Immune Response and Lipid Metabolism Gene Polymorphisms Are Associated with the Risk of Obesity in Middle-Aged and Elderly Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Group Description
2.2. Molecular Genetic Testing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piché, M.E.; Tchernof, A.; Després, J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, 375–391. [Google Scholar] [CrossRef]
- Ying, W.; Fu, W.; Lee, Y.S.; Olefsky, J.M. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat. Rev. Endocrinol. 2020, 16, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Guo, P.; Liu, A.; Ares, I.; Martínez-Larrañaga, M.R.; Wang, X.; Anadón, A.; Martínez, M.A. The role of long noncoding RNA in lipid, cholesterol, and glucose metabolism and treatment of obesity syndrome. Med. Res. Rev. 2021, 41, 1751–1774. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Li, L.; Zhang, L.; Guo, L.; Wang, C. Association between MC4R rs17782313 genotype and obesity: A meta-analysis. Gene 2020, 733, 144372. [Google Scholar] [CrossRef]
- Adamska-Patruno, E.; Bauer, W.; Bielska, D.; Fiedorczuk, J.; Moroz, M.; Krasowska, U.; Czajkowski, P.; Wielogorska, M.; Maliszewska, K.; Puckowska, S.; et al. An Association between Diet and MC4R Genetic Polymorphism, in Relation to Obesity and Metabolic Parameters—A Cross Sectional Population-Based Study. Int. J. Mol. Sci. 2021, 22, 12044. [Google Scholar] [CrossRef] [PubMed]
- Chauhdary, Z.; Rehman, K.; Akash, M.S.H. The composite alliance of FTO locus with obesity-related genetic variants. Clin. Exp. Pharmacol. Physiol. 2021, 48, 954–965. [Google Scholar] [CrossRef]
- Yılmaz, B.; Gezmen Karadağ, M. The current review of adolescent obesity: The role of genetic factors. J. Pediatr. Endocrinol. Metab. 2020, 34, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Sinitskiy, M.Y.; Ponasenko, A.V.; Gruzdeva, O.V. Genetic profile and secretome of adipocytes from visceral and subcutaneous adipose tissue in patients with cardiovascular diseases. Complex Issues Cardiovasc. Dis. 2017, 3, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, K.; Inaba, Y. Genetic variants influencing obesity-related traits in Japanese population. Ann. Hum. Biol. 2019, 46, 298–304. [Google Scholar] [CrossRef]
- Younes, S.; Ibrahim, A.; Al-Jurf, R.; Zayed, H. Genetic polymorphisms associated with obesity in the Arab world: A systematic review. Int. J. Obes. 2021, 45, 1899–1913. [Google Scholar] [CrossRef]
- Marques-Rocha, J.L.; Samblas, M.; Milagro, F.I.; Bressan, J.; Martínez, J.A.; Marti, A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 2015, 29, 3595–3611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stienstra, R.; van Diepen, J.A.; Tack, C.J.; Zaki, M.H.; van de Veerdonk, F.L.; Perera, D.; Neale, G.A.; Hooiveld, G.J.; Hijmans, A.; Vroegrijk, I.; et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 2011, 108, 15324–15329. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, S.; Wang, M.R.; Wang, T.T.; Li, B.K.; Zhu, J.M. Association of the interleukin-18 -137 C/G, -607 A/C polymorphisms with type 1 diabetes: A meta-analysis. Biomed. Rep. 2014, 2, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netea, M.G.; Joosten, L.A. The NLRP1-IL18 Connection: A Stab in the Back of Obesity-Induced Inflammation. Cell Metab. 2016, 23, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Thomas, R.; Kochumon, S.; Sindhu, S. Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity. Immun. Inflamm. Dis. 2017, 5, 318–335. [Google Scholar] [CrossRef]
