Novel and Efficient Quantitative Posterior-Circulation-Structure-Based Scale via Noncontrast CT to Predict Ischemic Stroke Prognosis: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Data Collection
2.3. Deep Learning Model Development and Training
2.4. Calculation of the Prediction Score
2.5. Statistical Analysis and Evaluation on the Validation Set
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merwick, Á.; Werring, D. Posterior circulation ischaemic stroke. BMJ 2014, 348, g3175. [Google Scholar] [CrossRef] [Green Version]
- GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Strbian, D.; Sairanen, T.; Silvennoinen, H.; Salonen, O.; Kaste, M.; Lindsberg, P.J. Thrombolysis of basilar artery occlusion: Impact of baseline ischemia and time. Ann. Neurol. 2013, 73, 688–694. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Seymour, J.; Cairns, J.; Keir, S.; Lewis, S.; Sandercock, P. Immediate computed tomography scanning of acute stroke is cost-effective and improves quality of life. Stroke 2004, 35, 2477–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vymazal, J.; Rulseh, A.M.; Keller, J.; Janouskova, L. Comparison of CT and MR imaging in ischemic stroke. Insights Imaging 2012, 3, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, T.; Inoue, M.; Yamagami, H.; Fujita, K.; Tanaka, K.; Ando, D.; Sonoda, K.; Kamogawa, N.; Koga, M.; Ihara, M.; et al. Use of Diffusion-Weighted Imaging-Alberta Stroke Program Early Computed Tomography Score (DWI-ASPECTS) and Ischemic Core Volume to Determine the Malignant Profile in Acute Stroke. J. Am. Heart Assoc. 2019, 8, e012558. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Davalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Katyal, A.; Calic, Z.; Killingsworth, M.; Bhaskar, S.M.M. Diagnostic and prognostic utility of computed tomography perfusion imaging in posterior circulation acute ischemic stroke: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 2657–2668. [Google Scholar] [CrossRef]
- Anguita, D.; Ghelardoni, L.; Ghio, A.; Oneto, L.; Ridella, S. The ‘K’ in K-fold Cross Validation. In Proceedings of the 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, 25–27 April 2012; pp. 441–446. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–21 June 2019; pp. 658–666. [Google Scholar]
- Chatterjee, A.; Somayaji, N.R.; Kabakis, I.M. Artificial intelligence detection of cerebrovascular large vessel occlusion-nine month, 650 patient evaluation of the diagnostic accuracy and performance of the viz. Ai lvo algorithm. In STROKE; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2019; Volume 50. [Google Scholar]
- Maegerlein, C.; Fischer, J.; Monch, S.; Berndt, M.; Wunderlich, S.; Seifert, C.L.; Lehm, M.; Boeckh-Behrens, T.; Zimmer, C.; Friedrich, B. Automated Calculation of the Alberta Stroke Program Early CT Score: Feasibility and Reliability. Radiology 2019, 291, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Seker, F.; Pfaff, J.; Nagel, S.; Vollherbst, D.; Gerry, S.; Mohlenbruch, M.A.; Bendszus, M.; Herweh, C. CT Reconstruction Levels Affect Automated and Reader-Based ASPECTS Ratings in Acute Ischemic Stroke. J. Neuroimaging 2019, 29, 62–64. [Google Scholar] [CrossRef] [Green Version]
- Olive-Gadea, M.; Martins, N.; Boned, S.; Carvajal, J.; Moreno, M.J.; Muchada, M.; Molina, C.A.; Tomasello, A.; Ribo, M.; Rubiera, M. Baseline ASPECTS and e-ASPECTS Correlation with Infarct Volume and Functional Outcome in Patients Undergoing Mechanical Thrombectomy. J. Neuroimaging 2019, 29, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Albers, G.W.; Wald, M.J.; Mlynash, M.; Endres, J.; Bammer, R.; Straka, M.; Maier, A.; Hinson, H.E.; Sheth, K.N.; Taylor Kimberly, W.; et al. Automated Calculation of Alberta Stroke Program Early CT Score: Validation in Patients With Large Hemispheric Infarct. Stroke 2019, 50, 3277–3279. [Google Scholar] [CrossRef]
- Norrving, B.; Magnusson, M.; Holtas, S. Isolated acute vertigo in the elderly; vestibular or vascular disease? Acta Neurol. Scand. 1995, 91, 43–48. [Google Scholar] [CrossRef]
- Martin-Schild, S.; Albright, K.C.; Tanksley, J.; Pandav, V.; Jones, E.B.; Grotta, J.C.; Savitz, S.I. Zero on the NIHSS does not equal the absence of stroke. Ann. Emerg. Med. 2011, 57, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Inoa, V.; Aron, A.W.; Staff, I.; Fortunato, G.; Sansing, L.H. Lower NIH stroke scale scores are required to accurately predict a good prognosis in posterior circulation stroke. Cerebrovasc. Dis. 2014, 37, 251–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatibi, K.; Nour, M.; Tateshima, S.; Jahan, R.; Duckwiler, G.; Saver, J.; Szeder, V. Posterior Circulation Thrombectomy-pc-ASPECT Score Applied to Preintervention Magnetic Resonance Imaging Can Accurately Predict Functional Outcome. World Neurosurg. 2019, 129, e566–e571. [Google Scholar] [CrossRef]
