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Abstract

:

More than two billion people around the world are overweight or obese. Even in apparently healthy people, obesity has a potent effect on their quality of life. Experimental data indicate the role of infectious agents in systemic inflammation, revealing a correlation between the dietary habits of people with obesity and the level of systemic inflammation mediators, serum lipid concentration, and hormonal and immune status. This study aimed to determine the association of immune response and lipid metabolism gene polymorphisms with the risk of obesity. This study included 560 Caucasian participants living in Western Siberia (Russian Federation). A total of 52 polymorphic sites in 20 genes were analyzed using the 5′ TaqMan nuclease assay. Four risk-associated polymorphic variants were discovered—two variants in immune response genes (IL6R rs2229238, OR = 1.92, 95% CI = 1.36–2.7, p = 0.0002 in the dominant model; IL18 rs1946518, OR = 1.45, 95% CI = 1.03–2.04, p = 0.033 in the over-dominant model) and two variants in lipid metabolism genes (LPA rs10455872, OR = 1.86, 95% CI = 1.07–3.21, p = 0.026 in the log-additive model; LEPR rs1137100, OR = 2.88, 95% CI = 1.52–5.46, p = 0.001 in the recessive model). Thus, polymorphisms in immune response and lipid metabolism genes are potentially associated with the modification of obesity risk in the Caucasian population.
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1. Introduction


Despite specific public health policies targeting the obesity epidemic, more than two billion people around the world are overweight or obese [1]. It is predicted that one-fifth of the working-age population will be obese by 2025; the increase in the number of obese patients is accompanied by significant socio-economic losses [2], which determine the improvement of treatment and diagnosis of this pathology, as well as the assessment of individual susceptibility to its development.



Obesity is a multifactorial disease characterized by excessive accumulation of adipose tissue, accompanied by a low-grade chronic inflammation. The triggers of this inflammation are poorly studied, but it is known that the degree of inflammation correlates with the severity of obesity-associated pathologies, which suggests that understanding the inflammatory response may improve the treatment strategies of such diseases [3,4]. In addition to inflammation, impaired lipid metabolism can be a trigger of obesity [5,6].



It is known that the activity of molecules involved in inflammation and lipid metabolism is genetically determined. Genome-wide association studies (GWAS) allow identifying genetic variants associated with susceptibility to overweight and obesity [7]. In adults, the strongest associations with the risk of obesity were discovered for single-nucleotide polymorphisms (SNPs) in the FTO, MC4R, TMEM18, TNNI3K, SEC16B, GNPDA2, POMC, RPGRIP1L, IRX3, and IRX5 genes [8,9,10,11]. Moreover, it was shown that the genetic susceptibility to obesity is modified in a population-related manner [12,13,14]. Despite the previously obtained results, some issues related to the genetics of obesity, including the role of SNPs in genes involved in the inflammation and lipid metabolism pathways mediating obesity, are still poorly investigated, and the available results are contradictory. Therefore, understanding the role of genetic factors controlling the different pathways underlying the pathogenesis of obesity, particularly inflammation and lipid metabolism, plays a very important role in the development of personalized prevention strategies, especially in at-risk groups.



This study aimed to determine risk-associated polymorphic variants in immune response and lipid metabolism genes in obese middle-aged and elderly Caucasian patients.




2. Materials and Methods


2.1. Group Description


The present study included 560 Caucasian individuals aged 44 to 75 years (mean age of 59 years) that were long-term residents (at least three generations) in Western Siberia (Russian Federation) and undergoing a screening examination at the Research Institute for Complex Issues of Cardiovascular Diseases (Kemerovo, Russian Federation). Patients with cancer, autoimmune and mental diseases, and acute or exacerbated chronic infections associated with the inflammatory process were excluded from the study to avoid confounding effects. According to the World Health Organization age standards (2015), the patients included in this study were classified into two age groups: middle-aged (age ≤60 years) and elderly (age >60 years).



Obesity was defined as a body mass index (BMI) of 30 kg/m2 or greater. In the studied group, the mean BMI was 28 kg/m2, ranging from 17 kg/m2 to 41 kg/m2. According to this stratification, 220 individuals (39%) were obese, and 340 individuals (61%) had a normal BMI. The complete characteristics of patients included in this study are presented in Table 1.



The design of this study was approved by the Local Ethical Committee of the Research Institute for Complex Issues of Cardiovascular Diseases (Kemerovo, Russian Federation). All individuals included in this study provided written informed consent to participate in the examination. This study was performed in accordance with the World Medical Association Declaration of Helsinki (ethical principles for medical research involving human participants with amendments in 2000) and Good Clinical Practice.




2.2. Molecular Genetic Testing


Genomic DNA was isolated using the routine phenol–chloroform extraction method from whole blood collected from the cubital vein in vacuum tubes with K3EDTA and stored at −80 °C until the next stage of the experiment.