- Mojtahedi, Z.; Naeimi, S.; Farjadian, S.; Omrani, G.R.; Ghaderi, A. Association of IL-18 promoter polymorphisms with predisposition to Type 1 diabetes. Diabet. Med. 2006, 23, 235–239. [Google Scholar] [CrossRef]
- Szeszko, J.S.; Howson, J.M.; Cooper, J.D.; Walker, N.M.; Twells, R.C.; Stevens, H.E.; Nutland, S.L.; Todd, J.A. Analysis of polymorphisms of the interleukin-18 gene in type 1 diabetes and Hardy-Weinberg equilibrium testing. Diabetes 2006, 55, 559–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barra, G.N.; Henriksbo, D.B.; Anhê, F.F.; Schertzer, D.J. The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem. J. 2020, 477, 1089–1107. [Google Scholar] [CrossRef] [Green Version]
- Aghajani, R.; Saeidi, M.; Amiriani, T.; Marjani, M.; Amiriani, A.H.; Akhavan Tabib, A.; Marjani, A. Genetic polymorphisms -137 (G > C) (rs187238) and -607 (C > A) (rs1946518) and serum level of interleukin 18 in Fars ethnic groups with metabolic syndrome in Northern Iran [published online ahead of print]. Arch. Physiol. Biochem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, N.; Sukhova, G.K.; Libby, P.; Reynolds, R.S.; Young, J.L.; Schönbeck, U. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for atherogenesis. J. Exp. Med. 2002, 195, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 2007, 117, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamimura, D.; Ishihara, K.; Hirano, T. IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 2003, 149, 1–38. [Google Scholar]
- Heinrich, P.C.; Behrmann, I.; Haan, S.; Hermanns, H.M.; Müller-Newen, G.; Schaper, F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 2003, 374, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wolford, J.K.; Colligan, P.B.; Gruber, J.D.; Bogardus, C. Variants in the interleukin 6 receptor gene are associated with obesity in Pima Indians. Mol. Genet. Metab. 2003, 80, 338–343. [Google Scholar] [CrossRef]
- Esteve, E.; Villuendas, G.; Mallolas, J.; Vendrell, J.; López-Bermejo, A.; Rodríguez, M.; Recasens, M.; Ricart, W.; Millán, J.L.S.; Escobar-Morreale, H.; et al. Polymorphisms in the interleukin-6 receptor gene are associated with body mass index and with characteristics of the metabolic syndrome. Clin. Endocrinol. 2006, 65, 88–91. [Google Scholar] [CrossRef]
- Bustamante, M.; Nogués, X.; Mellibovsky, L.; Agueda, L.; Jurado, S.; Cáceres, E.; Blanch, J.; Carreras, R.; Díez-Pérez, A.; Grinberg, D.; et al. Polymorphisms in the interleukin-6 receptor gene are associated with bone mineral density and body mass index in Spanish postmenopausal women. Eur. J. Endocrinol. 