A Multi-Gene Panel to Identify Lipedema-Predisposing Genetic Variants by a Next-Generation Sequencing Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Samples
2.2. Panel Design
2.3. Genetic Analysis and Variant Detection
3. Results
3.1. Variants in Genes Linked to Syndromic Fat Accumulation
3.2. Differential Diagnosis for Lipedema
3.3. Mutations in Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bauer, A.T.; von Lukowicz, D.; Lossagk, K.; Aitzetmueller, M.; Moog, P.; Cerny, M.; Erne, H.; Schmauss, D.; Duscher, D.; Machens, H.G. New Insights on Lipedema: The Enigmatic Disease of the Peripheral Fat. Plast. Reconstr. Surg. 2019, 144, 1475–1484. [Google Scholar] [CrossRef]
- Paolacci, S.; Precone, V.; Acquaviva, F.; Chiurazzi, P.; Fulcheri, E.; Pinelli, M.; Buffelli, F.; Michelini, S.; Herbst, K.L.; Unfer, V.; et al. GeneOb Project. Genetics of lipedema: New perspectives on genetic research and molecular diagnoses. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5581–5594. [Google Scholar]
- Precone, V.; Barati, S.; Paolacci, S.; Salgarello, M.; Visconti, G.; Gentileschi, S.; Guerri, G.; Gagliardi, L.; Aquilanti, B.; Matera, G.; et al. Genetic syndromes with localized subcutaneous fat tissue accumulation. Acta Biomed. 2019, 90, 90–92. [Google Scholar]
- Van Pelt, R.E.; Gozansky, W.S.; Hickner, R.C.; Schwartz, R.S.; Kohrt, W.M. Acute modulation of adipose tissue lipolysis by intravenous estrogens. Obesity 2006, 14, 2163–2172. [Google Scholar] [CrossRef] [Green Version]
- Gavin, K.M.; Cooper, E.E.; Hickner, R.C. Estrogen receptor protein content is different in abdominal than gluteal subcutaneous adipose tissue of overweight-to-obese premenopausal women. Metabolism 2013, 62, 1180–1188. [Google Scholar] [CrossRef]
- Orphanet. Available online: https://www.orpha.net/consor/cgi-bin/index.php (accessed on 22 December 2021).
- Warren, A.G.; Janz, B.A.; Borud, L.J.; Slavin, S.A. Evaluation and management of the fat leg syndrome. Plast. Reconstr. Surg. 2007, 119, 9–15. [Google Scholar] [CrossRef]
- Forner-Cordero, I.; Szolnoky, G.; Forner-Cordero, A.; Kemény, L. Lipedema: An overview of its clinical manifestations, diagnosis and treatment of the disproportional fatty deposition syndrome-systematic review. Clin. Obes. 2012, 2, 86–95. [Google Scholar] [CrossRef]
- Halk, A.B.; Damstra, R.J. First Dutch guidelines on lipedema using the international classification of functioning, disability and health. Phlebology 2017, 32, 152–159. [Google Scholar] [CrossRef]
- Hansson, E.; Svensson, H.; Brorson, H. Review of Dercum’s disease and proposal of diagnostic criteria, diagnostic methods, classification and management. Orphanet J. Rare Dis. 2012, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Beltran, K.; Herbst, K.L. Differentiating lipedema and Dercum’s disease. Int. J. Obes. 2017, 41, 240–245. [Google Scholar] [CrossRef]
- Schiltz, D.; Anker, A.; Ortner, C.; Tschernitz, S.; Koller, M.; Klein, S.; Felthaus, O.; Schreml, J.; Schreml, S.; Prantl, L. Multiple symmetric lipomatosis: New classification system based on the largest german patient cohort. Plast. Reconstr. Surg. Glob. Open 2018, 6, e1722. [Google Scholar] [CrossRef]
- Michelini, S.; Chiurazzi, P.; Marino, V.; Dell’Orco, D.; Manara, E.; Baglivo, M.; Fiorentino, A.; Maltese, P.E.; Pinelli, M.; Herbst, K.L.; et al. Aldo-keto reductase 1C1 (AKR1C1) as the first mutated gene in a family with nonsyndromic primary lipedema. Int. J. Mol. Sci. 2020, 21, 6264. [Google Scholar] [CrossRef] [PubMed]
- Peprah, K.; MacDougall, D. Liposuction for the Treatment of Lipedema: A Review of Clinical Effectiveness and Guidelines. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545818/ (accessed on 22 December 2021).