SNPs were selected according to the following criteria: (i) location within immune response and lipid metabolism genes; (ii) minor allele frequency >5% in Caucasian populations; (iii) functional consequences and related studies on their role in obesity pathogenesis. Accordingly, we selected 52 SNPs in 20 genes. The complete characteristics of the selected SNPs are presented in Table 2.



Molecular genetic testing was performed by allele-specific real-time polymerase chain reaction (real-time PCR) with fluorescently labeled TaqMan probes (Applied Biosystems, Waltham, MA, USA). Per each analyzed sample, 10 μL of reaction mixture containing 1.25 μL of appropriate TaqMan probe (Applied Biosystems, Waltham, MA, USA), 5 μL of TaqMan™ Universal PCR Master Mix (Applied Biosystems, Waltham, MA, USA), 1.75 μL of DNase-free water, and 2 μL of 100 ng genome DNA template was prepared. The amplification was performed using the ViiA 7 Real-Time PCR System (Applied Biosystems, Waltham, MA, USA) in 96-well PCR plates as follows: 10 min at 95 °C (one cycle), 15 s at 95 °C (one cycle), and 60 s at 60 °C (40 cycles). As a negative control, a reaction mixture without the genomic DNA template was used. Results of genotyping were analyzed using the QuantStudio™ Real-Time PCR Software v.1.3 (Applied Biosystems, Waltham, MA, USA). The quality of the PCR was evaluated by repeated genotyping of 10% of the samples.




2.3. Statistical Analysis


Statistical analysis was performed using STATISTICA 10.0 Software (StatSoft, Tulsa, OK, USA). Quantitative data were tested using the Yates’ chi-square test or the Fisher exact test. The genotyping results were analyzed using the SNPStats web tool. The most likely inheritance model for each specific gene polymorphism was determined using Akaike’s information criterion (AIC). The results are presented as the odds ratio (OR) and the 95% confidence interval (CI) calculated using five inheritance models (codominant, dominant, recessive, over-dominant, and log-additive). The differences were considered statistically significant at p < 0.05.





3. Results


Four SNPs associated with an increased risk of obesity were discovered—two variants in immune response genes (IL6R rs2229238, OR = 1.92, 95% CI = 1.36–2.7, p = 0.0002 in the dominant model; IL18 rs1946518, OR = 1.45, 95% CI = 1.03–2.04, p = 0.033 in the over-dominant model) and two variants in lipid metabolism genes (LPA rs10455872, OR = 1.86, 95% CI = 1.07–3.21, p = 0.026 in the log-additive model; LEPR rs1137100, OR = 2.88, 95% CI = 1.52–5.46, p = 0.001 in the recessive model). It was inferred that the A/A genotype (recessive model) of the TNF gene (rs1800629) was associated with a high risk of presenting an obesity phenotype (OR = 10.29, 95% CI 1.22–86.59, p = 0.0081). However, reliable conclusions concerning the pathogenetic effect of this SNP could not be drawn, since this genotype was discovered in only 0.3% of nonobese patients. Moreover, the recessive models of the CXCL8 gene (rs4073 and rs2227306) were characterized by a protective effect (OR = 0.56, 95% CI = 0.37–0.86, p = 0.0065 and OR = 0.49, 95% CI = 0.31–0.79, p = 0.0025, respectively (Table 3).



After stratification by gender, we found that the T/C genotype in the IL6R gene (rs2229238) and the G/G genotype in the LEPR gene (rs1137100) were associated with an increased risk of obesity only in males (OR = 2.27, 95% CI = 1.40–3.70, p = 0.0003 and OR = 2.80, 95% CI = 1.27–6.17, p = 0.028, respectively), while the T/G genotype in the IL18 gene (rs1946518) was associated with an increased risk of obesity only in females (OR = 2.02, 95% CI = 1.07–3.83, p = 0.03). A protective effect was shown for the T/T genotype in the CXCL8 gene (rs2227306) in females (OR = 0.44, 95% CI = 0.20–0.95, p = 0.04) and the G/G genotype in the IL1RL1 gene (rs11685424) in males (OR = 0.46, 95% CI = 0.23–0.94, p = 0.023) (Table 4).



In the group of middle-aged patients (age ≤60 years), the G/G genotype in the LEPR gene (rs1137100) was associated with a fourfold increased risk of obesity (OR = 4.23, 95% CI = 1.74–10.28, p = 0.03). The same tendency was shown for the T allele in the IL6R gene (rs2229238). Among elderly patients (age >60 years), a risk association was shown for the G/A genotype in the CRP gene (rs1130864) (OR = 1.98, 95% CI = 1.03–3.83, p = 0.01) and for the C allele in the TLR2 gene (rs3804099). Furthermore, the middle-aged patients with the A/A and T/T genotypes in the CXCL8 gene (rs4073 and rs2227306, respectively) had a twofold decreased risk of obesity (Table 5). In contrast, the C allele in the IL6R gene (rs2228145) was associated with a decreased risk of obesity in middle-aged patients, whereas this allele acquired was associated with an increased risk of obesity development in elderly patients (Table 5).