2007, 157, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.H.; Chu, N.F.; Lee, C.H.; Hung, Y.J.; Wu, D.M. Combined effect of C-reactive protein gene SNP +2147 A/G and interleukin-6 receptor gene SNP rs2229238 C/T on anthropometric characteristics among school children in Taiwan. Int. J. Obes. 2011, 35, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Hong, C.E.; Lewis, J.P.; Zhu, Y.; Wang, X.; Chu, X.; Backman, J.; Hu, Z.; Yang, P.; Still, C.D.; et al. Effect of Two Lipoprotein (a)-Associated Genetic Variants on Plasminogen Levels and Fibrinolysis. G3 2016, 6, 3525–3532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, R.; Peden, J.F.; Hopewell, J.C.; Kyriakou, T.; Goel, A.; Heath, S.C.; Parish, S.; Barlera, S.; Franzosi, M.G.; Rust, S.; et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 2009, 361, 2518–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanassoulis, G.; Campbell, C.Y.; Owens, D.S.; Smith, J.G.; Smith, A.V.; Peloso, G.M.; Kerr, K.F.; Pechlivanis, S.; Budoff, M.; Harris, T.; et al. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 2013, 368, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsenault, B.J.; Boekholdt, S.M.; Dubé, M.P.; Rhéaume, E.; Wareham, N.J.; Khaw, K.T.; Sandhu, M.S.; Tardif, J.-C. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: A prospective Mendelian randomization study and replication in a case-control cohort. Circ. Cardiovasc. Genet. 2014, 7, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Kutikhin, A.G.; Yuzhalin, A.E.; Brusina, E.B.; Ponasenko, A.V.; Golovkin, A.S.; Barbarash, O.L. Genetic predisposition to calcific aortic stenosis and mitral annular calcification. Mol. Biol. Rep. 2014, 41, 5645–5663. [Google Scholar] [CrossRef]
- Rojano-Rodriguez, M.E.; Beristain-Hernandez, J.L.; Zavaleta-Villa, B.; Maravilla, P.; Romero-Valdovinos, M.; Olivo-Diaz, A. Leptin receptor gene polymorphisms and morbid obesity in Mexican patients. Hereditas 2016, 153, 2. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, R.; Cerda, A.; Genvigir, F.D.; Sampaio, M.F.; Armaganijan, D.; Bernik, M.; Dorea, E.L.; Hirata, M.H.; Hinuy, H.M.; Hirata, R.D.C. Leptin receptor gene polymorphisms are associated with adiposity and metabolic alterations in Brazilian individuals. Arq. Bras. Endocrinol. Metabol. 2013, 57, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.M.M.; Diab, T.; Elsaid, A.; Abd, E.; Daim, H.A.; Elshazli, R.M.; Settin, A. Fat mass and obesity-associated (FTO) and leptin receptor (LEPR) gene polymorphisms in Egyptian obese subjects. Arch. Physiol. Biochem. 2021, 127, 28–36. [Google Scholar] [CrossRef]
- Berg, A.H.; Scherer, P.E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 2005, 96, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Sudhakar, M.; Silambanan, S.; Chandran, A.S.; Prabhakaran, A.A.; Ramakrishnan, R. C-Reactive Protein (CRP) and Leptin Receptor in Obesity: Binding of Monomeric CRP to Leptin Receptor. Front Immunol. 2018, 9, 1167. [Google Scholar] [CrossRef] [Green Version]
- Fujita, M.; Takada, Y.K.; Izumiya, Y.; Takada, Y. The binding of monomeric C-reactive protein (mCRP) to Integrins αvβ3 and α4β1 is related to its pro-inflammatory action. PLoS ONE 2014, 9, e93738. [Google Scholar] [CrossRef]
- Eisenhardt, S.U.; Thiele, J.R.; Bannasch, H.; Stark, G.B.; Peter, K. C-reactive protein: How conformational changes influence inflammatory properties. Cell Cycle 2009, 8, 3885–3892. [Google Scholar] [CrossRef]
