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Abstract: Concussion, also known as mild traumatic brain injury (mTBI), commonly causes transient
neurocognitive symptoms, but in some cases, it causes cognitive impairment, including working
memory (WM) deficit, which can be long-lasting and impede a patient’s return to work. The pre-
dictors of long-term cognitive outcomes following mTBI remain unclear, because abnormality is
often absent in structural imaging findings. Previous studies have demonstrated that WM functional
activity estimated from functional magnetic resonance imaging (fMRI) has a high sensitivity to
postconcussion WM deficits and may be used to not only evaluate but guide treatment strategies,
especially targeting brain areas involved in postconcussion cognitive decline. The purpose of the
study was to determine whether machine learning-based models using fMRI biomarkers and demo-
graphic or neuropsychological measures at the baseline could effectively predict the 1-year cognitive
outcomes of concussion. We conducted a prospective, observational study of patients with mTBI
who were compared with demographically matched healthy controls enrolled between September
2015 and August 2020. Baseline assessments were collected within the first week of injury, and
follow-ups were conducted at 6 weeks, 3 months, 6 months, and 1 year. Potential demographic,
neuropsychological, and fMRI features were selected according to their significance of correlation
with the estimated changes in WM ability. The support vector machine classifier was trained using
these potential features and estimated changes in WM between the predefined time periods. Patients
demonstrated significant cognitive recovery at the third month, followed by worsened performance
after 6 months, which persisted until 1 year after a concussion. Approximately half of the patients
experienced prolonged cognitive impairment at the 1-year follow up. Satisfactory predictions were
achieved for patients whose WM function did not recover at 3 months (accuracy = 87.5%), 6 months
(accuracy = 83.3%), and 1 year (accuracy = 83.3%) and performed worse at the 1-year follow-up
compared to the baseline assessment (accuracy = 83.3%). This study demonstrated the feasibility
of personalized prediction for long-term postconcussive WM outcomes based on baseline fMRI
and demographic features, opening a new avenue for early rehabilitation intervention in selected
individuals with possible poor long-term cognitive outcomes.
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1. Introduction

Mild traumatic brain injury (mTBI), commonly referred to as concussion, typically
does not present with visual findings on structural magnetic resonance imaging (MRI)
examinations, and therefore, providing neuroimaging evidence to support a diagnosis or
therapeutic evaluation is difficult. Furthermore, mTBI can cause an array of postconcussive
symptoms (PCS), most notably headaches, sleep deficit, fatigue, dizziness, depression,
anxiety, and cognitive impairment [1]. The average time required for symptom relief in
most individuals is approximately 3 months [2]; however, some individuals with subjective
PCS continue to experience symptoms even 1 year after a concussion [3,4]. Postconcussive
neuropsychological deficits have been suggested to be secondary to cognitive deficits [5–7].
Studies have suggested that only 15% of first-time concussed individuals continue to
experience persistent neuropsychological symptoms [8,9]; however, approximately half of
them experience long-term cognitive impairment that persists for years and can severely
affect their overall quality of life [10,11]. The options for the early treatment of mTBI remain
rather limited due to a general lack of validated biomarkers with a high degree of sensitivity
and specificity for the development of symptom-specific therapies. Thus, useful clinical
biomarkers for individualized postconcussive management must be urgently identified,
particularly to target individuals with poor long-term cognitive outcomes.

Working memory (WM) involves the ability to transiently store and manipulate
information to be used for cognitive or behavioral activities. WM deficit is one of the
most common postconcussive cognitive impairments [12]. Chen et al. demonstrated
reduced activation in the regions of N-back WM circuitry in patients with mTBI during both
moderate and high WM load conditions compared with healthy controls (HCs), especially
prominent under WM 2-back > 1-back conditions [13]. Differences were identified in WM
functional activity between both patients with symptomatic mTBI and HCs, as well as
patients’ baseline assessments and 6-week follow-ups, whereas no difference was observed
in their neuropsychological and behavioral performances, including digit span scores,
continuous performance tests, and WM task performances, suggesting that the deficits in
WM functional activity estimated from functional magnetic resonance imaging (fMRI) may
have a higher sensitivity to mTBI than to neuropsychological and behavioral evaluations
alone [13].

