to an-
notate the potential functional implications (Table S3, Figure 3D). The “autophagy” and
“glycosylphosphatidylinositol-anchor biosynthesis” pathways were highly enriched in
these differential features, suggesting that they play a crucial role in the repair or recovery
process after surgery. “Pathogenic Escherichia coli infection” entry indicated that clinical
syndromes might be associated with infection by pathogenic E. coli strains.
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Figure 3. Differential lipids for sepsis patients (n = 30) before and after surgery. Volcano plot of
sepsis (n = 30) (A) and nonsepsis patients (n = 30) (B). The x-axis is the mean ratio fold-change
(plotted with a log 2 scale) of the relative abundance of each feature between the patients after and
before surgery. The y-axis represents the adjusted p value (FDR) of the ratio fold-change for each
feature. An UpSet diagram shows differentially expressed identifications that are unique or shared
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among four comparison groups (C). Pathway enrichment analysis of differentially expressed lipids is
presented in the bubble chart (D). The y-axis corresponds to KEGG pathway items, and the x-axis
represents the enrichment factor. The color of the dot represents FDR, and a lower FDR indicates
more significant enrichment. The point size represents the number of differentially expressed lipids
that are mapped to the reference pathways. The rich factor refers to the level of enrichment, which is
the ratio of the differentially expressed lipids annotated in this pathway to all lipids annotated in this
pathway item. A greater enrichment factor indicates a more significant enrichment.

3.5. Signature Discovery and Evaluation Related to Sepsis

We used our lipid datasets to perform the discovery and evaluation of potential signa-
ture molecules related to sepsis. By comparing sepsis and nonsepsis samples after surgery
with the Wilcoxon test, we found very few significantly differential lipids. Therefore, we
inferred that in a clinical lipidomic dataset with surgical intervention effects, solely relying
on a nonparametric statistical hypothesis test for signature discovery may be too rigid.
Thus, we introduced a multistep machine learning workflow to help to explore potential
signatures (Figure 4A). We first used a two-way ANOVA method to obtain 43 significantly
differentially expressed features between SPost and NPost samples (Table S4). Among these
features, we found that most of the sphingolipids and fatty acyls were highly expressed
in the SPost samples, while glycerolipids and sterol lipids were significantly upregulated
in NPost samples (Figure 4B). Then, an MCCV framework coupled with a random forest
algorithm was used to establish this assessment model. As shown in Figure 4C, we found
that each model had a high area under the ROC curve. The top 10 features based on the
selected frequency are displayed in Figure 4D.
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Figure 4. (A) A flow chart to demonstrate the main steps of signature discovery and evaluation.
(B) Forty-three candidate signatures from two-way ANOVA. (C) Performance evaluation of top 2, 3,
5 . . . 43 (max) important features to construct corresponding classification models. (D) Radar plots of
the top 10 features with the highest selection frequency in the classification models.