- Shamsuzzaman, A.S.; Winnicki, M.; Wolk, R.; Svatikova, A.; Phillips, B.G.; Davison, D.E.; Berger, P.B.; Somers, V.K. Independent association between plasma leptin and C-reactive protein in healthy humans. Circulation 2004, 109, 2181–2185. [Google Scholar] [CrossRef] [Green Version]
- Hribal, M.L.; Fiorentino, T.V.; Sesti, G. Role of C reactive protein (CRP) in leptin resistance. Curr. Pharm. Des. 2014, 20, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.Y.; Park, Y.J.; Ham, M.; Kim, J.B. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells 2014, 37, 365–371. [Google Scholar] [CrossRef]
- Revelo, X.S.; Tsai, S.; Lei, H.; Luck, H.; Ghazarian, M.; Tsui, H.; Shi, S.Y.; Schroer, S.; Luk, C.T.; Lin, G.H.Y.; et al. Perforin is a novel immune regulator of obesity-related insulin resistance. Diabetes 2015, 64, 90–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.; Apovian, C. Macrophage functions in lean and obese adipose tissue. Metabolism 2017, 72, 120–143. [Google Scholar] [CrossRef]
- Zakeri, A.; Russo, M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol. 2018, 9, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhter, N.; Madhoun, A.; Arefanian, H.; Wilson, A.; Kochumon, S.; Thomas, R.; Shenouda, S.; Al-Mulla, F.; Ahmad, R.; Sindhu, S. Oxidative Stress Induces Expression of the Toll-Like Receptors (TLRs) 2 and 4 in the Human Peripheral Blood Mononuclear Cells: Implications for Metabolic Inflammation. Cell Physiol. Biochem. 2019, 53, 1–18. [Google Scholar] [PubMed]
- Liu, Y.C.; Zou, X.B.; Chai, Y.F.; Yao, Y.M. Macrophage polarization in inflammatory diseases. Int. J. Biol. Sci. 2014, 10, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Horstman, A.M.; Dillon, E.L.; Urban, R.J.; Sheffield-Moore, M. The role of androgens and estrogens on healthy aging and longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 1140–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jukkola-Vuorinen, A.; Rahko, E.; Vuopala, K.S.; Desmond, R.; Lehenkari, P.P.; Harris, K.W.; Selander, K.S. Toll-like receptor-9 expression is inversely correlated with estrogen receptor status in breast cancer. J. Innate Immun. 2009, 1, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Liva, S.M.; Voskuhl, R.R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 2001, 167, 2060–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torcia, M.G.; Nencioni, L.; Clemente, A.M.; Civitelli, L.; Celestino, I.; Limongi, D.; Fadigati, G.; Perissi, E.; Cozzolino, F.; Garaci, E.; et al. Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL10 production in males. PLoS ONE 2012, 7, e39853. [Google Scholar] [CrossRef]
- Zdrojowy-Wełna, A.; Bednarek-Tupikowska, G.; Zatońska, K.; Kolačkov, K.; Jokiel-Rokita, A.; Bolanowski, M. The association between FTO gene polymorphism rs9939609 and obesity is sex-specific in the population of PURE study in Poland. Adv. Clin. Exp. Med. 2020, 29, 25–32. [Google Scholar] [CrossRef] [Green Version]
Index | Number (%) |
---|---|
Male | 319 (57) |
Female | 241 (43) |
Age ≤60 years (middle-aged patients) | 382 (68) |
Age >60 years (elderly patients) | 178 (32) |
BMI ≥30 kg/m2 | 220 (39) |
BMI ≥30 kg/m2 in middle-aged patients | 156 (41) |
BMI ≥30 kg/m2 in elderly patients | 64 (36) |