- Felmerer, G.; Stylianaki, A.; Hägerling, R.; Wang, A.; Ströbel, P.; Hollmén, M.; Lindenblatt, N.; Gousopoulos, E. Adipose tissue hypertrophy, an aberrant biochemical profile and distinct gene expression in lipedema. J. Surg. Res. 2020, 253, 294–303. [Google Scholar] [CrossRef]
- Ilyas, M. Next-generation sequencing in diagnostic pathology. Pathobiology 2017, 84, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Wold, L.E.; Hines, E.A., Jr.; Allen, E.V. Lipedema of the legs; a syndrome characterized by fat legs and edema. Ann. Intern. Med. 1951, 34, 1243–1250. [Google Scholar]
- Herbst, K.L. Rare adipose disorders (RADs) masquerading as obesity. Acta Pharmacol. Sin. 2012, 33, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Mattassi, R.; Manara, E.; Colombo, P.G.; Manara, S.; Porcella, A.; Bruno, G.; Bruson, A.; Bertelli, M. Variant discovery in patients with Mendelian vascular anomalies by next-generation sequencing and their use in patient clinical management. J. Vasc. Surg. 2018, 67, 922–932. [Google Scholar] [CrossRef] [Green Version]
- Wolthuis, D.F.; van Asbeck, E.; Mohamed, M.; Gardeitchik, T.; Lim-Melia, E.R.; Wevers, R.A.; Morava, E. Cutis laxa, fat pads and retinopathy due to ALDH18A1 mutation and review of the literature. Eur. J. Paediatr. Neurol. 2014, 18, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Waxler, J.L.; Guardino, C.; Feinn, R.S.; Lee, H.; Pober, B.R.; Stanley, T.L. Altered body composition, lipedema, and decreased bone density in individuals with Williams syndrome: A preliminary report. Eur. J. Med. Genet. 2017, 60, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Berryman, D.E.; List, E.O.; Coschigano, K.T.; Behar, K.; Kim, J.K.; Kopchick, J.J. Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm. IGF Res. 2004, 14, 309–318. [Google Scholar] [CrossRef]
- Bano, G.; Mansour, S.; Brice, G.; Ostergaard, P.; Mortimer, P.S.; Jeffery, S.; Nussey, S. Pit-1 mutation and lipoedema in a family. Exp. Clin. Endocrinol. Diabetes 2010, 118, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Broekema, M.F.; Savage, D.B.; Monajemi, H.; Kalkhoven, E. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 715–732. [Google Scholar] [CrossRef]
- Lüdtke, A.; Buettner, J.; Schmidt, H.H.; Worman, H.J. New PPARG mutation leads to lipodystrophy and loss of protein function that is partially restored by a synthetic ligand. J. Med. Genet. 2007, 44, e88. [Google Scholar] [CrossRef] [Green Version]
- Lightbourne, M.; Brown, R.J. Genetics of lipodystrophy. Endocrinol. Metab. Clin. N. Am. 2017, 46, 539–554. [Google Scholar] [CrossRef]
- Farooqi, I.S.; Drop, S.; Clements, A.; Keogh, J.M.; Biernacka, J.; Lowenbein, S.; Challis, B.G.; O’Rahilly, S. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes 2006, 55, 2549–2553. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Song, D.K.; Park, C.B.; Choi, J.; Kang, G.M.; Shin, S.H.; Kwon, I.; Park, S.; Kim, S.; Kim, J.Y.; et al. Primary cilia mediate early life programming of adiposity through lysosomal regulation in the developing mouse hypothalamus. Nat. Commun. 2020, 11, 5772. [Google Scholar] [CrossRef]
- Pirola, C.J.; Flichman, D.; Dopazo, H.; Fernández Gianotti, T.; San Martino, J.; Rohr, C.; Garaycoechea, M.; Gazzi, C.; Castaño, G.O.; Sookoian, S. A rare nonsense mutation in the glucokinase regulator gene is associated with a rapidly progressive clinical form of nonalcoholic steatohepatitis. Hepatol. Commun. 2018, 2, 1030–1036. [Google Scholar] [CrossRef]