In general, simple models with a smaller number of signatures are more robust and
less prone to overfitting. Therefore, we chose the top five significant lipids, ranked based
on their selected frequencies, as the optimal cut-off of the signature. Specifically, two
cholesterol esters, CE (18:0) and CE (16:0), were significantly decreased in the sepsis group
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(p = 0.005, p < 0.001). In addition, oleamide and stearamide, the top two lipids, were two
amides derived from the fatty acid oleic acid and stearic acid, respectively. These two
lipids were increased significantly in the postoperative sepsis group (p < 0.001). Both of
them had a higher abundance in sepsis samples, indicating that these markers may have a
potential relationship with sepsis. Moreover, 6,10,14-trimethyl-5,9,13-pentadecatrien-2-one,
also named farnesyl acetone, which has a role in hormonal regulation of metabolism, was
upregulated in sepsis cohorts. For example, farnesyl pyrophosphate (FPP), as a ligand for
the glucocorticoid receptor (GR), can cause activation of the glucocorticoid (GC) signaling
pathway in primary human epidermal keratinocytes, thereby exerting hormone regulation
effects [24]. To ensure the credibility of the five signatures, we provided the corresponding
extracted ion chromatogram (EIC) and high-quality MS/MS annotated spectra in Figure
S3. To explore the expression change of these specific lipids, we used a box-whisker plot to
illustrate the alteration of three fatty acids or three amides and five cholesterol esters from
the chemical structure and evolution (Figure 5).
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Figure 5. Box plot analysis for candidate signatures of amides or fatty acids. ANOVA with posthoc
tests were used to determine the p values of pairwise comparison between groups. The corresponding
p values are labelled in the top area of the figure. The red texts in the upper left corner are the
p values of ANOVA tests, and the black texts in the top are the p values of Tukey post-hoc tests. The
orange in the facet background indicates that this feature is one of the candidate signatures from the
multistep machine learning workflow. (A) Schematic of palmitic, stearic and oleic acid biosynthetic
pathways derived from KEGG pathway maps. (B) Box-and-whisker plot for the general trends of
5 cholesteryl esters.
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4. Discussion

Sepsis is one of the critical postoperative complications after cardiac surgery [25].
However, the underlying mechanisms contributing to sepsis after cardiovascular surgery
with CPB are still not clear. Previous metabolomic studies and meta-analyses on sepsis
suggested that phospholipids were significantly enriched in several death-related metabolic
pathways [26]. However, studies on lipidomic analyses are limited, and this is the first
study to investigate lipid alterations and their potential molecular mechanisms for sepsis
after cardiovascular surgery with CPB by UPLC–MS/MS.

Comparing preoperative and postoperative samples, there were 94 upregulated
and 282 downregulated features in the SPost (sepsis patients after surgery) group and
73 upregulated and 265 downregulated features in the NPost (nonsepsis patients after surgery)
group. Autophagy, pathogenic Escherichia coli infection and glycosylphosphatidylinositol-
anchor biosynthesis were significantly enriched in the postsurgery groups. It has been
reported that autophagy is closely related to the innate immune system, which can alleviate
excessive inflammatory responses and act as a key factor for sepsis development [27,28].
Cardiac autophagy in sepsis is recognized as a cellular adaptive protective mechanism by
limiting cell damage and apoptosis [29]. The previous experimental results of our team
also showed that mitochondrial uncoupling protein 2 (UCP2) may play a protective role
against LPS by regulating the balance between autophagy and apoptosis of cardiomy-
ocytes [30]. The “Pathogenic Escherichia coli infection” entry indicated that there may be
infection of the pathogenic E. coli strain. In the present study, two patients with sepsis had
a positive result of Escherichia coli in sputum culture. A previous report pointed out that
cardiopulmonary bypass might cause hypoperfusion of the small intestinal mucosa and
consequently bacterial translocation [31]. Our research provides a basis for this view, and
there is an ongoing project from our team on gut microbiota and the mechanism of sepsis
after CPB [32]. Glycosylphosphatidylinositol (GPI)-anchored proteins are numerous on the
surface of eukaryotic cells and participate in a wide variety of physiological functions, such
as the complement cascade, the pro- and anti-inflammatory responses of macrophages, and
the activation, development, and proliferation of T cells [33–36]. Our study revealed that the
glycosylphosphatidylinositol-anchor biosynthesis pathway was activated in postoperative
specimens, which is in accordance with a previous study showing that the downregulation
of GPI-PLD could play an important role in proinflammatory responses [37].

