Establishment and Characterization of NCC-PMP1-C1: A Novel Patient-Derived Cell Line of Metastatic Pseudomyxoma Peritonei
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient History
2.2. Cell Culture
2.3. Authentication and Quality Control
2.4. Genetic Analysis
2.5. Single Nucleotide Polymorphism Array
2.6. Cell Proliferation Assay
2.7. Assessment of Tumorigenicity in Nude Mice
2.8. Histological Evaluation
2.9. High-Throughput Drug Screening Test
3. Results
3.1. Authentication and Quality Control of the Established Cell Line Derived from PMP Tissue
3.2. Characteristics of NCC-PMP1-C1 Cells
3.3. Tumorigenesis in Nude Mice
3.4. Histological Evaluation
3.5. Sensitivity to Anti-Cancer Drugs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Moran, B.J.; Cecil, T.D. The etiology, clinical presentation, and management of pseudomyxoma peritonei. Surg. Oncol. Clin. N. Am. 2003, 12, 585–603. [Google Scholar] [CrossRef]
- Prayson, R.A.; Hart, W.R.; Petras, R.E. Pseudomyxoma peritonei. A clinicopathologic study of 19 cases with emphasis on site of origin and nature of associated ovarian tumors. Am. J. Surg. Pathol. 1994, 18, 591–603. [Google Scholar]
- De Bree, E.; Witkamp, A.; Van De Vijver, M.; Zoetmulde, F. Unusual origins of Pseudomyxoma peritonei. J. Surg. Oncol. 2000, 75, 270–274. [Google Scholar] [CrossRef]
- Ronnett, B.M.; Zahn, C.M.; Kurman, R.J.; Kass, M.E.; Sugarbaker, P.H.; Shmookler, B.M. Disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. A clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis, and relationship to “Pseudomyxoma peritonei”. Am. J. Surg. Pathol. 1995, 19, 1390–1408. [Google Scholar] [CrossRef]
- Costa, M.J. Pseudomyxoma peritonei. Histologic predictors of patient survival. Arch. Pathol. Lab. Med. 1994, 118, 1215–1219. [Google Scholar] [PubMed]
- Bento, C.; Percy, M.J.; Gardie, B.; Maia, T.M.; van Wijk, R.; Perrotta, S.; Della Ragione, F.; Almeida, H.; Rossi, C.; Girodon, F.; et al. Genetic basis of congenital erythrocytosis: Mutation update and online databases. Hum. Mutat. 2014, 35, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Chejfec, G.; Rieker, W.J.; Jablokow, V.R.; Gould, V.E. Pseudomyxoma peritonei associated with colloid carcinoma of the pancreas. Gastroenterology 1986, 90, 202–205. [Google Scholar] [CrossRef]
- Smeenk, R.M.; van Velthuysen, M.L.; Verwaal, V.J.; Zoetmulder, F.A. Appendiceal neoplasms and pseudomyxoma peritonei: A population based study. Eur. J. Surg. Oncol. 2008, 34, 196–201. [Google Scholar] [CrossRef]
- Sugarbaker, P.H. Pseudomyxoma peritonei. A cancer whose biology is characterized by a redistribution phenomenon. Ann. Surg. 1994, 219, 109–111. [Google Scholar]
- Sugarbaker, P.H.; Chang, D. Results of treatment of 385 patients with peritoneal surface spread of appendiceal malignancy. Ann. Surg. Oncol. 1999, 6, 727–731. [Google Scholar] [CrossRef]
- Fernandez, R.N.; Daly, J.M. Pseudomyxoma peritonei. Arch. Surg. 1980, 115, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Rotmensch, J.; Rosenshein, N.; Parmley, T. Extraperitoneal extension of pseudomyxoma peritonei: A case report. Gynecol. Oncol. 1982, 13, 101–107. [Google Scholar] [CrossRef]