- Jelinek, D.; Heidenreich, R.A.; Erickson, R.P.; Garver, W.S. Decreased Npc1 gene dosage in mice is associated with weight gain. Obesity 2010, 18, 1457–1459. [Google Scholar] [CrossRef] [Green Version]
- Jelinek, D.; Millward, V.; Birdi, A.; Trouard, T.P.; Heidenreich, R.A.; Garver, W.S. Npc1 haploinsufficiency promotes weight gain and metabolic features associated with insulin resistance. Hum. Mol. Genet. 2011, 20, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Bambace, C.; Dahlman, I.; Arner, P.; Kulyté, A. NPC1 in human white adipose tissue and obesity. BMC Endocr. Disord. 2013, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Meyre, D.; Delplanque, J.; Chevre, J.C.; Lecoeur, C.; Lobbens, S.; Gallina, S.; Durand, E.; Vatin, V.; Degraeve, F.; Proenca, C.; et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. 2009, 41, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zou, Y.; Hong, J.; Cao, M.; Cui, B.; Zhang, H.; Chen, M.; Shi, J.; Ning, T.; Zhao, S.; et al. Rare loss-of-function variants in NPC1 predispose to human obesity. Diabetes 2017, 66, 935–947. [Google Scholar] [CrossRef] [Green Version]
- Lamri, A.; Pigeyre, M.; Garver, W.S.; Meyre, D. The extending spectrum of NPC1-related human disorders: From Niemann–Pick C1 disease to obesity. Endocr. Rev. 2018, 39, 192–220. [Google Scholar] [CrossRef]
- Højlund, K.; Hansen, T.; Lajer, M.; Henriksen, J.E.; Levin, K.; Lindholm, J.; Pedersen, O.; Beck-Nielsen, H. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene. Diabetes 2004, 53, 1592–1598. [Google Scholar] [CrossRef] [Green Version]
- Litzel, M.; Caridi, G.; Lugani, F.; Campagnoli, M.; Minchiotti, L.; Fischli, S. Recurrent hypoglycemia in a case of congenital analbuminemia. Case Rep. Endocrinol. 2020, 2020, 8452564. [Google Scholar] [CrossRef] [Green Version]
- Mariman, E.C.; Bouwman, F.G.; Aller, E.E.; van Baak, M.A.; Wang, P. Extreme obesity is associated with variation in genes related to the circadian rhythm of food intake and hypothalamic signaling. Physiol. Genom. 2015, 47, 225–231. [Google Scholar] [CrossRef]
- Sadkowski, S.; Molińska-Glura, M.; Moliński, K.; Szczepankiewicz, D.; Switonski, M.; Szydłowski, M. A well-known mutation in RYR1 alters distribution of adipose tissue in gilts. Anim. Sci. Pap. Rep. 2015, 33, 147–154. [Google Scholar]
- Al-Ghadban, S.; Cromer, W.; Allen, M.; Ussery, C.; Badowski, M.; Harris, D.; Herbst, K.L. Dilated blood and lymphatic microvessels, angiogenesis, increased macrophages, and adipocyte hypertrophy in lipedema thigh skin and fat tissue. J. Obes. 2019, 2019, 8747461. [Google Scholar] [CrossRef]
- Tsuchida, A.; Yamauchi, T.; Takekawa, S.; Hada, Y.; Ito, Y.; Maki, T.; Kadowaki, T. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: Comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 2005, 54, 3358–3370. [Google Scholar] [CrossRef] [Green Version]
- Child, A.H.; Gordon, K.D.; Sharpe, P.; Brice, G.; Ostergaard, P.; Jeffery, S.; Mortimer, P.S. Lipedema: An inherited condition. Am. J. Med. Genet. A 2010, 152, 970–976. [Google Scholar] [CrossRef]
- NeXtprot. Available online: https://www.nextprot.org/entry/NX_Q05469/ (accessed on 22 December 2021).