We hypothesized that long-term cognitive outcomes of mTBI can better be predicted
using pooled fMRI, demographic, and neuropsychological biomarkers than by using neu-
ropsychological evaluations alone. In this prospective observational study, our objectives
were to identify fMRI, demographic, or neuropsychological biomarkers at the baseline that
could best predict future cognitive changes during the year following a concussion and to
construct machine learning-based predictive models to discriminate between patients at a
high risk of poor long-term cognitive outcomes and patients with normal recovery. Specifi-
cally, the N-back WM task (N = 1 and 2) was performed to obtain potential disease-related
fMRI features, since WM 2-back > 1-back conditions can show the most prominent changes
of impaired WM circuitry after mTBI [13]. Additionally, machine learning algorithms can
unravel the relationship between input variables (e.g., biomarkers) and response variables
(e.g., cognitive outcome) through a data-learning process, which allows for the prediction
of future cognitive changes for each individual or the stratification of a patient population
based on characteristic features. Furthermore, understanding various potential biomarkers
associated with postconcussive WM impairments may render it possible to translate these
biomarkers into effective cognitive rehabilitation strategies to improve, or at least mitigate
impediments to, the recovery of WM function, which is important in most occupations.
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At present, for cognitive rehabilitation management, detailed holistic neuropsychi-
atric assessments are required to identify, establish, and develop adaptive general or
domain-specific interventions, whether adopting a nonpharmacologic or pharmacologic
approach [14]; this is particularly true for the treatment of posttraumatic deficits in memory
and executive functions, as different compensatory training strategies are applied based on
impairment severity [15]. Our aim was to construct a framework for precise individualized
predictions of postconcussive cognitive outcomes based on the early fMRI and neuropsy-
chological biomarkers assessed at the baseline to facilitate early therapeutic intervention
and individualized rehabilitation strategies. These fMRI predictive biomarkers also exhibit
a potential to reflect the functional dynamics of plasticity mechanisms in the injured brain
and can be used to evaluate and guide treatment strategies, specifically targeting brain
regions involved in postconcussion cognitive decline [13,16,17].

2. Materials and Methods
2.1. Participants and Neuropsychological Evaluation

Between September 2015 and August 2020, 70 right-handed patients with mTBI
and 48 age-, sex-, and education-matched right-handed HCs consented to participate
in the study at Taipei Medical University Hospital. Patients were followed up at 6 weeks
(n = 34; 52.52 ± 6.95 days), 3 months (n = 29; 100.96 ± 13.56 days), 6 months (n = 28;
195.95 ± 14.61 days), and 1 year (n = 25; 376.48 ± 16.52 days) after a concussion. In total,
24 patients (38.6%) completed the baseline and all four follow-up sessions. All participants
had normal or corrected-to-normal visual activity and no history of neurological or psy-
chiatric disorders. This study was approved by the Institutional Review Board of Taipei
Medical University Hospital before data collection (TMUH TMU-JIRB No. 201504083,
N201612008, N201904032, and N202102008) and conducted according to the original and
amended Declaration of Helsinki.

The following operational definition of mTBI was used in the current study: patients
with closed-head injuries manifesting in a loss of consciousness lasting for <30 min, initial
Glasgow Coma Scale score > 13, and normal findings in computed tomography of the
entire brain. The exclusion criteria were prior neuropsychiatric illnesses or symptoms,
brain injury history, any coexisting or previous neurological illnesses, any medication
use that may interfere with the WM ability and/or neuropsychological parameters, and
contraindication for MRI. Inclusion criteria for the control group were the same, except for
a negative assessment for mTBI and no concussion history.

Neuropsychological assessments, namely six types of clinical symptom measures,
the Mini-Mental State Examination (MMSE), and the Wechsler Adult Intelligence Scale,
fourth edition (WAIS-IV), were conducted by a clinical psychologist on the same days as
the initial and follow-up MRI scans. The six types of clinical symptoms were assessed using
the Glasgow Outcome Scale–Extended (GOSE), Pittsburgh Sleep Quality Index, Epworth
Sleepiness Scale, Dizziness Handicap Inventory, Rivermead Post Concussion Symptoms
Questionnaire (RPQ), Beck Anxiety Inventory, and Beck Depression Inventory, for which
higher scores indicate greater symptomatology. The working memory (WM) ability was
assessed using the WM index (WMI), arithmetic ability (AMT), and digit span score (DS) in
the WAIS-IV test, for which the higher scores indicated better WM ability. Among them,
the WMI is derived from the comprehensive performance of WM-related subtests and can
be used as a general indicator representing a subject’s WM ability.