- Wertheim, I.; Fleischhacker, D.; McLachlin, C.M.; Rice, L.W.; Berkowitz, R.S.; Goff, B.A. Pseudomyxoma peritonei: A review of 23 cases. Obstet. Gynecol. 1994, 84, 17–21. [Google Scholar]
- Miner, T.J.; Shia, J.; Jaques, D.P.; Klimstra, D.S.; Brennan, M.F.; Coit, D.G. Long-term survival following treatment of pseudomyxoma peritonei: An analysis of surgical therapy. Ann. Surg. 2005, 241, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.V.; Haber, D.A.; Settleman, J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat. Rev. Cancer 2010, 10, 241–253. [Google Scholar] [CrossRef]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehar, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Goncalves, E.; Barthorpe, S.; Lightfoot, H.; et al. A landscape of pharmacogenomic interactions in cancer. Cell 2016, 166, 740–754. [Google Scholar] [CrossRef]
- Teicher, B.A.; Polley, E.; Kunkel, M.; Evans, D.; Silvers, T.; Delosh, R.; Laudeman, J.; Ogle, C.; Reinhart, R.; Selby, M.; et al. Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression. Mol. Cancer Ther. 2015, 14, 2452–2462. [Google Scholar] [CrossRef]
- Hattori, E.; Kondo, T. Current status of cancer proteogenomics: A brief introduction. J. Electrophor. 2019, 63, 33–37. [Google Scholar] [CrossRef]
- Cao, P.D.; Cheung, W.K.; Nguyen, D.X. Cell lineage specification in tumor progression and metastasis. Discov. Med. 2011, 12, 329–340. [Google Scholar]
- Subbiah, V.; Puzanov, I.; Blay, J.Y.; Chau, I.; Lockhart, A.C.; Raje, N.S.; Wolf, J.; Baselga, J.; Meric-Bernstam, F.; Roszik, J.; et al. Pan-Cancer Efficacy of Vemurafenib in BRAF (V600)-Mutant Non-Melanoma Cancers. Cancer Discov. 2020, 10, 657–663. [Google Scholar] [CrossRef]
- Wabitsch, M.; Bruderlein, S.; Melzner, I.; Braun, M.; Mechtersheimer, G.; Moller, P. LiSa-2, a novel human liposarcoma cell line with a high capacity for terminal adipose differentiation. Int. J. Cancer 2000, 88, 889–894. [Google Scholar] [CrossRef]
- Bairoch, A. The Cellosaurus, a cell-Line knowledge resource. J. Biomol. Tech. 2018, 29, 25–38. [Google Scholar] [CrossRef]
- Yoshimatsu, Y.; Noguchi, R.; Tsuchiya, R.; Kito, F.; Sei, A.; Sugaya, J.; Nakagawa, M.; Yoshida, A.; Iwata, S.; Kawai, A.; et al. Establishment and characterization of NCC-CDS2-C1: A novel patient-derived cell line of CIC-DUX4 sarcoma. Hum. Cell 2020, 33, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Willenbrock, H.; Fridlyand, J. A comparison study: Applying segmentation to array CGH data for downstream analyses. Bioinformatics 2005, 21, 4084–4091. [Google Scholar] [CrossRef]
- Olshen, A.B.; Venkatraman, E.S.; Lucito, R.; Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004, 5, 557–572. [Google Scholar] [CrossRef]
- Venkatraman, E.S.; Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 2007, 23, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations in Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef]