Gene | Reference SNP Number | Chromosomal Position | Nucleotide Change | Variant Type |
---|---|---|---|---|
TLR1 | rs5743611 | chr4:38798593 | C > G | Missense variant |
rs5743551 | chr4:38806033 | T > A, C, G | 5’ UTR variant | |
TLR2 | rs5743708 | chr4:153705165 | G > A | Missense variant |
TLR4 | rs4986791 | chr9:117713324 | C > T | Missense variant |
rs4986790 | chr9:117713024 | A > G, T | Missense variant | |
TLR6 | rs5743810 | chr4:38828729 | A > C, G, T | Missense variant |
rs3775073 | chr4:38828211 | T > C, G | Missense variant | |
IL1RL1 | rs4988956 | chr2:102351547 | G > A | Missense variant |
rs11685424 | chr2:102310521 | G > A | Upstream transcript variant | |
IL1B | rs1143634 | chr2:112832813 | G > A | Synonymous variant |
rs16944 | 2:112837290 | A > G | Upstream transcript variant | |
IL6R | rs2228145 | chr1:154454494 | A > C, T | Missense variant |
rs2229238 | chr1:154465420 | T > A, C | 3’ UTR variant | |
IL6 | rs1800796 | chr7:22726627 | G > A, C | Intron variant |
rs1554606 | chr7:22729088 | T > A, G | Intron variant | |
rs2069827 | chr7:22725837 | G > C, T | Upstream transcript variant | |
CXCL8 | rs2227306 | chr4:73741338 | C > T | Intron variant |
rs4073 | chr4:73740307 | A > C, G, T | Upstream transcript variant | |
IL10 | rs1800871 | chr1:206773289 | A > G | Upstream transcript variant |
rs1800872 | chr1:206773062 | T > G | Upstream transcript variant | |
rs1800896 | chr1:206773552 | T > C | Upstream transcript variant | |
IL12RB1 | rs375947 | chr19:18069641 | A > G | Missense variant |
IL12B | rs3212227 | chr5:159315942 | T > G | 3’ UTR variant |
IL18RAP | rs917997 | chr2:102454108 | T > A, C, G | Not announced |
rs2058659 | chr2:102438096 | G > A | Intron variant | |
IL18R1 | rs13015714 | chr2:102355405 | G > A, T | Upstream transcript variant |
rs1974675 | chr2:102369915 | G > A | Intron variant | |
rs6758936 | chr2:102374909 | G > A | Intron variant | |
rs3755276 | chr2:102361999 | C > T | Intron variant | |
IL18 | rs187238 | chr11:112164265 | C > A, G | Upstream transcript variant |
rs360719 | chr11:112165426 | A > G | Upstream transcript variant | |
rs1946518 | chr11:112164735 | T > G | Upstream transcript variant | |
IL33 | rs7025417 | chr9:6240084 | T > C, G | Intron variant |
TNF | rs1799964 | chr6:31574531 | T > C | Upstream transcript variant |
rs361525 | chr6:31575324 | G > A | Upstream transcript variant | |
rs1800629 | chr6:31575254 | G > A | Upstream transcript variant | |
CRP | rs3093077 | chr1:159709846 | A > C, G, T | Not announced |
rs1800947 | chr1:159713648 | C > A, G, T | Synonymous variant | |
rs1130864 | chr1:159713301 | G > A | Intron variant | |
rs1205 | chr1:159712443 | C > T | 3’ UTR variant | |
APOE | rs429358 | chr19: 44908684 | T > C | Missense variant |
rs769452 | chr19:44907853 | T > A, C | Missense variant | |
rs7412 | chr19:44908822 | C > T | Missense variant | |
APOB | rs1042031 | chr2:21002881 | C > A, T | Missense variant/Stop gained |
rs6725189 | chr2:20996129 | G > T | Not announced | |
LPA | rs10455872 | chr6:160589086 | A > G | Intron variant |
LIPC | rs1800588 | chr15:58431476 | C > G, T | Intron variant |
CXCR1 | rs16858811 | chr2:218165120 | A > C | Missense variant |