2.2. MRI Data Acquisition and Experimental Design

MRI data were obtained using a 3T MRI scanner (Siemens MAGNETOM Prisma,
Erlangen, Germany), and a 64-channel head coil was used to acquire the fMRI time series.
Standard single-shot gradient-echo echo planar imaging-based fMRI (TR/TE = 2000/20 ms,
flip angle = 90◦, voxel size = 3 × 3 × 3.5 mm3, matrix = 64 × 64 × 40, and 105 volumes)
was performed. Participants were instructed to keep their eyes closed and not entertain
any particular thoughts while remaining awake, alert, and as motionless as possible.
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The experimental design of the N-back task in fMRI was performed using Presentation
software (Version 18.1, Neurobehavioral Systems, Inc., Berkeley, CA, USA) and is presented
in Figure S1. An N-back task contains three epochs, each composed of a 30-s task period
and a 30-s fixation on a crosshair. The interstimulus interval between each trial during
a task period was 2 s. In total, 45 trials were performed, with each task consisting of
80% nontarget trials and 20% target trials. In each run of the N-back tasks, participants
were instructed to pay attention to a series of six-digit numerical stimuli and respond by
using the right index finger to press the button whenever the current stimulus matched the
number that had been presented N times previously (N = 1 or 2) [18].

For the co-registration and normalization of fMRI data, three-dimensional T1-weighted
magnetization-prepared rapid gradient-echo images (TR/TE/TI = 2300/3.26/1030 ms, flip
angle = 8◦, voxel size = 1 × 1 × 1 mm3, and matrix = 256 × 256 × 176) were obtained.

2.3. Data Analysis
2.3.1. fMRI Preprocessing

The anatomical and fMRI data were preprocessed using Statistical Parametric Mapping
(SPM12; Wellcome Department, University College London, UK) for slice timing correction,
realignment, spatial normalization to MNI space, and spatial smoothing with a 5-mm
full-width-at-half-maximum Gaussian kernel. Furthermore, linear and quadratic trends of
the fMRI time series were removed.

2.3.2. WM Task Activation and Deactivation Map

To calculate the brain activation and deactivation map during the N-back WM task,
the experimental paradigm used the convolved canonical hemodynamic response function
as the regressor in a general linear model. Six head motion parameters estimated through
image realignment by using SPM12 were used as covariates and partially regressed out
of the preprocessed fMRI time series. A contrast image corresponding to the main effects
of the task performance was created and represented brain activity relative to the implicit
baseline of unmodeled variance [19]. Group level activation and deactivation maps were
then calculated as a one-sample t-test across all participants within each group.

2.4. Statistical Analyses

A one-sample t-test was used to determine the significance within the HC or mTBI
group, and a two-tailed two-sample t-test was used to observe between-group differences.
A two-tailed paired-sample t-test was conducted to examine the significance between the
initial and follow-up data. The statistical tests were corrected for multiple comparisons
by controlling the false discovery rate (FDR) to q = 0.05 to avoid errors related to multiple
comparisons in these calculations.

2.5. Regions-of-Interest Selection and Percentage Signal Change Calculation

The regions-of-interest (ROIs; Table S1) were first defined using a 3-mm-diameter
sphere centered at the WM 2-back task activation and deactivation peak regions in the HC
group (p < 0.01, FDR corrected; Figure 1). The percentage signal change map [20] of each
participant’s WM condition was then estimated through multiplication of the regression
coefficient map for the main effects of task performance approximated as the quotient by
dividing the peak value by the constant term in the design matrix such that they could
be compared across participants [19]. Finally, the percentage signal change value of each
participant’s WM condition at each ROI was then extracted.
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Figure 1. Postconcussive working memory activation and deactivation changes over time between 
baseline and follow-up. (A) Activation and (B) deactivation maps of 1-back, 2-back, and 2-back > 1-
back WM conditions in HCs and patients with mTBI at each time point. Patients showed significant 
recovery under the WM 2-back > 1-back condition (bottom row) after 3 months (yellow arrows) but 
worsened again at the 1-year follow-up (blue arrows). Note that the statistical tests were corrected 
for multiple comparisons by controlling the false discovery rate (FDR) to q = 0.05 to avoid errors 
related to multiple comparisons in these calculations. Healthy Controls (HCs); mild Traumatic Brain 
Injury (mTBI).  

2.6. Postconcussive WM Changes at Predetermined Time Periods during 1-Year Follow-Up 
To determine the courses of the postconcussive WM changes, we first retrospectively 

assessed the 24 patients who completed the baseline and all four follow-up sessions to 
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Figure 1. Postconcussive working memory activation and deactivation changes over time be-
tween baseline and follow-up. (A) Activation and (B) deactivation maps of 1-back, 2-back, and
2-back > 1-back WM conditions in HCs and patients with mTBI at each time point. Patients showed
significant recovery under the WM 2-back > 1-back condition (bottom row) after 3 months (yellow
arrows) but worsened again at the 1-year follow-up (blue arrows). Note that the statistical tests were
corrected for multiple comparisons by controlling the false discovery rate (FDR) to q = 0.05 to avoid
errors related to multiple comparisons in these calculations. Healthy Controls (HCs); mild Traumatic
Brain Injury (mTBI).