- Roberts, D.L.; O’Dwyer, S.T.; Stern, P.L.; Renehan, A.G. Global gene expression in pseudomyxoma peritonei, with parallel development of two immortalized cell lines. Oncotarget 2015, 6, 10786–10800. [Google Scholar] [CrossRef]
- Sio, T.T.; Mansfield, A.S.; Grotz, T.E.; Graham, R.P.; Molina, J.R.; Que, F.G.; Miller, R.C. Concurrent MCL1 and JUN amplification in pseudomyxoma peritonei: A comprehensive genetic profiling and survival analysis. J. Hum. Genet. 2014, 59, 124–128. [Google Scholar] [CrossRef]
- Dedrick, R.L. Theoretical and experimental bases of intraperitoneal chemotherapy. Semin. Oncol. 1985, 12, 1–6. [Google Scholar]
- Sugarbaker, P.H.; Jablonski, K.A. Prognostic features of 51 colorectal and 130 appendiceal cancer patients with peritoneal carcinomatosis treated by cytoreductive surgery and intraperitoneal chemotherapy. Ann. Surg. 1995, 221, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, J.; Vidal-Jove, J.; Steves, M.A.; Sugarbaker, P.H. Morbidity and mortality of cytoreductive surgery and intraperitoneal chemotherapy. Surgery 1993, 113, 631–636. [Google Scholar]
- Yonemura, Y.; Fujimura, T.; Fushida, S.; Takegawa, S.; Kamata, T.; Katayama, K.; Kosaka, T.; Yamaguchi, A.; Miwa, K.; Miyazaki, I. Hyperthermo-chemotherapy combined with cytoreductive surgery for the treatment of gastric cancer with peritoneal dissemination. World J. Surg. 1991, 15, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Alexander, H.R.; Libutti, S.K.; Wu, P.; Royalty, D.; Kranda, K.C.; Bartlett, D.L. Treatment of primary peritoneal mesothelioma by continuous hyperthermic peritoneal perfusion (CHPP). Ann. Surg. Oncol. 1999, 6, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, F.; Di Filippo, F.; Botti, C.; Cosimelli, M.; Giannarelli, D.; Aloe, L.; Arcuri, E.; Aromatario, C.; Consolo, S.; Callopoli, A.; et al. Peritonectomy and hyperthermic antiblastic perfusion in the treatment of peritoneal carcinomatosis. Eur. J. Surg. Oncol. 2000, 26, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Tanaka, R.; Hondo, H.; Kuroki, M. Effects of antineoplastic agents and hyperthermia on cytotoxicity toward chronically hypoxic glioma cells. Int. J. Hyperth. 1992, 8, 131–138. [Google Scholar] [CrossRef]
- Teicher, B.A.; Kowal, C.D.; Kennedy, K.A.; Sartorelli, A.C. Enhancement by hyperthermia of the in vitro cytotoxicity of mitomycin C toward hypoxic tumor cells. Cancer Res. 1981, 41, 1096–1099. [Google Scholar]
- Gewirtz, D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999, 57, 727–741. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, J.; Li, H.; Cao, F.; Su, Y.; Fan, S.; Li, Y.; Wang, S.; Li, L.; Gilbert, G.E.; et al. Daunorubicin induces procoagulant activity of cultured endothelial cells through phosphatidylserine exposure and microparticles release. Thromb. Haemost. 2010, 104, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Tujebajeva, R.M.; Graifer, D.M.; Karpova, G.G.; Ajtkhozhina, N.A. Alkaloid homoharringtonine inhibits polypeptide chain elongation on human ribosomes on the step of peptide bond formation. FEBS Lett. 1989, 257, 254–256. [Google Scholar] [CrossRef]