CXCR2 | rs1126579 | chr2:218136011 | T > C | 3’ UTR variant |
INS | rs689 | chr11:2160994 | A > G, T | Intron variant |
IGF1R | rs2229765 | chr15:98934996 | G > A, T | Missense variant |
LEP | rs7799039 | chr7:128238730 | G > A, C | Not announced |
LEPR | rs1137101 | chr1:65592830 | A > G, T | Missense variant |
rs1137100 | chr1:65570758 | A > G, T | Missense variant | |
IL1F9 | rs17659543 | chr2:112958729 | C > T | Not announced |
Gene | Model | Genotype | No Obesity, N (%) | Obesity, N (%) | OR (95% CI) | p | AIC |
---|---|---|---|---|---|---|---|
IL6R rs2229238 | Codominant | C/C | 189 (55.9) | 88 (40) | 1.00 | 0.0009 | 741.5 |
T/C | 123 (36.4) | 112 (50.9) | 1.97 (1.37–2.83) | ||||
T/T | 26 (7.7) | 20 (9.1) | 1.66 (0.88–3.14) | ||||
Dominant | C/C | 189 (55.9) | 88 (40) | 1.00 | 0.0002 | 739.8 | |
T/C-T/T | 149 (44.1) | 132 (60) | 1.92 (1.36–2.71) | ||||
Recessive | C/C-T/C | 312 (92.3) | 200 (90.9) | 1.00 | 0.56 | 753.3 | |
T/T | 26 (7.7) | 20 (9.1) | 1.20 (0.65–2.21) | ||||
Over-dominant | C/C-T/T | 215 (63.6) | 108 (49.1) | 1.00 | 0.0006 | 741.9 | |
T/C | 123 (36.4) | 112 (50.9) | 1.83 (1.29–2.58) | ||||
Log-additive | - | - | - | 1.53 (1.17–2.01) | 0.0016 | 743.7 | |
CXCL8 rs4073 | Codominant | T/T | 91 (26.8) | 71 (32.3) | 1.00 | 0.022 | 748.8 |
A/T | 154 (45.4) | 109 (49.5) | 0.90 (0.61–1.34) | ||||
A/A | 94 (27.7) | 40 (18.2) | 0.53 (0.33–0.86) | ||||
Dominant | T/T | 91 (26.8) | 71 (32.3) | 1.00 | 0.15 | 752.4 | |
A/T-A/A | 248 (73.2) | 149 (67.7) | 0.76 (0.53–1.11) | ||||
Recessive | T/T-A/T | 245 (72.3) | 180 (81.8) | 1.00 | 0.0065 | 747 | |
A/A | 94 (27.7) | 40 (18.2) | 0.56 (0.37–0.86) | ||||
Over-dominant | T/T-A/A | 185 (54.6) | 111 (50.5) | 1.00 | 0.32 | 753.5 | |
A/T | 154 (45.4) | 109 (49.5) | 1.19 (0.85–1.67) | ||||
Log-additive | - | - | - | 0.74 (0.58–0.94) | 0.013 | 748.3 | |
CXCL8 rs2227306 | Codominant | C/C | 103 (30.3) | 77 (35) | 1.00 | 0.0098 | 748 |
C/T | 160 (47.1) | 115 (52.3) | 0.94 (0.64–1.38) | ||||
T/T | 77 (22.6) | 28 (12.7) | 0.48 (0.28–0.81) | ||||
Dominant | C/C | 103 (30.3) | 77 (35) | 1.00 | 0.21 | 753.7 | |
C/T-T/T | 237 (69.7) | 143 (65) | 0.79 (0.55–1.14) | ||||
Recessive | C/C-C/T | 263 (77.3) | 192 (87.3) | 1.00 | 0.0025 | 746.1 | |
T/T | 77 (22.6) | 28 (12.7) | 0.49 (0.31–0.79) | ||||
Over-dominant | C/C-T/T | 180 (52.9) | 105 (47.7) | 1.00 | 0.25 | 754 | |
C/T | 160 (47.1) | 115 (52.3) | 1.22 (0.87–1.71) | ||||
Log-additive | - | - | - | 0.73 (0.57–0.94) | 0.012 | 749 | |
TNF rs1800629 | Codominant | G/G | 261 (77) | 167 (75.9) | 1.00 | 0.028 | 749.2 |
G/A | 77 (22.7) | 47 (21.4) | 0.93 (0.62–1.41) | ||||
A/A | 1 (0.3) | 6 (2.7) | 10.14 (1.20–85.48) | ||||
Dominant | G/G | 261 (77) | 167 (75.9) | 1.00 | 0.83 | 754.3 | |
G/A-A/A | 78 (23) | 53 (24.1) | 1.05 (0.70–1.56) | ||||
Recessive | G/G-G/A | 338 (99.7) | 214 (97.3) | 1.00 | 0.0081 | 747.3 | |
A/A | 1 (0.3) | 6 (2.7) | 10.29 (1.22–86.59) | ||||
Over-dominant | G/G-A/A | 262 (77.3) | 173 (78.6) | 1.00 | 0.63 | 754.1 | |
G/A | 77 (22.7) | 47 (21.4) | 0.90 (0.60–1.37) | ||||
Log-additive | - | - | - | 1.17 (0.81–1.69) | 0.41 | 753.6 | |
IL18 rs1946518 | Codominant | G/G | 111 (32.6) | 63 (28.9) | 1.00 | 0.066 | 748.3 |
T/G | 158 (46.5) | 122 (56) | 1.32 (0.89–1.95) | ||||