2.6. Postconcussive WM Changes at Predetermined Time Periods during 1-Year Follow-Up

To determine the courses of the postconcussive WM changes, we first retrospectively
assessed the 24 patients who completed the baseline and all four follow-up sessions to de-
termine the status of WM decline or recovery at each time point during the 1-year follow-up
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period. A two-tailed paired-sample t-test was applied to examine the significance between
the baseline and follow-up data to identify the statistically significant progression of post-
concussive cognitive decline at predetermined time points (periods). Specifically, these
statistically significant time periods of cognitive changes were regarded as the meaningful
time periods for the machine learning-based approach in terms of postconcussive cognitive
progression prediction. Patients were further divided into “poor outcome” and “good
outcome” groups according to the negative and positive slopes of cognitive changes within
the specific time period.

2.7. Individualized Prediction of Postconcussive WM Impairments by Using Biomarkers Measured
at Baseline

The percentage signal change extracted from the ROIs for the WM task performed
by each participant was used for the N-back WM fMRI features. Neuropsychological
assessments (namely seven types of neuropsychological tests, clinical symptom measures,
and the WAIS-IV test) and the demographic data (namely age, sex, education year, and score
on the GOSE) were treated as the potential neuropsychological and demographic features,
respectively. The candidate fMRI, demographic, and neuropsychological features were
selected if there was a significant correlation with the estimated changes in the WMI during
the specific time period to train the support vector machine (SVM) classifier with k-fold
cross-validation (k = 10 in this study) for each prediction to achieve a reliable and unbiased
estimate of the machine learning model performance on a limited dataset sample [21].
Specifically, the complete dataset is first divided into k consecutive folds. Then each fold is
used once as a validation, and the remaining k−1 folds form the training set. This approach
may be computationally expensive, but it does not waste too much data (as is the case
when fixing an arbitrary validation set), which is the main advantage in problems with
very small sample sizes. The individual SVM classification approach was accomplished
using in-house MATLAB (version R2020a, MathWorks, Sherborn, MA, USA) scripts.

3. Results
3.1. Demographics

In total, 70 patients with mTBI (age = 37.9 ± 12.2 years; 23 (32.9%) women) and 48 HCs
(age = 37.4 ± 12.0 years; 16 (33.3%) women) were recruited in this study (Figure S2). The
reasons for injury were as follows: motor vehicle accident (n = 37), fall (n = 17), sports
(n = 3), assault (n = 8), and other (n = 5). Among the patients, 24 completed the baseline,
and all four follow-up sessions were selected for investigations regarding dynamic changes
in cognitive functions after a concussion. The patients dropped out during follow-up visits
mainly because of a failure to keep in touch through phone calls or e-mails or a change in
residence or job. Table S2 lists the basic demographic characteristics of both groups. No
significant between-group differences in terms of age, sex, and education were observed
between the patients and HCs. Furthermore, no significant within-group differences were
observed in the demographics between patients who completed the 1-year follow-up and
those who completed only the baseline assessment following concussion. All structural
MRI were unremarkable in terms of structural or signal changes.

3.2. Postconcussive WM Changes during the 1-Year Follow-Up Period
3.2.1. N-Back WM Task

In both groups, the N-back WM task fMRI exhibited increased signals in the bilateral
frontal and parietal lobes (p < 0.01, FDR-corrected; Figure 1A), consistent with the activation
of WM circuitry. However, the extent of activation was less in the patient group than in
the HCs (Figure 1A, first two columns). Furthermore, the response of the brain to the
increase in WM load from 1-back to 2-back, as shown in the brain activation (Figure 1A,
bottom row) and deactivation (Figure 1B) maps, was greater in the HCs than in patients
with mTBI. The WM deficit pattern of WM 2-back > 1-back and activation regions were
recovered at the third month of follow-up; however, the WM deficit (decline) paradoxically



J. Pers. Med. 2022, 12, 196 7 of 16

reappeared again at 1-year follow-up after a concussion. Lastly, deactivation in the patient
group constantly disappeared at the WM 2-back > 1-back activation regions throughout the
1-year follow-up. In addition, as the WM load increased from 1-back to 2-back, there was
an imbalance in the communication between task-positive (activation) and task-negative
(deactivation) regions in the context of effortful task execution. Collectively, these findings
revealed changes that persist during the chronic phase of mTBI and highlight the need for
longitudinal studies to map the postconcussive cognitive decline and/or recovery.