- Lin, S.F.; Chen, C.I.; Hu, H.H.; Bai, C.H. Predicting functional outcomes of posterior circulation acute ischemic stroke in first 36 h of stroke onset. J. Neurol. 2018, 265, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Pallesen, L.P.; Gerber, J.; Dzialowski, I.; van der Hoeven, E.J.; Michel, P.; Pfefferkorn, T.; Ozdoba, C.; Kappelle, L.J.; Wiedemann, B.; Khomenko, A.; et al. Diagnostic and Prognostic Impact of pc-ASPECTS Applied to Perfusion CT in the Basilar Artery International Cooperation Study. J. Neuroimaging 2015, 25, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Francalanza, I.; Ciacciarelli, A.; Caragliano, A.A.; Casella, C.; Cotroneo, M.; Dell’Aera, C.; Fazio, M.C.; Grillo, F.; Pitrone, A.; Vinci, S.L.; et al. Acute Stroke Treatment in Patients with Basilar Artery Occlusion: A Single-Center Observational Study. Cerebrovasc. Dis. Extra 2019, 9, 90–97. [Google Scholar] [CrossRef]
- Puetz, V.; Sylaja, P.N.; Hill, M.D.; Coutts, S.B.; Dzialowski, I.; Becker, U.; Gahn, G.; von Kummer, R.; Demchuk, A.M. CT angiography source images predict final infarct extent in patients with basilar artery occlusion. AJNR Am. J. Neuroradiol. 2009, 30, 1877–1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, T.; Tanaka, K.; Yamagami, H.; Uchida, K.; Inoue, M.; Koge, J.; Ihara, M.; Toyoda, K.; Imamura, H.; Ohara, N.; et al. Treatment Outcomes by Initial Neurological Deficits in Acute Stroke Patients with Basilar Artery Occlusion: The RESCUE Japan Registry 2. J. Stroke Cerebrovasc. Dis. 2020, 29, 105256. [Google Scholar] [CrossRef] [PubMed]
Good Prognosis (Visits = 18) | Poor Prognosis (Visits = 18) | p-Value | |
---|---|---|---|
Gender (%) | 0.044 * | ||
Male | 13 (72.2%) | 7 (38.9%) | |
Female | 5 (27.8%) | 11 (61.1%) | |
Age (mean ± SD) | 66.83 ± 11.45 | 74.83 ± 10.09 | 0.007 * |
BMI, kg/m2 | 24.58 ± 4.84 | 24.23 ± 2.59 | 0.874 |
Treatment | 1.000 | ||
Drugs | 16 (88.9%) | 15 (83.3%) | |
EVT + rt-PA | 2 (11.1%) | 3 (16.7%) | |
Systolic blood pressure, mmHg | 148.41 ± 32.79 | 147.06 ± 29.08 | 0.959 |
Diastolic blood pressure, mmHg | 82.35 ± 18.69 | 79.88 ± 14.56 | 0.890 |
Heart rate, beats per minute | 86.06 ± 16.39 | 94.44 ± 28.44 | 0.408 |
pc-ASPECTS | 9.28 ± 0.75 | 8.78 ± 1.11 | 0.164 |
NIHSS | 3.00 ± 1.90 | 7.75 ± 5.39 | 0.001 * |
Structure | Mean IoU | Subset I IoU | Subset II IoU | Subset III IoU | Subset IV IoU | Subset V IoU |
---|---|---|---|---|---|---|
Left lateral cerebellum | 0.78 | 0.77 | 0.81 | 0.79 | 0.75 | 0.78 |
Right lateral cerebellum | 0.79 | 0.78 | 0.83 | 0.81 | 0.77 | 0.76 |
Left lateral occipital lobe | 0.74 | 0.78 | 0.73 | 0.77 | 0.75 | 0.67 |
Right lateral occipital lobe | 0.68 | 0.66 | 0.74 | 0.72 | 0.63 | 0.65 |
Left lateral thalamus | 0.73 | 0.72 | 0.68 | 0.76 | 0.79 | 0.70 |
Right lateral thalamus | 0.75 | 0.73 | 0.78 | 0.79 | 0.71 | 0.74 |
Medulla oblongata | 0.82 | 0.85 | 0.82 | 0.84 | 0.81 | 0.78 |
Midbrain | 0.83 | 0.82 | 0.80 | 0.86 | 0.85 | 0.82 |
Pons | 0.75 | 0.74 | 0.77 | 0.79 | 0.72 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, W.-H.; Chen, Y.-C.; Tsai, M.-C.; Ko, P.-S.; Wang, D.-L.; Su, S.-L. Novel and Efficient Quantitative Posterior-Circulation-Structure-Based Scale via Noncontrast CT to Predict Ischemic Stroke Prognosis: A Retrospective Study. J. Pers. Med. 2022, 12, 138. https://doi.org/10.3390/jpm12020138
Fang W-H, Chen Y-C, Tsai M-C, Ko P-S, Wang D-L, Su S-L. Novel and Efficient Quantitative Posterior-Circulation-Structure-Based Scale via Noncontrast CT to Predict Ischemic Stroke Prognosis: A Retrospective Study. Journal of Personalized Medicine. 2022; 12(2):138. https://doi.org/10.3390/jpm12020138
Chicago/Turabian StyleFang, Wen-Hui, Ying-Chu Chen, Ming-Chen Tsai, Pi-Shao Ko, Ding-Lian Wang, and Sui-Lung Su. 2022. "Novel and Efficient Quantitative Posterior-Circulation-Structure-Based Scale via Noncontrast CT to Predict Ischemic Stroke Prognosis: A Retrospective Study" Journal of Personalized Medicine 12, no. 2: 138. https://doi.org/10.3390/jpm12020138
APA StyleFang, W. -H., Chen, Y. -C., Tsai, M. -C., Ko, P. -S., Wang, D. -L., & Su, S. -L. (2022). Novel and Efficient Quantitative Posterior-Circulation-Structure-Based Scale via Noncontrast CT to Predict Ischemic Stroke Prognosis: A Retrospective Study. Journal of Personalized Medicine, 12(2), 138. https://doi.org/10.3390/jpm12020138