- Moia, S.; Tessaris, D.; Einaudi, S.; de Sanctis, L.; Bona, G.; Bellone, S.; Prodam, F. Compound heterozygosity for two GHR missense mutations in a patient affected by Laron Syndrome: A case report. Ital. J. Pediatr. 2017, 43, 94. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, V.; De Soysa, A.K.; Hyldmo, A.A.; Retterstøl, K.; Martins, C.; Nymo, S. Effect of a ketogenic diet on pain and quality of life in patients with lipedema: The LIPODIET pilot study. Obes. Sci. Pract. 2021, 1. [Google Scholar] [CrossRef]
- Cignarelli, A.; Genchi, V.A.; Perrini, S.; Natalicchio, A.; Laviola, L.; Giorgino, F. Insulin and insulin receptors in adipose tissue development. Int. J. Mol. Sci. 2019, 20, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GeneCards. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=RYR1&keywords=ryr1 (accessed on 22 December 2021).
- Millington, G.W. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr. Metab. 2007, 4, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GeneCards. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=NR0B2&keywords=nr0b2 (accessed on 22 December 2021).
- GeneCards. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=GCKR (accessed on 22 December 2021).
- Petit, J.M.; Masson, D.; Guiu, B.; Rollot, F.; Duvillard, L.; Bouillet, B.; Brindisi, M.C.; Buffier, P.; Hillon, P.; Cercueil, J.P.; et al. GCKR polymorphism influences liver fat content in patients with type 2 diabetes. Acta Diabetol. 2016, 53, 237–242. [Google Scholar] [CrossRef]
- Witte, M.H.; Dumont, A.E.; Cole, W.R.; Witte, C.L.; Kintner, K. Lymph circulation in hepatic cirrhosis: Effect of portacaval shunt. Ann. Intern. Med. 1969, 70, 303–310. [Google Scholar] [CrossRef]
- Pawlak, M.; Lefebvre, P.; Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 2015, 62, 720–733. [Google Scholar] [CrossRef] [Green Version]
- Melzer, F.; Geisler, C.; Schulte, D.M.; Laudes, M. Rapid response to leptin therapy in a FPLD patient with a novel PPARG missense variant. Endocrinol. Diabetes Metab. Case Rep. 2021, 2021, 21-0082. [Google Scholar] [CrossRef]
- Oral, E.A.; Simha, V.; Ruiz, E.; Andewelt, A.; Premkumar, A.; Snell, P.; Wagner, A.J.; DePaoli, A.M.; Reitman, M.L.; Taylor, S.I.; et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 2002, 346, 570–578. [Google Scholar] [CrossRef]
- De Boer, H.; Blok, G.J.; Voerman, B.; Derriks, P.; van der Veen, E. Changes in subcutaneous and visceral fat mass during growth hormone replacement therapy in adult men. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 580–587. [Google Scholar]
Patient | Gene | Nucleotide Change | Amino Acid Change | SNP ID | MAF (%) | MutationTaster | SIFT | Polyphen-2 | CADD | VarSome | Stage/Sex | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Differential diagnosis genes | 1 | PLIN1 | c.722T>C | p.Leu241Pro | rs914779001 | NR | DC | D | PD | 24.9 | VUS | 3/F |
2 | LIPE | c.1141C>T | p.Arg381Cys | rs772317492 | 0.0004 | DC | D | PD | 31 | VUS | 3/F | |
3 | PPARG | c.1424C>T | p.Thr475Met | rs1479145908 | NR | DC | D | PD | 26 | LP | 2/F | |