3.2.2. Neuropsychological Assessment

An assessment with the WAIS neuropsychological test revealed that the WM-related
abilities, as indicated by the WMI (Figure 2A), AMT (Figure 2B), and DS score (Figure 2C),
significantly improved from 6 weeks to 3 months after the mTBI but became worse again
from 3 to 6 months after the mTBI. This result matched with our fMRI results and provided
converging evidence that patients tend to have a transient cognitive recovery at the third
month after a mTBI; however, it worsens again after 6 months. Since the WMI is derived
from the comprehensive performance of WM-related subtests, it is treated as a general
indicator representing a subject’s WM ability in our study. Due to the fluctuation and
variation in the functional recovery of WM among patients, we grouped patients according
to follow-up time periods, where the patients with recovered WMI were classified into the
“good outcome group” and the patients exhibiting a decline in WMI were labeled as the
“poor outcome group” for the prediction model analysis. The percentages of patients in the
four predefined time periods were as follows:

1. Thirty-eight percent (9/24) of patients exhibited no recovery in the WMI at 3 months
after a mTBI.

2. Seventy-five percent (18/24) of patients exhibited a decline in the WMI from 3 to
6 months after a mTBI.

3. Thirty-eight percent (9/24) of patients exhibited no recovery in the WMI from
6 months to 1 year after a mTBI.

4. Forty-six percent (11/24) of patients exhibited a worsened WMI at 1-year follow-up
compared to the baseline.
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Figure 2. Postconcussive cognitive changes over time between the baseline and follow-up. Dynamic
individual patient trajectories of (A) the WMI, (B) AMT, and (C) DS at each time point. The trajectories
were normalized by subtracting the baseline measurements for better visualization. Patients exhibited
significant recovery during the 3-month follow-up but worsened again from 3 months to 6 months or
even at the 1-year follow-up. Compared with the baseline measurements, roughly half of the patients
with a mTBI displayed reduced cognitive function after 1 year. (* p < 0.05, ** p < 0.01).
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3.3. Prediction of Postconcussive WMI Decline Based on Baseline Studies
3.3.1. WMI Not Recovered at 3 Months after mTBI

Figure 3A presents the important weighting of features derived from candidate fMRI
activation and deactivation patterns, demographics, and neuropsychological tests for
predicting WMI changes between 6 weeks and 3 months after a concussion. In particular,
the selected features included two demographic (age and sex); five WM 1-back activation
(left putamen, bilateral calcarine, left dorsolateral prefrontal cortex (dLPFC; BA46), and
the triangular part of the right inferior frontal gyrus (IFG (tri.); BA45)); three WM 1-back
deactivation (e.g., right middle cingulate cortex (MCC)); three WM 2-back activation (right
dorsal anterior cingulate cortex (dACC), right Rolandic operculum, and right inferior
temporal gyrus (ITG)); and one WM 2-back deactivation (the left middle temporal gyrus
(MTG)) features (Figure 3A,B); 87.5% SVM prediction accuracy and an 82.96% area under
the receiver operating characteristic curve (ROC-AUC; Figure 3C,D) were achieved using
these features.
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Figure 3. SVM predictive model for 37.5% of patients whose WM ability did not recover at the
3-month follow-up. (A) The red bar graph and the corresponding error bar, respectively, represent the
average and standard deviation of the discriminative feature weights among the 10 cross-validated
SVM classifiers. (B) Profiles of selected features for constructing the SVM classification model.
None of the neuropsychological features were selected for this predictive model. (C) ROC curve
of the selected feature to differentiate the “poor outcome group” from the “good outcome group”.
(D) Confusion matrix to summarize the results of this binary classification model.
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3.3.2. WMI Decline from 3 to 6 Months after Initial Recovery

Figure 4A presents the important weighting of features selected from among the candi-
date fMRI results, demographics, and neuropsychological tests to predict the WMI changes
between 3 and 6 months after a concussion. These features included three demographic
(age, sex, and education years); one WM 1-back activation (left inferior frontal gyrus orbital
part (IFG (orb.); BA46)); one WM 1-back deactivation (left MTG), two WM 2-back activation
(e.g., bilateral IFG (tri.)); and two WM 2-back deactivation (left hippocampus and right
MTG) features (Figure 4A,B). The SVM prediction accuracy could reach 83.33%, with an
84.26% ROC-AUC (Figure 4C,D).
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Figure 4. SVM predictive model for 75% of patients whose WM ability dropped from 3 to 6 months
after a concussion. (A) The red bar graph and the corresponding error bar, respectively, represent the
average and standard deviation of the discriminative feature weights among the 10 cross-validated
SVM classifiers. (B) Profiles of the selected features for constructing the SVM classification model.
None of the neuropsychological features were selected for this predictive model. (C) ROC curve
of the selected feature to discriminate the “poor outcome group” from the “good outcome group”.
(D) Confusion matrix to summarize the results of this binary classification model.