4. Discussion


Chronic inflammation is involved in the pathogenesis of many diseases including obesity, type 2 diabetes mellitus, and atherosclerosis [15]. Danger signals caused by molecular patterns of microbial agents and endogenous damage factors (PAMPs and DAMPs) trigger the assembly of innate immunity intracellular sensors, which leads to the activation of caspase-1 and the production of proinflammatory cytokines IL1β and IL18 [16]. Interleukin-18 (IL18) is an important proinflammatory cytokine involved in the pathogenesis of acute coronary events and type 2 diabetes mellitus [17], and it is associated with the modification of obesity and metabolic syndrome risk, although the underlying mechanisms remain unclear [18]. It is known that IL18R and IL18 expression in adipose tissue is enhanced in nondiabetic obesity, and it is associated with a proinflammatory gene signature and insulin resistance in such patients [19]. Polymorphic variant rs1946518 in the IL18 gene is located in the promoter region and is associated with type 1 and 2 diabetes mellitus [20,21]. In was shown that the NLRP3 inflammasomes regulate adipose tissue metabolism via promoting IL18 secretion [22]. Despite the fact that this SNP was not associated with a metabolic syndrome in a northern Iranian population [23], we found an association of this polymorphic variant with a risk of obesity in females. We suppose that the T/G genotype of the IL18 gene (rs1946518) is associated with increased activity of proinflammatory IL18, which interacts with the IL18Rα/β heterodimer receptor complex expressed mainly by immune cells (e.g., macrophages, dendritic cells, T and B lymphocytes), in addition to endothelial and smooth muscle cells, thus stimulating these cells in an autocrine/paracrine manner [19,24]. An increased number of these cells, especially macrophages, can be found in the expanding adipose tissue in obese patients [25].



Interleukin-6 (IL6) is a pleiotropic cytokine involved in both immune and nonimmune events in numerous cells and tissues outside of the immune system [26]. IL6 activates an intracellular signaling cascade leading to inflammation via binding to its receptor IL6R [27]. It was reported that IL6R gene polymorphism is associated with BMI and obesity [28,29,30]. The results herein describing an increased risk of obesity in middle-aged males carrying the C/T genotype of the IL6R gene (rs2229238) are consistent with the findings of an association between the C/T genotype of this gene and an increased risk of obesity in schoolboys from Taiwan [31]. We suppose that the C/T genotype is associated with an elevated serum IL6R concentration and an increased level of the IL6/IL6R complex, resulting in greater IL6 signal transduction and IL6 production, with an effect on adipocytes and immune cells in adipose tissue, as well as on insulin-targeting cells in peripheral tissues [7,31].



Lipoprotein(a), encoded by the LPA gene, is a serine protease with inhibition activity toward tissue plasminogen activator I. The encoded protein is proteolytically cleaved, resulting in fragments that can attach to atherosclerotic lesions and promote thrombogenesis. Elevated plasma levels of this protein are linked to atherosclerosis [32]. LPA genetic polymorphism is associated with different cardiovascular pathologies, e.g., coronary artery disease, aortic valve stenosis, and valvular calcification [33,34,35,36]. In the presented research, we determined for the first time an association between LPA gene polymorphism (rs10455872) and obesity risk according to the log-additive inheritance model, regardless of gender and age. We hypothesize that the log-additive inheritance model was characterized by some defects in the expression of lipoprotein(a) linked to apoprotein B-100, thus leading to an increase in its synthetic rate and, consequently, an elevated obesity risk.



The protein encoded by the LEPR gene is a receptor for leptin (an adipocyte-specific hormone regulating lipid metabolism). Mutations in this gene are associated with obesity and pituitary dysfunction. LEPR gene polymorphism is associated with early onset of severe obesity and hyperphagic eating behavior [37]. The G/G genotype of the LEPR gene (rs1137100) is potentially associated with increased expression of the leptin receptor located in hypothalamic tissue, which has a significant role in controlling energy homeostasis and lipid metabolism. The increased expression of the leptin receptor results in more active binding to leptin, whose elevated secretion by adipocytes is associated with the increased obesity risk. Our results are consistent with the literature data showing that the minor allele of the LEPR gene (rs1137100) is more frequent in obese patients from different populations [38,39].



An increased serum level of inflammatory markers and acute phase proteins, including C-reactive protein (CRP), is observed in obese patients [40]. It has been suggested that CRP has a direct role in the regulation of adiposity via affecting the action of adipokines [41]. Human CRP can dissociate into a physiologically active and proinflammatory monomeric form, which can bind to cell surface receptors [42] and is potentially involved in the pathogenesis of inflammatory diseases [43]. An association was revealed between CRP and leptin level [44], and a direct effect of leptin on CRP production by hepatocytes was discovered. Therefore, CRP is potentially involved in lipid metabolism via an adipo-hepato axis (leptin produced by adipocytes enhances CRP expression, which in turn may antagonize leptin action by limiting its tissue availability) [45]. Our results demonstrate that genetically determined changes in CRP production can affect the adipo-hepato axis, leading to the defects in lipid metabolism and an increased risk of obesity, but only in elderly individuals.



