Conjoint Analysis: A Research Method to Study Patients’ Preferences and Personalize Care
Abstract
:1. Introduction
2. Methods
3. Conjoint Analysis Trend over the Past 70 Years
4. The Conjoint Analysis Study Process
4.1. Identifying the Relevant Attributes
4.2. Assigning Levels
4.3. Choosing Scenarios
4.4. Establishing Preference
4.5. Analyzing Data
5. Conjoint Analysis in Healthcare
6. Validity of Conjoint Analysis Data
- External validity is the ability of the CA tool to predict what people would choose in real life. This can be achieved by asking the question “did people choose what CA predicted?”. For example, in a conjoint study estimating the market share for an American multinational telecommunications corporation, various trial simulations were implemented hypothesizing that several product features had to be changed in order to attain desired sales (8% of the total market share) [56]. Four years after launching this product, the actual share was just under 8% [56], concluding that CA contributes towards the identification of people-desired choices and the estimation of the actual preference behavior. Investigating external validity for CA methods is a challenging task that requires the researcher to follow the participants to examine if they did what the CA tool predicted in terms of buying a product, taking a treatment, attending a particular doctor’s clinic, etc.
- Internal consistency validity is the main validity criterion that has been studied in recent years for strengthening the reliability and applicability of CA. To test the internal validity, the holdouts’ choices are used [84]. The holdouts are choices that are similar to those selected by the participants in real life but are “held out” of the conjoint approximation by not being part of the final estimation. The internal validity of the conjoint task is examined by comparing how well conjoint utilities predict choices from the holdout tasks. Therefore, the holdout tasks are not used in the estimation of part-worths, but they are presumed to represent respondent choices in the real world [85]. In a review evaluating CA as a method of estimating consumers’ preferences, Green and Srinivasan reported that several studies have demonstrated the consistency of conjoint models in terms of reproducing current market conditions [39]. Furthermore, a study offering four topical antibiotics to treat acne confirmed CA consistency and validity when patients’ preferences assessment, the simulated product rankings, and the results of the traditional questionnaire were matched [86].
7. Strengths and Limitations of Conjoint Analysis
8. Strengths and Limitations of This Study
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marshall, D.; Bridges, J.F.P.; Hauber, B.; Cameron, R.; Donnalley, L.; Fyie, K.; Johnson, F.R. Conjoint Analysis Applications in Health—How are Studies being Designed and Reported? An Update on Current Practice in the Published Literature between 2005 and 2008. Patient 2010, 3, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.J. Pros and cons of conjoint analysis of discrete choice experiments to define classification and response criteria in rheumatology. Curr. Opin. Rheumatol. 2016, 28, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Slothuus Skjoldborg, U.; Gyrd-Hansen, D. Conjoint analysis. The cost variable: An Achilles’ heel? Health Econ. 2003, 12, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Al-Omari, B.; McMeekin, P.; Bate, A. Systematic review of studies using conjoint analysis techniques to investigate patients’ preferences regarding osteoarthritis treatment. Patient Prefer. Adherence 2021, 15, 197–211. [Google Scholar] [CrossRef]
- Soekhai, V.; Whichello, C.; Levitan, B.; Veldwijk, J.; Pinto, C.A.; Donkers, B.; Huys, I.; van Overbeeke, E.; Juhaeri, J.; de Bekker-Grob, E.W. Methods for exploring and eliciting patient preferences in the medical product lifecycle: A literature review. Drug Discov. Today 2019, 24, 1324–1331. [Google Scholar] [CrossRef]
- Bridges, J.F.P. Stated preference methods in health care evaluation: An emerging methodological paradigm in health economics. Appl. Health Econ. Health Policy 2003, 2, 213–224. [Google Scholar] [PubMed]
- Mark, T.L.; Swait, J. Using stated preference and revealed preference modeling to evaluate prescribing decisions. Health Econ. 2004, 13, 563–573. [Google Scholar] [CrossRef]
- de Corte, K.; Cairns, J.; Grieve, R. Stated versus revealed preferences: An approach to reduce bias. Health Econ. 2021, 30, 1095–1123. [Google Scholar] [CrossRef]
- Ghijben, P.; Gu, Y.; Lancsar, E.; Zavarsek, S. Revealed and stated preferences of decision makers for priority setting in health technology assessment: A systematic review. Pharmacoeconomics 2018, 36, 323–340. [Google Scholar] [CrossRef]
- Caruso, E.M.; Rahnev, D.A.; Banaji, M.R. Using conjoint analysis to detect discrimination: Revealing covert preferences from overt choices. Soc. Cogn. 2009, 27, 128–137. [Google Scholar] [CrossRef]
- de Bekker-Grob, E.W.; Berlin, C.; Levitan, B.; Raza, K.; Christoforidi, K.; Cleemput, I.; Pelouchova, J.; Enzmann, H.; Cook, N.; Hansson, M.G. Giving patients’ preferences a voice in medical treatment life cycle: The prefer public–private project. Patient 2017, 10, 263–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Omari, B. The shared decision for osteoarthritis treatments. OPROJ 2019, 5, 542–545. [Google Scholar] [CrossRef]