3.3.3. WMI Not Recovered from 6 Months to 1 Year after mTBI

Figure 5A shows the important weighting of features selected from candidate fMRI
results, demographics, and neuropsychological tests for predicting the WMI changes
between 6 months and 1 year after a concussion. The features selected for SVM classification
included 2 demographic features (age and sex); 10 WM 1-back activation features (bilateral
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anterior insula (AINS), bilateral IFG (orb.), bilateral putamen, bilateral Rolandic operculum,
right dACC, and left inferior parietal sulcus (IPS)); 5 WM 1-back deactivation features (left
posterior cingulate cortex (PCC), right angular gyrus, left hippocampus, left MTG, and
left inferior frontal cortex (IFC)); 8 WM 2-back activation (bilateral IFG (orb.), bilateral
AINS, bilateral ITG, left putamen, and right Rolandic operculum); and 3 WM 2-back
deactivation features (bilateral hippocampus and left amygdala) (Figure 5A,B). With the
use of the selected features, the SVM classifier could reach 83.33% accuracy, with an 88.89%
ROC-AUC (Figure 5C,D).
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Figure 5. SVM predictive model for 37.5% of patients whose WM ability did not recover from the
6-month to 1-year follow-up. (A) The red bar graph and the corresponding error bar, respectively,
represent the average and standard deviation of the discriminative feature weights among the
10 cross-validated SVM classifiers. (B) Profiles of the selected features for constructing the SVM
classification model. None of the neuropsychological features were selected for this predictive model.
(C) ROC curve of the selected feature to discriminate the “poor outcome group” from the “good
outcome group”. (D) Confusion matrix to summarize the results of this binary classification model.

3.3.4. Patients Whose WMI at 1-Year Follow-Up Was Worse Than at Baseline

The importance of the feature weighting derived from the candidate fMRI, demo-
graphic, and neuropsychological features to predict the estimated changes of the WMI
between the baseline and 1-year after a concussion is shown in Figure 6. Two demographic
features (age and sex); four neuropsychological features (MMSE, DS, WMI, and AMT);
two WM 1-back activation features (e.g., left ITG and left temporal parietal junction (TPJ));
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two WM 1-back deactivation features (e.g., left ventromedial prefrontal cortex (vmPFC;
BA25)); left posterior insula (PINS); and one WM 2-back deactivation feature (e.g., right
hippocampus) were selected (Figure 6A,B), and the SVM reached 83.33% accuracy, with a
95.80% ROC-AUC (Figure 6C,D).
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Figure 6. SVM predictive model for 45.83% of patients whose WM ability after 1 year became worse
than at the baseline. (A) The red bar graph and the corresponding error bar, respectively, represent the
average and standard deviation of the discriminative feature weights among the 10 cross-validated
SVM classifiers. (B) Profiles of the selected features for constructing the SVM classification model.
None of the WM 2-back activation features were selected for this predictive model. (C) ROC curve
of the selected feature to discriminate the “poor outcome group” from the “good outcome group”.
(D) Confusion matrix to summarize the results of this binary classification model.

4. Discussion

This study examined postconcussion cognitive changes during a 1-year follow-up pe-
riod. Consistent with a previous study [22], in our study, patients with mTBI demonstrated
significant cognitive recovery at the third month after a concussion, followed by a worsened
performance after 6 months, which persisted until 1 year after a concussion (Figure 1).
Approximately half of the patients experienced prolonged cognitive impairment, including
impaired WM, DS, and AMT, at the 1-year follow up (Figure 2). The results are similar to
those of previous studies, indicating that significant postconcussion cognitive impairment
may persist for years, despite some recovery over time [10,11]. Even a single concussion
can lead to persistent cognitive impairment in approximately half of patients [10]. We
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constructed machine learning-based predictive models to differentiate patients at high
risk for poor cognitive outcomes at the representative time periods after a concussion.
Satisfactory predictions were achieved for patients with mTBI whose cognitive function did
not recover after 3 months (Figure 3), worsened at 6 months (Figure 4), did not recover at
1 year (Figure 5), and worsened at 1 year compared with the baseline (Figure 6). This study
demonstrated the feasibility of prediction individualization for long-term postconcussion
cognitive outcomes by using pooled fMRI, demographic, and neuropsychological features
and further suggests the possibility of early therapeutic intervention, such as neurocogni-
tive training, for individuals with mTBI with poor long-term cognitive outcomes to reduce
postconcussive cognitive decline and the risk of chronicity [23]. fMRI may also be used
to evaluate and guide treatment strategies, specifically targeting brain areas involved in
postconcussive cognitive decline [13,16,17].