Defects in the relationship between adipocytes and macrophages play an important role in the initiation of adipose tissue inflammation, thereby triggering obesity [46,47,48]. Metabolic disorders lead to disbalance between pro- and anti-inflammatory regulators of macrophages toward the formation of proinflammatory M1-macrophages, which is linked to adipocyte dysfunction and the development of chronic inflammation in adipose tissue [48]. Toll-like receptors (TLRs) represent a possible pathophysiological link between obesity and inflammation. TLRs are widely represented on the surface of immune cells (macrophages, dendritic cells, neutrophils, basophils, B and T lymphocytes, natural killer cells) and nonimmune cells (fibroblasts, epithelial cells, keratinocytes) [49]. Moreover, adipocytes also express TLRs that actively participate not only in antibacterial defense, but also in the initiation of chronic inflammation of adipose tissue [50]. Enhanced lipolysis in adipocytes leads to an increase in the level of unsaturated fatty acids, which, through TLRs, promote the differentiation of macrophages into an M1 phenotype [51]. We found that the C allele of the TLR2 gene (rs3804099) was associated with a threefold increase in risk of obesity in elderly patients due to more active TLR-promoted inflammation.



Our most interesting results were the sex- and age-specific associations of immune response and lipid metabolism gene polymorphisms with the risk of obesity in the studied cohort. The gender dimorphism of biological and physiological functions is caused by gender-based chromosomal differences in gonadal hormone secretion. In humans, the level of gonadal hormones not only varies between males and females, but also changes depending on age, and this physiological alteration can influence the function of gonadal. hormone-sensitive genes [52]. Gonadal hormones can significantly modulate cell signaling pathways and control gene regulation and expression. It was shown that gonadal hormones may modify the immune response via regulating the production of pro- and anti-inflammatory cytokines and TLR expression [53,54,55,56]. Moreover, lipid metabolism also varies according to gender and age. Recently, a gender-specific association of FTO gene polymorphism with risk of obesity was revealed [57]. Therefore, the gender- and age-modulated associations of SNPs in the inflammatory response and lipid metabolism genes with obesity risk identified in the present study suggest the role of gene–gender interactions in the development of this pathology. It should be noted that our results need to be replicated in different populations with a larger sample size.




5. Conclusions


Genetic polymorphisms in the immune response and lipid metabolism genes are associated with increased obesity risk in middle-aged and elderly Caucasian patients in a gender- and age-depended manner. The obtained results can be used to assess the personalized risk of obesity in healthy donors during medical examination or screening, as well as to develop appropriate early prevention strategies targeting obesity in at-risk groups.
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Table 1. Characteristics of patients included in the study.






Table 1. Characteristics of patients included in the study.





	Index
	Number (%)





	Male
	319 (57)



	Female
	241 (43)



	Age ≤60 years (middle-aged patients)
	382 (68)



	Age >60 years (elderly patients)
	178 (32)



	BMI ≥30 kg/m2
	220 (39)



	BMI ≥30 kg/m2 in middle-aged patients
	156 (41)



	BMI ≥30 kg/m2 in elderly patients
	64 (36)
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Table 2. Characteristics of the studied polymorphic variants.






Table 2. Characteristics of the studied polymorphic variants.