In this study, we showed that sepsis cases can be distinguished by molecular signatures
using a machine learning framework based on the expression levels of 5 metabolites. This
model achieved an area under the curve (AUC) of 0.963 in the training set. As shown in the
KEGG map pathway, palmitic acid can be elongated to stearic acid, and stearic acid will be
further desaturated to produce oleic acid [38]. Due to the significantly elevated abundances
of fatty acids and relevant fatty acid amides in patients undergoing surgery (Figure 5A),
it is hypothesized that inflammatory or stress responses to surgical trauma or wound
repair may lead to increased expression of some lipids. A previous study demonstrated
that fatty acids can improve the inflammatory, proliferative, and remodeling phases of
wound healing by inducing angiogenesis at the wound site [39]. Therefore, our data
provide further evidence that the systemic inflammatory cascade to infection will lead to
striking increases in palmitamide, stearamide and oleamide. The characteristic molecular
changes of these three fatty acid amides have important potential applications in building
a diagnostic model for identifying sepsis cases. Oleamide and stearamide were the top
two upregulated lipids in the septic group after surgery. Oleamide plays a protective role
in sepsis. Specifically, connexin43 (Cx43), a member of a large family of transmembrane
proteins, plays a vital role in the process of cell damage amplification and deterioration in
sepsis [40]. Oleamide is an effective inhibitor of Cx43 channels [41], inhibiting ROS transfer
and inactivating the JNK1/Sirt1/FoxO3a signaling pathway, thereby preventing damage
caused by sepsis.

Cholesterol esters of CE (18:0) and CE (16:0) were significantly decreased in the sepsis
group in our study. Several previous findings confirmed that there was a crucial connec-
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tion between cholesterol metabolism and innate immunity [42–44]. Recent research from
Hu et al. demonstrated that serum cholesterol is remarkably decreased among Chinese
patients with COVID-19 [45]. Another report suggested that cholesteryl ester transfer
protein had the ability to disrupt the interplay of bacterial lipopolysaccharide and TLR4
(Toll-like receptor 4), thereby reducing the uncontrolled inflammatory response in sep-
sis [46]. Medications such as statins can help to lower cholesterol levels. However, statins
have no effect on mortality outcomes in patients with sepsis compared with placebo [9].
Some studies proved that low HDL cholesterol levels correlate with the severity of sepsis
during infection [47], and patients with low levels of LDL cholesterol (LDL-C) have an
increased risk of sepsis and worse outcomes [48]. Nevertheless, there is no sufficient evi-
dence to confirm the direct relationship between CE and sepsis. Herein, two cholesterol
esters (CE16:0 and CE18:0) from five signatures were significantly decreased in comparison
to SPost/NPost after surgery. Interestingly, we also obtained similar observations from
the comparison of SPre/NPre before surgery. We further explored more abundances of
CEs from the candidate features of our data, and all the boxplots exhibited similar trends
in Figure 5B. This evidence provides sufficient reason to speculate that people with low
cholesterol have weak immune systems and are prone to bacterial infections, which will
eventually trigger sepsis after surgery. We proposed that CE can act as an effective predictor
for the early detection of septic patients before surgery.

Nevertheless, some limitations of our study were as follows. First, although sepsis
patients have a higher mortality rate after cardiac surgery combined with CPB, no deaths
occurred in the patients we included. The differences may be more pronounced if we intro-
duced critical patients in the sepsis cohort. Second, all patients received prophylactic use of
second-generation cephalosporins during the surgery, which may affect the manifestation
of infection. Third, the 5 significant lipids were not validated in a larger cohort to predict
sepsis in clinical practice or animal experiments. Further studies on gut microbiota and
lipid metabolism in sepsis from clinical or animal studies will be implemented to verify
these signatures.

5. Conclusions

Overall, UPLC–MS/MS-based lipidomic profiles revealed that two cholesterol esters
(CE16:0 and CE18:0) were significantly decreased in the sepsis group and nonsepsis group
both before and after surgery. This work suggests that CE could serve as a promising
predictor for septic patients before surgery. Oleamide and stearamide were the top two
significantly upregulated lipids that exhibited excellent performance in distinguishing
sepsis after cardiac surgery with CPB. Therefore, we identified a potential intervention site
at which regulating cholesterol and lecithin cholesterol acyltransferase might inhibit the
progression of sepsis in the early stage.
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