4.1. Validate Machine Learning Algorithms in a Limited Data Size

Previous studies that aimed at predicting long-term postconcussive cognitive out-
comes for mTBI generally adopted a multivariate approach encompassing patient demo-
graphics, clinical symptoms, and neuropsychological features, as well as other factors such
as health care utilization and premorbid psychiatric conditions [24,25]. However, the perfor-
mance of such predictive methods can be limited due to clinical variability and complexity,
as well as confounding factors such as ambiguous documentation, undeclared medication
use, and other concurrent medical conditions, and the assessment of morphologic informa-
tion based on structural brain imaging has not demonstrated additional benefits [26,27]. In
this observational study, we prospectively recruited 70 patients with mTBI and followed
up their cognitive functioning with functional and neuropsychological data for 1 year.
In particular, 24 patients who completed all the baseline and 5 follow-up sessions were
selected for retrospective determination of the status of WM decline or recovery at each
time point during the 1-year follow-up period. Although the relatively small dataset used
in this study might be a concern, k-fold cross-validation (k = 10 in our case) was applied
to generate a reliable and unbiased estimate of machine learning model performance on a
limited dataset sample [21]. Stated otherwise, we used a limited sample to estimate how
the model is expected to perform in general when used to make predictions on unseen
data. The systematic processing procedures and the results of this study thus proved the
feasibility of using machine learning-based approaches to reveal predictive biomarkers
related to poor postconcussive WM outcomes.

4.2. Neuropsychological Assessments Are Not Predictive of Postconcussion Cognitive Decline

None of the baseline assessments of clinical neuropsychiatric symptoms (e.g., GOSE,
sleep quality, depression, and anxiety) or the self-reported PCS burden (RPQ) correlated
significantly with the WM changes between 6 weeks and 3 months, between 3 and 6 months,
and between 6 months and 1 year after a concussion in this study. These results substantiate
the idea that the baseline neuropsychological assessments and PCS burden may not be
predictive of postconcussive cognitive outcomes. Moreover, this was true in a previous
study, which demonstrated that a lower cognitive reserve, but not a worse PCS diagnosis,
was associated with a poor cognitive outcome following mTBI [28]. Studies have also
shown that mTBI-induced differences in WM functional activity are observable; however,
differences in the neuropsychological and behavioral performances were not evident,
suggesting that the deficits of WM functional activity estimated from fMRI may have a
higher sensitivity to long-term WM deficits in mTBI than to neuropsychological evaluations
alone [13]. In addition, the time period between a concussion and baseline assessment is
also not related to the postconcussive WM changes, which indicates that the biomarkers
identified in this study were not biased by the starting time of the initial scan (within 1 week
after mTBI in this research). Collectively, these results provide supportive evidence for
using fMRI biomarkers elicited from baseline WM functional activity to predict long-term
postconcussive cognitive outcomes, as done in our research.
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4.3. Age and Sex Effects in Postconcussive Working Memory Impairment

Recent studies have indicated the importance of age and sex effects in the context of
mTBI, as the elderly and females are especially predisposed to postconcussive neurocogni-
tive symptoms [29–32]. This is also true in our data, where the age and sex factors showed
significant contributions to the predictive models (Figures 3–6), which possibly points to
the age and sexual vulnerability factors in persistent postconcussive WM impairments.
Further investigation is needed to corroborate the findings and to identify the mechanisms
behind the involvement of age and sex in mTBI, especially in long-term postconcussive
WM outcomes.

4.4. The Role of WM Task-Induced Deactivation Regions in Reflecting Postconcussive
Cognitive Decline

In addition to considering WM functional activity as a potential fMRI biomarker
for postconcussive WM decline, the WM task-induced default mode network (DMN)
deactivation regions were considered in this research. The DMN, which is known to be
active during rest and to deactivate during externally oriented tasks, may be essential for
optimal WM operation [33]. The failure to deactivate the DMN during a cognitive task
may limit the ability to reallocate cognitive resources for task execution [34,35]. A superior
WM performance might be associated with the balance in communication between task-
positive (activation) and task-negative (deactivation) regions in the context of effortful task
execution [36]. Therefore, exclusively examining the abnormalities in aberrant activation
may be insufficient for a complete understanding of WM pathology [33]. Thus, we focused
on both activation and deactivation deficits, marking a substantive advancement over prior
works. In our work, approximately one-third to one-half of the fMRI biomarkers exhibited
deactivation deficits and significantly contributed to the prediction of postconcussive WM
impairments. The results suggest that characterizing both activation and deactivation
deficits is crucial for a complete understanding of WM dysfunction in mTBI.