	
Gene

	
Reference SNP Number

	
Chromosomal Position

	
Nucleotide Change

	
Variant Type






	
TLR1

	
rs5743611

	
chr4:38798593

	
C > G

	
Missense variant




	
rs5743551

	
chr4:38806033

	
T > A, C, G

	
5’ UTR variant




	
TLR2

	
rs5743708

	
chr4:153705165

	
G > A

	
Missense variant




	
TLR4

	
rs4986791

	
chr9:117713324

	
C > T

	
Missense variant




	
rs4986790

	
chr9:117713024

	
A > G, T

	
Missense variant




	
TLR6

	
rs5743810

	
chr4:38828729

	
A > C, G, T

	
Missense variant




	
rs3775073

	
chr4:38828211

	
T > C, G

	
Missense variant




	
IL1RL1

	
rs4988956

	
chr2:102351547

	
G > A

	
Missense variant




	
rs11685424

	
chr2:102310521

	
G > A

	
Upstream transcript variant




	
IL1B

	
rs1143634

	
chr2:112832813

	
G > A

	
Synonymous variant




	
rs16944

	
2:112837290

	
A > G

	
Upstream transcript variant




	
IL6R

	
rs2228145

	
chr1:154454494

	
A > C, T

	
Missense variant




	
rs2229238

	
chr1:154465420

	
T > A, C

	
3’ UTR variant




	
IL6

	
rs1800796

	
chr7:22726627

	
G > A, C

	
Intron variant




	
rs1554606

	
chr7:22729088

	
T > A, G

	
Intron variant




	
rs2069827

	
chr7:22725837

	
G > C, T

	
Upstream transcript variant




	
CXCL8

	
rs2227306

	
chr4:73741338

	
C > T

	
Intron variant




	
rs4073

	
chr4:73740307

	
A > C, G, T

	
Upstream transcript variant




	
IL10

	
rs1800871

	
chr1:206773289

	
A > G

	
Upstream transcript variant




	
rs1800872

	
chr1:206773062

	
T > G

	
Upstream transcript variant




	
rs1800896

	
chr1:206773552

	
T > C

	
Upstream transcript variant




	
IL12RB1

	
rs375947

	
chr19:18069641

	
A > G

	
Missense variant




	
IL12B

	
rs3212227

	
chr5:159315942

	
T > G

	
3’ UTR variant




	
IL18RAP

	
rs917997

	
chr2:102454108

	
T > A, C, G

	
Not announced




	
rs2058659

	
chr2:102438096

	
G > A

	
Intron variant




	
IL18R1

	
rs13015714

	
chr2:102355405

	
G > A, T

	
Upstream transcript variant




	
rs1974675

	
chr2:102369915

	
G > A

	
Intron variant




	
rs6758936

	
chr2:102374909

	
G > A

	
Intron variant




	
rs3755276

	
chr2:102361999

	
C > T

	
Intron variant




	
IL18

	
rs187238

	
chr11:112164265

	
C > A, G

	
Upstream transcript variant




	
rs360719

	
chr11:112165426

	
A > G

	
Upstream transcript variant




	
rs1946518

	
chr11:112164735

	
T > G

	
Upstream transcript variant




	
IL33

	
rs7025417

	
chr9:6240084

	
T > C, G

	
Intron variant




	
TNF

	
rs1799964

	
chr6:31574531

	
T > C

	
Upstream transcript variant




	
rs361525

	
chr6:31575324

	
G > A

	
Upstream transcript variant




	
rs1800629

	
chr6:31575254

	
G > A

	
Upstream transcript variant




	
CRP

	
rs3093077

	
chr1:159709846

	
A > C, G, T

	
Not announced




	
rs1800947

	
chr1:159713648

	
C > A, G, T

	
Synonymous variant




	
rs1130864

	
chr1:159713301

	
G > A

	
Intron variant




	
rs1205

	
chr1:159712443

	
C > T

	
3’ UTR variant




	
APOE

	
rs429358

	
chr19: 44908684

	
T > C

	
Missense variant




	
rs769452

	
chr19:44907853

	
T > A, C

	
Missense variant




	
rs7412

	
chr19:44908822

	
C > T

	
Missense variant




	
APOB

	
rs1042031

	
chr2:21002881

	
C > A, T

	
Missense variant/Stop gained




	
rs6725189

	
chr2:20996129

	
G > T

	
Not announced




	
LPA

	
rs10455872

	
chr6:160589086

	
A > G

	
Intron variant




	
LIPC

	
rs1800588

	
chr15:58431476

	
C > G, T

	
Intron variant




	
CXCR1

	
rs16858811

	
chr2:218165120

	
A > C

	
Missense variant




	
CXCR2

	
rs1126579

	
chr2:218136011

	
T > C

	
3’ UTR variant




	
INS

	
rs689

	
chr11:2160994

	
A > G, T

	
Intron variant




	
IGF1R

	
rs2229765

	
chr15:98934996

	
G > A, T

	
Missense variant




	
LEP

	
rs7799039

	
chr7:128238730

	
G > A, C

	
Not announced




	
LEPR

	
rs1137101

	
chr1:65592830

	
A > G, T

	
Missense variant




	
rs1137100

	
chr1:65570758

	
A > G, T

	
Missense variant




	
IL1F9

	
rs17659543

	
chr2:112958729

	
C > T

	
Not announced
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Table 3. Association of SNPs with risk of obesity, adjusted by gender and age.
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Gene

	
Model

	
Genotype

	
No Obesity, N (%)

	
Obesity, N (%)

	
OR (95% CI)

	
p

	
AIC






	
IL6R rs2229238

	
Codominant

	
C/C

	
189 (55.9)

	
88 (40)

	
1.00

	
0.0009

	
741.5




	
T/C

	
123 (36.4)

	
112 (50.9)

	
1.97 (1.37–2.83)




	
T/T

	
26 (7.7)

	
20 (9.1)

	
1.66 (0.88–3.14)




	
Dominant

	
C/C

	
189 (55.9)

	
88 (40)

	
1.00

	
0.0002

	
739.8




	
T/C-T/T

	
149 (44.1)