T/T | 71 (20.9) | 33 (15.1) | 0.78 (0.46–1.31) | ||||
Dominant | G/G | 111 (32.6) | 63 (28.9) | 1.00 | 0.45 | 751.2 | |
T/G-T/T | 229 (67.3) | 155 (71.1) | 1.15 (0.79–1.68) | ||||
Recessive | G/G-T/G | 269 (79.1) | 185 (84.9) | 1.00 | 0.062 | 748.3 | |
T/T | 71 (20.9) | 33 (15.1) | 0.65 (0.41–1.03) | ||||
Over-dominant | G/G-T/T | 182 (53.5) | 96 (44) | 1.00 | 0.033 | 747.2 | |
T/G | 158 (46.5) | 122 (56) | 1.45 (1.03–2.04) | ||||
Log-additive | - | - | - | 0.93 (0.73–1.20) | 0.59 | 751.5 | |
LPA rs10455872 | Codominant | A/A | 315 (92.7) | 191 (87.6) | 1.00 | 0.032 | 746.6 |
A/G | 25 (7.3) | 25 (11.5) | 1.64 (0.92–2.95) | ||||
G/G | 0 (0) | 2 (0.9) | NA (0.00-NA) | ||||
Dominant | A/A | 315 (92.7) | 191 (87.6) | 1.00 | 0.049 | 747.6 | |
A/G-G/G | 25 (7.3) | 27 (12.4) | 1.79 (1.00–3.17) | ||||
Recessive | A/A-A/G | 340 (100) | 216 (99.1) | 1.00 | 0.042 | 747.3 | |
G/G | 0 (0) | 2 (0.9) | N/A (0.00-N/A) | ||||
Over-dominant | A/A-G/G | 315 (92.7) | 193 (88.5) | 1.00 | 0.1 | 748.8 | |
A/G | 25 (7.3) | 25 (11.5) | 1.62 (0.91–2.92) | ||||
Log-additive | - | - | - | 1.86 (1.07–3.21) | 0.026 | 746.5 | |
LEPR rs1137100 | Codominant | A/A | 181 (53.4) | 97 (44.5) | 1.00 | 0.0021 | 740.4 |
A/G | 141 (41.6) | 94 (43.1) | 1.24 (0.87–1.78) | ||||
G/G | 17 (5) | 27 (12.4) | 3.19 (1.64–6.18) | ||||
Dominant | A/A | 181 (53.4) | 97 (44.5) | 1.00 | 0.036 | 746.2 | |
A/G-G/G | 158 (46.6) | 121 (55.5) | 1.44 (1.02–2.03) | ||||
Recessive | A/A-A/G | 322 (95) | 191 (87.6) | 1.00 | 0.001 | 739.8 | |
G/G | 17 (5) | 27 (12.4) | 2.88 (1.52–5.46) | ||||
Over-dominant | A/A-G/G | 198 (58.4) | 124 (56.9) | 1.00 | 0.76 | 750.6 | |
A/G | 141 (41.6) | 94 (43.1) | 1.06 (0.75–1.49) | ||||
Log-additive | - | - | - | 1.53 (1.16–2.00) | 0.0021 | 741.2 |
Gene | Gender | Genotype | No Obesity, N | Obesity, N | OR (95%CI) | p |
---|---|---|---|---|---|---|
IL6R rs2229238 | Male | C/C | 112 | 43 | 1.00 | 0.002 |
T/C | 73 | 64 | 2.27 (1.40–3.70) | |||
T/T | 15 | 10 | 1.74 (0.73–4.17) | |||
Female | C/C | 77 | 45 | 1.00 | 0.08 | |
T/C | 50 | 48 | 1.65 (0.96–2.83) | |||
T/T | 11 | 10 | 1.57 (0.62–4.00) | |||
CXCL8 rs2227306 | Male | C/C | 66 | 42 | 1.00 | 0.5 |
C/T | 92 | 61 | 1.04 (0.63–1.72) | |||
T/T | 44 | 14 | 0.51 (0.25–1.04) | |||
Female | C/C | 37 | 35 | 1.00 | 0.04 | |
C/T | 68 | 54 | 0.83 (0.46–1.49) | |||
T/T | 33 | 14 | 0.44 (0.20–0.95) | |||
IL1RL1 rs11685424 | Male | A/A | 58 | 37 | 1.00 | 0.023 |
G/A | 91 | 65 | 1.12 (0.67–1.89) | |||
G/G | 51 | 15 | 0.46 (0.23–0.94) | |||
Female | A/A | 45 | 30 | 1.00 | 0.43 | |
G/A | 67 | 49 | 1.11 (0.61–2.01) | |||
G/G | 26 | 24 | 1.39 (0.68–2.87) | |||
IL18 rs1946518 | Male | G/G | 70 | 43 | 1.00 | 0.48 |
T/G | 94 | 59 | 1.01 (0.61–1.66) | |||
T/T | 38 | 15 | 0.63 (0.31–1.28) | |||
Female | G/G | 41 | 20 | 1.00 | 0.03 | |
T/G | 64 | 63 | 2.02 (1.07–3.83) | |||
T/T | 33 | 18 | 1.10 (0.50–2.41) | |||
LEPR rs1137100 | Male | A/A | 105 | 53 | 1.00 | 0.028 |
A/G | 83 | 45 | 1.07 (0.66–1.75) | |||
G/G | 13 | 18 | 2.80 (1.27–6.17) | |||
Female | A/A | 76 | 44 | 1.00 | 0.004 | |
A/G | 58 | 49 | 1.48 (0.87–2.53) | |||
G/G | 4 | 9 | 4.04 (1.17–13.94) |
Gene | Age | Genotype | No Obesity, N | Obesity, N | OR (95%CI) | p |