- Wu, Z.; Zhuang, H.; Yu, Q.; Zhang, X.; Jiang, X.; Lu, X.; Xu, Y.; Yang, L.; Wu, B.; Ma, A.; et al. Homoharringtonine Combined with the Heat Shock Protein 90 Inhibitor IPI504 in the Treatment of FLT3-ITD Acute Myeloid Leukemia. Transl. Oncol. 2019, 12, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.S.; Metcalf, C.A.; Sundaramoorthi, R.; Wang, Y.; Zou, D.; Thomas, R.M.; Zhu, X.; Cai, L.; Wen, D.; Liu, S.; et al. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-y l)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J. Med. Chem. 2010, 53, 4701–4719. [Google Scholar] [CrossRef] [PubMed]
STR Locus (Chromosome) | Allele NCC-PMP1-C1 | Allele Original Tumor Tissue |
---|---|---|
Amelogenin (X Y) | X, Y | X, Y |
TH01 (3) | 7 | 7 |
D21S11 (21) | 30, 32.2 | 30, 32.2 |
D5S818 (5) | 11 | 11 |
D13S317 (13) | 9, 12 | 9, 12 |
D7S820 (7) | 9, 11 | 9, 11 |
D16S539 (16) | 10, 11 | 10, 11 |
CSF1PO (5) | 11, 12 | 11, 12 |
vWA (12) | 14, 17 | 14, 17 |
TPOX (2) | 8, 11 | 8, 11 |
CAS# | Drug | IC50 Value NCC-PMP1-C1 (µM) |
---|---|---|
179324-69-7 | Bortezomib | 1.732 |
1032900-25-6 | Ceritinib | 4.121 |
15663-27-1 | Cisplatin | 17.72 |
50-41-9 | Clomifene citrate | 7.746 |
220127-57-1 | Crizotinib | 11.85 |
23541-50-6 | Daunorubicine HCl | 0.0283 |
1108743-60-7 | Entrectinib | 2.119 |
21679-14-1 | Fludarabine | 31.63 |
51-21-8 | Fluorouracil | 15.76 |
129453-61-8 | Fulvestrant | 10.66 |
26833-87-4 | Homoharringtonine | 0.0037 |
136572-09-3 | Irinotecan HCl | 12.26 |
19767-45-4 | Mensa | 4.303 |
50-44-2 | Mercaptopurine | 22.88 |
50-07-7 | Mitomycin C | 0.456 |
61825-94-3 | Oxaliplatin | 8.761 |
943319-70-8 | Ponatinib | 0.1195 |
284461-73-0 | Sorafenib | 26.91 |
114899-77-3 | Trabectedin | 3.59 |
8918504-65-1 | Vemurafenib | 3.751 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noguchi, R.; Yoshimatsu, Y.; Sin, Y.; Ono, T.; Tsuchiya, R.; Yoshida, H.; Kiyono, T.; Yonemura, Y.; Kondo, T. Establishment and Characterization of NCC-PMP1-C1: A Novel Patient-Derived Cell Line of Metastatic Pseudomyxoma Peritonei. J. Pers. Med. 2022, 12, 258. https://doi.org/10.3390/jpm12020258
Noguchi R, Yoshimatsu Y, Sin Y, Ono T, Tsuchiya R, Yoshida H, Kiyono T, Yonemura Y, Kondo T. Establishment and Characterization of NCC-PMP1-C1: A Novel Patient-Derived Cell Line of Metastatic Pseudomyxoma Peritonei. Journal of Personalized Medicine. 2022; 12(2):258. https://doi.org/10.3390/jpm12020258
Chicago/Turabian StyleNoguchi, Rei, Yuki Yoshimatsu, Yooksil Sin, Takuya Ono, Ryuto Tsuchiya, Hiroshi Yoshida, Tohru Kiyono, Yutaka Yonemura, and Tadashi Kondo. 2022. "Establishment and Characterization of NCC-PMP1-C1: A Novel Patient-Derived Cell Line of Metastatic Pseudomyxoma Peritonei" Journal of Personalized Medicine 12, no. 2: 258. https://doi.org/10.3390/jpm12020258
APA StyleNoguchi, R., Yoshimatsu, Y., Sin, Y., Ono, T., Tsuchiya, R., Yoshida, H., Kiyono, T., Yonemura, Y., & Kondo, T. (2022). Establishment and Characterization of NCC-PMP1-C1: A Novel Patient-Derived Cell Line of Metastatic Pseudomyxoma Peritonei. Journal of Personalized Medicine, 12(2), 258. https://doi.org/10.3390/jpm12020258