	
132 (60)

	
1.92 (1.36–2.71)




	
Recessive

	
C/C-T/C

	
312 (92.3)

	
200 (90.9)

	
1.00

	
0.56

	
753.3




	
T/T

	
26 (7.7)

	
20 (9.1)

	
1.20 (0.65–2.21)




	
Over-dominant

	
C/C-T/T

	
215 (63.6)

	
108 (49.1)

	
1.00

	
0.0006

	
741.9




	
T/C

	
123 (36.4)

	
112 (50.9)

	
1.83 (1.29–2.58)




	
Log-additive

	
-

	
-

	
-

	
1.53 (1.17–2.01)

	
0.0016

	
743.7




	
CXCL8 rs4073

	
Codominant

	
T/T

	
91 (26.8)

	
71 (32.3)

	
1.00

	
0.022

	
748.8




	
A/T

	
154 (45.4)

	
109 (49.5)

	
0.90 (0.61–1.34)




	
A/A

	
94 (27.7)

	
40 (18.2)

	
0.53 (0.33–0.86)




	
Dominant

	
T/T

	
91 (26.8)

	
71 (32.3)

	
1.00

	
0.15

	
752.4




	
A/T-A/A

	
248 (73.2)

	
149 (67.7)

	
0.76 (0.53–1.11)




	
Recessive

	
T/T-A/T

	
245 (72.3)

	
180 (81.8)

	
1.00

	
0.0065

	
747




	
A/A

	
94 (27.7)

	
40 (18.2)

	
0.56 (0.37–0.86)




	
Over-dominant

	
T/T-A/A

	
185 (54.6)

	
111 (50.5)

	
1.00

	
0.32

	
753.5




	
A/T

	
154 (45.4)

	
109 (49.5)

	
1.19 (0.85–1.67)




	
Log-additive

	
-

	
-

	
-

	
0.74 (0.58–0.94)

	
0.013

	
748.3




	
CXCL8 rs2227306

	
Codominant

	
C/C

	
103 (30.3)

	
77 (35)

	
1.00

	
0.0098

	
748




	
C/T

	
160 (47.1)

	
115 (52.3)

	
0.94 (0.64–1.38)




	
T/T

	
77 (22.6)

	
28 (12.7)

	
0.48 (0.28–0.81)




	
Dominant

	
C/C

	
103 (30.3)

	
77 (35)

	
1.00

	
0.21

	
753.7




	
C/T-T/T

	
237 (69.7)

	
143 (65)

	
0.79 (0.55–1.14)




	
Recessive

	
C/C-C/T

	
263 (77.3)

	
192 (87.3)

	
1.00

	
0.0025

	
746.1




	
T/T

	
77 (22.6)

	
28 (12.7)

	
0.49 (0.31–0.79)




	
Over-dominant

	
C/C-T/T

	
180 (52.9)

	
105 (47.7)

	
1.00

	
0.25

	
754




	
C/T

	
160 (47.1)

	
115 (52.3)

	
1.22 (0.87–1.71)




	
Log-additive

	
-

	
-

	
-

	
0.73 (0.57–0.94)

	
0.012

	
749




	
TNF rs1800629

	
Codominant

	
G/G

	
261 (77)

	
167 (75.9)

	
1.00

	
0.028

	
749.2




	
G/A

	
77 (22.7)

	
47 (21.4)

	
0.93 (0.62–1.41)




	
A/A

	
1 (0.3)

	
6 (2.7)

	
10.14 (1.20–85.48)




	
Dominant

	
G/G

	
261 (77)

	
167 (75.9)

	
1.00

	
0.83

	
754.3




	
G/A-A/A

	
78 (23)

	
53 (24.1)

	
1.05 (0.70–1.56)




	
Recessive

	
G/G-G/A

	
338 (99.7)

	
214 (97.3)

	
1.00

	
0.0081

	
747.3




	
A/A

	
1 (0.3)

	
6 (2.7)

	
10.29 (1.22–86.59)




	
Over-dominant

	
G/G-A/A

	
262 (77.3)

	
173 (78.6)

	
1.00

	
0.63

	
754.1




	
G/A

	
77 (22.7)

	
47 (21.4)

	
0.90 (0.60–1.37)




	
Log-additive

	
-

	
-

	
-

	
1.17 (0.81–1.69)

	
0.41

	
753.6




	
IL18 rs1946518

	
Codominant

	
G/G

	
111 (32.6)

	
63 (28.9)

	
1.00

	
0.066

	
748.3




	
T/G

	
158 (46.5)

	
122 (56)

	
1.32 (0.89–1.95)




	
T/T

	
71 (20.9)

	
33 (15.1)

	
0.78 (0.46–1.31)




	
Dominant

	
G/G

	
111 (32.6)

	
63 (28.9)

	
1.00

	
0.45

	
751.2




	
T/G-T/T

	
229 (67.3)