4 | POMC | c.616G>T | p.Glu206 * | rs202127120 | 0.05 | DC | / | / | 39 | P | 3/F | |
5 | NR0B2 | c.265C>T | p.Gln89 * | rs150160927 | 0.004 | DC | / | / | 35 | VUS | 3/F | |
GCKR | c.1135dup | p.Thr379Asnfs *36 | rs573498430 | 0.1 | DC | / | / | 24.2 | VUS | |||
6 | NPC1 | c.3011C>T | p.Ser1004Leu | rs150334966 | 0.07 | DC | T | B | 23.4 | LP | 3/F | |
7 | NPC1 | c.2903A>G | p.Thr968Met | rs773767253 | 0.002 | DC | T | B | 20.8 | P | 2/F | |
Syndromic genes | 8 | ALDH18A1 | c.2276C>T | p.Thr759Ile | rs781126562 | 0.003 | DC | D | PD | 29.2 | LP | 3/F |
9 | ALDH18A1 | c.1233G>T | p.Leu411Phe | rs758828421 | 0.0008 | DC | D | PoD | 24.8 | LP | 3/F | |
10 | GHR | c.293G>A | p.Trp98* | rs1237134960 | 0.0008 | DC | / | / | 39 | P | 2/F | |
Candidate genes | 11 | INSR | c.3079C>T | p.Arg1027* | rs121913144 | 0.0004 | DC | / | / | 42 | P | 3/F |
12 | INSR | c.3262C>T | p.Arg1088Cys | rs867075117 | 0.0008 | DC | D | PD | 29.5 | LP | 3/F | |
13 | RYR1 | c.341G>A | p.Arg114His | rs574357386 | 0.008 | Pol | D | PD | 27.9 | LP | 3/F | |
14 | RYR1 | c.947G>A | p.Arg316His | rs193922761 | 0.001 | DC | D | PD | 32 | LP | NA/F | |
c.10097G>A | p.Arg3366His | rs137932199 | 0.09 | DC | T | B | 24.3 | LP | ||||
c.11798A>G | p.Tyr3933Cys | rs147136339 | 0.08 | DC | D | PD | 32 | LP | ||||
15 | RYR1 | c.1967C>T | p.Thr656Met | rs4802472 | 0.0008 | DC | D | PD | 24.7 | LP | 3/F | |
16 | PPARA | c.875A>G | p.Lys292Arg | rs773411072 | 0.0008 | DC | D | PD | 28.1 | VUS | 1/F | |
17 | PPARA | c.875A>G | p.Lys292Arg | rs773411072 | 0.0008 | DC | D | PD | 28.1 | VUS | 3/F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michelini, S.; Herbst, K.L.; Precone, V.; Manara, E.; Marceddu, G.; Dautaj, A.; Maltese, P.E.; Paolacci, S.; Ceccarini, M.R.; Beccari, T.; et al. A Multi-Gene Panel to Identify Lipedema-Predisposing Genetic Variants by a Next-Generation Sequencing Strategy. J. Pers. Med. 2022, 12, 268. https://doi.org/10.3390/jpm12020268
Michelini S, Herbst KL, Precone V, Manara E, Marceddu G, Dautaj A, Maltese PE, Paolacci S, Ceccarini MR, Beccari T, et al. A Multi-Gene Panel to Identify Lipedema-Predisposing Genetic Variants by a Next-Generation Sequencing Strategy. Journal of Personalized Medicine. 2022; 12(2):268. https://doi.org/10.3390/jpm12020268
Chicago/Turabian StyleMichelini, Sandro, Karen L. Herbst, Vincenza Precone, Elena Manara, Giuseppe Marceddu, Astrit Dautaj, Paolo Enrico Maltese, Stefano Paolacci, Maria Rachele Ceccarini, Tommaso Beccari, and et al. 2022. "A Multi-Gene Panel to Identify Lipedema-Predisposing Genetic Variants by a Next-Generation Sequencing Strategy" Journal of Personalized Medicine 12, no. 2: 268. https://doi.org/10.3390/jpm12020268
APA StyleMichelini, S., Herbst, K. L., Precone, V., Manara, E., Marceddu, G., Dautaj, A., Maltese, P. E., Paolacci, S., Ceccarini, M. R., Beccari, T., Sorrentino, E., Aquilanti, B., Velluti, V., Matera, G., Gagliardi, L., Miggiano, G. A. D., & Bertelli, M. (2022). A Multi-Gene Panel to Identify Lipedema-Predisposing Genetic Variants by a Next-Generation Sequencing Strategy. Journal of Personalized Medicine, 12(2), 268. https://doi.org/10.3390/jpm12020268