4.5. Scientific Merit and Clinical Implications

The systematic characterization of WM functional deficits may have crucial therapeu-
tic implications in patients with postconcussive WM dysfunction, facilitating rehabilitation
intervention planning in selected patients. Studies have suggested the potential application
of brain functional activation and deactivation patterns in WM tasks for early neurocog-
nitive training referral, training intensity planning, or even functional recovery predic-
tion [13,37]. Moreover, pharmacological interventions such as catecholaminergic treatment
with methylphenidate improve the cognitive performance in patients with severe TBI
through the normalization of WM activation patterns [38]. Manktelow et al. demonstrated
that compromised functional integrity and connectivity strength between key structures
of the WM activation pattern in patients with TBI can be treated with methylphenidate to
improve cognitive performance and that methylphenidate’s pharmacologic effect may be
more beneficial in patients with moderately severe cognitive deficits [39]. This treatment
outcome correlation has not been well-explored for mTBI; nevertheless, our study results
also indicate that the assessment of WM functional deficits may facilitate early rehabilita-
tion interventions for patients with possible poor long-term cognitive performances and
may thus reduce the heterogeneity in treatment responses and cognitive outcomes. These
fMRI predictive biomarkers exhibit the potential to reflect the functional dynamics of the
neuroplasticity mechanisms in an injured brain. Our results support the hypothesis that
pooled fMRI, demographic, and neuropsychological baseline biomarkers can satisfactorily
predict postconcussive WM deficits during a 1-year period. Future studies must focus
on using these predictive biomarkers as a patient stratification strategy to provide early
intervention for patients who are at a high risk of postconcussive WM dysfunction.
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4.6. Limitations
4.6.1. Small Data Size and Dropouts in Longitudinal Data

This study longitudinally tracked postconcussion WM functions in 70 patients and
delineated the trends of dynamic changes in WM ability during a 1-year follow-up pe-
riod. However, we note the considerable number of dropouts in our longitudinal data,
which may be indicative of attrition bias, meaning that perhaps only patients who still felt
uncomfortable at the designated follow-up time points would be motivated to continue
participating in this study. Therefore, whether the dynamic changes in postconcussion
WM functions in this study are representative of the patient population remains somewhat
controversial. To mitigate the issue of attrition bias, only 24 patients who completed the
baseline and all four follow-up sessions were selected for investigations regarding dynamic
cognitive changes in the 1-year period. In fact, no significant within-group differences were
observed in the demographics between patients who completed or did not complete the
five visits during the 1-year period. In addition, our study showed similar trends of post-
concussion cognitive changes with previous studies showing significant cognitive recovery
within three months [22], and approximately half of the patients experienced persistent
postconcussion cognitive impairments over years [10,11]. Taken together, we can confirm
that the 24 patients who completed all five visits in our study were roughly representative
of the patient population or at least not significantly different from the patient population.
A further study with more longitudinal data is needed to clarify this issue.

4.6.2. The Handedness and Brain Lateralization

In this study, only right-handed patients and HCs were recruited in this study. Whether
left-handed brains are structurally different from right-handed brains is still controversial
and has spurred much research. Handedness is a form of functional hemispheric asym-
metries that establish differences between the left and right sides of the brain [40]. For
the handedness issue, it is not possible to fit the prediction models to left-handers just by
simply mirroring left and right brains in the fMRI results. Studies have shown that, in
left-handed people, both sides of the brain tend to communicate more effectively, and they
have less lateralized brains [40]. Left-handers may also differ in postconcussion functional
compensation of the brain network after a mTBI. Further research on the mechanisms
of postconcussion WM function changes specifically for left-handed people is needed to
clarify this issue.

5. Conclusions

This study depicts a framework for the precise individualized prediction of postcon-
cussion cognitive outcomes based on demographic features and early fMRI biomarkers
assessed at the baseline to fulfill the demands of early therapeutic intervention and indi-
vidualized cognitive rehabilitation strategies. fMRI can be a useful tool in revealing the
impairment and compensation of the brain cognitive network, which has the potential to
guide treatment strategies, specifically targeting the brain areas involved in postconcussion
cognitive decline at the individual level. Future prospective studies using this machine
learning-based patient stratification strategy may refine and validate the prediction models
and further facilitate the clinical applications of postconcussion cognitive decline.
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