	
155 (71.1)

	
1.15 (0.79–1.68)




	
Recessive

	
G/G-T/G

	
269 (79.1)

	
185 (84.9)

	
1.00

	
0.062

	
748.3




	
T/T

	
71 (20.9)

	
33 (15.1)

	
0.65 (0.41–1.03)




	
Over-dominant

	
G/G-T/T

	
182 (53.5)

	
96 (44)

	
1.00

	
0.033

	
747.2




	
T/G

	
158 (46.5)

	
122 (56)

	
1.45 (1.03–2.04)




	
Log-additive

	
-

	
-

	
-

	
0.93 (0.73–1.20)

	
0.59

	
751.5




	
LPA rs10455872

	
Codominant

	
A/A

	
315 (92.7)

	
191 (87.6)

	
1.00

	
0.032

	
746.6




	
A/G

	
25 (7.3)

	
25 (11.5)

	
1.64 (0.92–2.95)




	
G/G

	
0 (0)

	
2 (0.9)

	
NA (0.00-NA)




	
Dominant

	
A/A

	
315 (92.7)

	
191 (87.6)

	
1.00

	
0.049

	
747.6




	
A/G-G/G

	
25 (7.3)

	
27 (12.4)

	
1.79 (1.00–3.17)




	
Recessive

	
A/A-A/G

	
340 (100)

	
216 (99.1)

	
1.00

	
0.042

	
747.3




	
G/G

	
0 (0)

	
2 (0.9)

	
N/A (0.00-N/A)




	
Over-dominant

	
A/A-G/G

	
315 (92.7)

	
193 (88.5)

	
1.00

	
0.1

	
748.8




	
A/G

	
25 (7.3)

	
25 (11.5)

	
1.62 (0.91–2.92)




	
Log-additive

	
-

	
-

	
-

	
1.86 (1.07–3.21)

	
0.026

	
746.5




	
LEPR rs1137100

	
Codominant

	
A/A

	
181 (53.4)

	
97 (44.5)

	
1.00

	
0.0021

	
740.4




	
A/G

	
141 (41.6)

	
94 (43.1)

	
1.24 (0.87–1.78)




	
G/G

	
17 (5)

	
27 (12.4)

	
3.19 (1.64–6.18)




	
Dominant

	
A/A

	
181 (53.4)

	
97 (44.5)

	
1.00

	
0.036

	
746.2




	
A/G-G/G

	
158 (46.6)

	
121 (55.5)

	
1.44 (1.02–2.03)




	
Recessive

	
A/A-A/G

	
322 (95)

	
191 (87.6)

	
1.00

	
0.001

	
739.8




	
G/G

	
17 (5)

	
27 (12.4)

	
2.88 (1.52–5.46)




	
Over-dominant

	
A/A-G/G

	
198 (58.4)

	
124 (56.9)

	
1.00

	
0.76

	
750.6




	
A/G

	
141 (41.6)

	
94 (43.1)

	
1.06 (0.75–1.49)




	
Log-additive

	
-

	
-

	
-

	
1.53 (1.16–2.00)

	
0.0021

	
741.2








Note: Statistically significant results after applying Akaike’s information criterion (AIC) are highlighted in bold.













[image: Table] 





Table 4. Association of SNPs with risk of obesity in groups stratified by gender.






Table 4. Association of SNPs with risk of obesity in groups stratified by gender.





	
Gene

	
Gender

	
Genotype

	
No Obesity, N

	
Obesity, N

	
OR (95%CI)

	
p






	
IL6R rs2229238

	
Male

	
C/C

	
112

	
43

	
1.00

	
0.002




	
T/C

	
73

	
64

	
2.27 (1.40–3.70)




	
T/T

	
15

	
10

	
1.74 (0.73–4.17)




	
Female

	
C/C

	
77

	
45

	
1.00

	
0.08




	
T/C

	
50

	
48

	
1.65 (0.96–2.83)




	
T/T

	
11

	
10

	
1.57 (0.62–4.00)




	
CXCL8 rs2227306

	
Male

	
C/C

	
66

	
42

	
1.00

	
0.5




	
C/T

	
92

	
61

	
1.04 (0.63–1.72)




	
T/T

	
44

	
14

	
0.51 (0.25–1.04)




	
Female

	
C/C

	
37

	
35

	
1.00

	
0.04




	
C/T

	
68

	
54

	
0.83 (0.46–1.49)




	
T/T

	
33

	
14

	
0.44 (0.20–0.95)




	
IL1RL1 rs11685424

	
Male

	
A/A

	
58

	
37

	
1.00

	
0.023




	
G/A

	
91

	
65

	
1.12 (0.67–1.89)




	
G/G

	
51

	
15

	
0.46 (0.23–0.94)




	
Female

	
A/A

	
45

	
30

	
1.00

	
0.43




	
G/A

	
67

	
49

	
1.11 (0.61–2.01)