---|---|---|---|---|---|---|
IL6R rs22281454 | ≤60 years | A/A | 94 | 88 | 1.00 | 0.004 |
A/C | 107 | 59 | 0.58 (0.38–0.90) | |||
C/C | 24 | 9 | 0.40 (0.18–0.90) | |||
>60 years | A/A | 63 | 25 | 1.00 | 0.027 | |
A/C | 40 | 32 | 2.03 (1.05–3.91) | |||
C/C | 10 | 7 | 1.70 (0.58–4.98) | |||
IL6R rs2229238 | ≤60 years | C/C | 130 | 59 | 1.00 | 0.015 |
T/C | 82 | 81 | 2.21 (1.43–3.41) | |||
T/T | 14 | 16 | 2.53 (1.16–5.53) | |||
>60 years | C/C | 59 | 29 | 1.00 | 0.49 | |
T/C | 41 | 31 | 1.54 (0.80–2.93) | |||
T/T | 12 | 4 | 0.67 (0.20–2.25) | |||
CXCL8 rs4073 | ≤60 years | T/T | 59 | 50 | 1.00 | 0.027 |
A/T | 100 | 79 | 0.93 (0.58–1.51) | |||
A/A | 67 | 27 | 0.46 (0.26–0.83) | |||
>60 years | T/T | 32 | 21 | 1.00 | 0.07 | |
A/T | 54 | 30 | 0.84 (0.41–1.71) | |||
A/A | 27 | 13 | 0.74 (0.31–1.75) | |||
CXCL8 rs2227306 | ≤60 years | C/C | 65 | 54 | 1.00 | 0.04 |
C/T | 110 | 82 | 0.89 (0.56–1.40) | |||
T/T | 51 | 20 | 0.45 (0.24–0.86) | |||
>60 years | C/C | 38 | 23 | 1.00 | 0.05 | |
C/T | 50 | 33 | 1.08 (0.55–2.14) | |||
T/T | 26 | 8 | 0.52 (0.20–1.36) | |||
CRP rs1130864 | ≤60 years | G/G | 115 | 79 | 1.00 | 0.19 |
G/A | 98 | 62 | 0.91 (0.59–1.39) | |||
A/A | 13 | 15 | 1.70 (0.77–3.78) | |||
>60 years | G/G | 55 | 22 | 1.00 | 0.01 | |
G/A | 47 | 37 | 1.98 (1.03–3.83) | |||
A/A | 12 | 5 | 1.04 (0.33–3.29) | |||
LEPR rs1137100 | ≤60 years | A/A | 125 | 70 | 1.00 | 0,03 |
A/G | 93 | 67 | 1.29 (0.84–1.98) | |||
G/G | 8 | 18 | 4.23 (1.74–10.28) | |||
>60 years | A/A | 56 | 27 | 1.00 | 0.15 | |
A/G | 48 | 27 | 1.14 (0.59–2.20) | |||
G/G | 9 | 9 | 2.12 (0.75–5.98) | |||
TLR2 rs3804099 | ≤60 years | T/T | 86 | 64 | 1.00 | 0.36 |
T/C | 106 | 68 | 0.86 (0.55–1.34) | |||
C/C | 34 | 24 | 0.95 (0.52–1.77) | |||
>60 years | T/T | 56 | 16 | 1.00 | 0.01 | |
T/C | 41 | 30 | 2.55 (1.23–5.28) | |||
C/C | 17 | 17 | 3.35 (1.39–8.04) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponasenko, A.; Sinitsky, M.; Minina, V.; Vesnina, A.; Khutornaya, M.; Prosekov, A.; Barbarash, O. Immune Response and Lipid Metabolism Gene Polymorphisms Are Associated with the Risk of Obesity in Middle-Aged and Elderly Patients. J. Pers. Med. 2022, 12, 238. https://doi.org/10.3390/jpm12020238
Ponasenko A, Sinitsky M, Minina V, Vesnina A, Khutornaya M, Prosekov A, Barbarash O. Immune Response and Lipid Metabolism Gene Polymorphisms Are Associated with the Risk of Obesity in Middle-Aged and Elderly Patients. Journal of Personalized Medicine. 2022; 12(2):238. https://doi.org/10.3390/jpm12020238
Chicago/Turabian StylePonasenko, Anastasia, Maxim Sinitsky, Varvara Minina, Anna Vesnina, Maria Khutornaya, Alexander Prosekov, and Olga Barbarash. 2022. "Immune Response and Lipid Metabolism Gene Polymorphisms Are Associated with the Risk of Obesity in Middle-Aged and Elderly Patients" Journal of Personalized Medicine 12, no. 2: 238. https://doi.org/10.3390/jpm12020238
APA StylePonasenko, A., Sinitsky, M., Minina, V., Vesnina, A., Khutornaya, M., Prosekov, A., & Barbarash, O. (2022). Immune Response and Lipid Metabolism Gene Polymorphisms Are Associated with the Risk of Obesity in Middle-Aged and Elderly Patients. Journal of Personalized Medicine, 12(2), 238. https://doi.org/10.3390/jpm12020238