	
G/G

	
26

	
24

	
1.39 (0.68–2.87)




	
IL18 rs1946518

	
Male

	
G/G

	
70

	
43

	
1.00

	
0.48




	
T/G

	
94

	
59

	
1.01 (0.61–1.66)




	
T/T

	
38

	
15

	
0.63 (0.31–1.28)




	
Female

	
G/G

	
41

	
20

	
1.00

	
0.03




	
T/G

	
64

	
63

	
2.02 (1.07–3.83)




	
T/T

	
33

	
18

	
1.10 (0.50–2.41)




	
LEPR rs1137100

	
Male

	
A/A

	
105

	
53

	
1.00

	
0.028




	
A/G

	
83

	
45

	
1.07 (0.66–1.75)




	
G/G

	
13

	
18

	
2.80 (1.27–6.17)




	
Female

	
A/A

	
76

	
44

	
1.00

	
0.004




	
A/G

	
58

	
49

	
1.48 (0.87–2.53)




	
G/G

	
4

	
9

	
4.04 (1.17–13.94)








Note: Statistically significant results are highlighted in bold.
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Table 5. Association of SNPs with obesity risk in groups stratified by age.
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Gene

	
Age

	
Genotype

	
No Obesity, N

	
Obesity, N

	
OR (95%CI)

	
p






	
IL6R rs22281454

	
≤60 years

	
A/A

	
94

	
88

	
1.00

	
0.004




	
A/C

	
107

	
59

	
0.58 (0.38–0.90)




	
C/C

	
24

	
9

	
0.40 (0.18–0.90)




	
>60 years

	
A/A

	
63

	
25

	
1.00

	
0.027




	
A/C

	
40

	
32

	
2.03 (1.05–3.91)




	
C/C

	
10

	
7

	
1.70 (0.58–4.98)




	
IL6R rs2229238

	
≤60 years

	
C/C

	
130

	
59

	
1.00

	
0.015




	
T/C

	
82

	
81

	
2.21 (1.43–3.41)




	
T/T

	
14

	
16

	
2.53 (1.16–5.53)




	
>60 years

	
C/C

	
59

	
29

	
1.00

	
0.49




	
T/C

	
41

	
31

	
1.54 (0.80–2.93)




	
T/T

	
12

	
4

	
0.67 (0.20–2.25)




	
CXCL8 rs4073

	
≤60 years

	
T/T

	
59

	
50

	
1.00

	
0.027




	
A/T

	
100

	
79

	
0.93 (0.58–1.51)




	
A/A

	
67

	
27

	
0.46 (0.26–0.83)




	
>60 years

	
T/T

	
32

	
21

	
1.00

	
0.07




	
A/T

	
54

	
30

	
0.84 (0.41–1.71)




	
A/A

	
27

	
13

	
0.74 (0.31–1.75)




	
CXCL8 rs2227306

	
≤60 years

	
C/C

	
65

	
54

	
1.00

	
0.04




	
C/T

	
110

	
82

	
0.89 (0.56–1.40)




	
T/T

	
51

	
20

	
0.45 (0.24–0.86)




	
>60 years

	
C/C

	
38

	
23

	
1.00

	
0.05




	
C/T

	
50

	
33

	
1.08 (0.55–2.14)




	
T/T

	
26

	
8

	
0.52 (0.20–1.36)




	
CRP rs1130864

	
≤60 years

	
G/G

	
115

	
79

	
1.00

	
0.19




	
G/A

	
98

	
62

	
0.91 (0.59–1.39)




	
A/A

	
13

	
15

	
1.70 (0.77–3.78)




	
>60 years

	
G/G

	
55

	
22

	
1.00

	
0.01




	
G/A

	
47

	
37

	
1.98 (1.03–3.83)




	
A/A

	
12

	
5

	
1.04 (0.33–3.29)




	
LEPR rs1137100

	
≤60 years

	
A/A

	
125

	
70

	
1.00

	
0,03




	
A/G

	
93

	
67

	
1.29 (0.84–1.98)




	
G/G

	
8

	
18

	
4.23 (1.74–10.28)




	
>60 years

	
A/A

	
56

	
27

	
1.00

	
0.15




	
A/G

	
48

	
27

	
1.14 (0.59–2.20)




	
G/G

	
9

	
9

	
2.12 (0.75–5.98)




	
TLR2 rs3804099

	
≤60 years

	
T/T

	
86

	
64

	
1.00

	
0.36




	
T/C

	
106

	
68

	
0.86 (0.55–1.34)




	
C/C

	
34

	
24

	
0.95 (0.52–1.77)




	
>60 years

	
T/T

	
56

	
16

	
1.00

	
0.01




	
T/C

	
41

	
30

	
2.55 (1.23–5.28)




	
C/C

	
17

	
17

	
3.35 (1.39–8.04)








Note: Statistically significant results are highlighted in bold.
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