- Wong, D.W.; Chan, F.; Da Silva Cardoso, E.; Lam, C.S.; Miller, S.M. Rehabilitation Counseling Students’ Attitudes toward People with Disabilities in Three Social Contexts. Rehabil. Couns. Bull. 2004, 47, 194–204. [Google Scholar] [CrossRef]
- Alriksson, S.; Oberg, T. Conjoint analysis for environmental evaluation--a review of methods and applications. Environ. Sci. Pollut. Res. Int. 2008, 15, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Ben-Akiva, M.; McFadden, D.; Train, K. Foundations of Stated Preference Elicitation: Consumer Behavior and Choice-based Conjoint Analysis. FNT Econom. 2019, 10, 1–144. [Google Scholar] [CrossRef] [Green Version]
- Luce, R.D.; Tukey, J.W. Simultaneous conjoint measurement: A new type of fundamental measurement. J. Math. Psychol. 1964, 1, 1–27. [Google Scholar] [CrossRef]
- Green, P.E.; Rao, V.R. Conjoint Measurement for Quantifying Judgmental Data. J. Mark. Res. 1971, 8, 355. [Google Scholar] [CrossRef]
- Orme, B.K. Getting Started with Conjoint Analysis: Strategies for Product Design and Pricing Research, 2nd ed.; Research Publishers, LLC: Madison, WI, USA, 2009; p. 228. ISBN 9780972729772. [Google Scholar]
- Ryan, M.; Farrar, S. Using conjoint analysis to elicit preferences for health care. BMJ 2000, 320, 1530–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.; Gerard, K. Using discrete choice experiments to value health care programmes: Current practice and future research reflections. Appl. Health Econ. Health Policy 2003, 2, 55–64. [Google Scholar] [PubMed]
- Johnson, R.M. Trade-Off Analysis of Consumer Values. J. Mark. Res. 1974, 11, 121–127. [Google Scholar] [CrossRef]
- Byrne, M.M.; Souchek, J.; Richardson, M.; Suarez-Almazor, M. Racial/ethnic differences in preferences for total knee replacement surgery. J. Clin. Epidemiol. 2006, 59, 1078–1086. [Google Scholar] [CrossRef]
- Al-Omari, B.; Sim, J.; Croft, P.; Frisher, M. Generating Individual Patient Preferences for the Treatment of Osteoarthritis Using Adaptive Choice-Based Conjoint (ACBC) Analysis. Rheumatol. Ther. 2017, 4, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Omari, B.; McMeekin, P. Patients’ Preferences Regarding Osteoarthritis Medications: An Adaptive Choice-Based Conjoint Analysis Study. Patient Prefer. Adherence 2020, 14, 2501–2515. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Education Ltd: Harlow, UK, 2014; ISBN 978-1-292-02190-4. [Google Scholar]
- Ratcliffe, J.; Buxton, M.; McGarry, T.; Sheldon, R.; Chancellor, J. Patients’ preferences for characteristics associated with treatments for osteoarthritis. Rheumatology 2004, 43, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Kauf, T.L.; Mahajan, S.; Jordan, J.M.; Kraus, V.B.; Vail, T.P.; Reed, S.D.; Omar, M.A.; Kahler, K.H.; Schulman, K.A. Impact of disease severity and gastrointestinal side effects on the health state preferences of patients with osteoarthritis. Arthritis Rheum. 2005, 52, 2366–2375. [Google Scholar] [CrossRef]
- Cunningham, C.E.; Deal, K.; Chen, Y. Adaptive choice-based conjoint analysis: A new patient-centered approach to the assessment of health service preferences. Patient 2010, 3, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Fraenkel, L.; Fried, T. If You Want Patients with Knee Osteoarthritis (OA) to Exercise: Tell them about NSAIDS. Patient 2008, 1, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Gasparyan, A.Y.; Ayvazyan, L.; Blackmore, H.; Kitas, G.D. Writing a narrative biomedical review: Considerations for authors, peer reviewers, and editors. Rheumatol. Int. 2011, 31, 1409–1417. [Google Scholar] [CrossRef]
- Clarivate Web of Science. Emerging Sources Citation Index. Available online: https://clarivate.com/webofsciencegroup/solutions/webofscience-esci/ (accessed on 21 January 2022).
- NIH Library. Bibliometric Analysis: Using Web of Science and Scopus. Available online: https://www.nihlibrary.nih.gov/training/bibliometric-analysis-using-web-science-and-scopus (accessed on 21 January 2022).
- Butt, N.S.; Malik, A.A.; Shahbaz, M.Q. Bibliometric analysis of statistics journals indexed in web of science under emerging source citation index. SAGE Open 2021, 11, 215824402098887. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Ahmad, T.; Imran, M.; Ahmad, K.; Khan, M.; Baig, M.; Al-Rifai, R.H.; Al-Omari, B. A bibliometric analysis and global trends in fascioliasis research: A neglected tropical disease. Animals 2021, 11, 3385. [Google Scholar] [CrossRef] [PubMed]
- Caputo, A.; Kargina, M. A user-friendly method to merge Scopus and Web of Science data during bibliometric analysis. J. Market. Anal. 2021, 39, 1–7. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 2019, 45, 175–194. [Google Scholar] [CrossRef]
- Wittink, D.R.; Cattin, P. Commercial use of conjoint analysis: An update. J. Mark. 1989, 53, 91. [Google Scholar] [CrossRef]
- Green, P.E.; Srinivasan, V. Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice. J. Mark. 1990, 54, 3. [Google Scholar] [CrossRef]
- Srivastava, V.; Pandey, N.; Reich, M.R. Identifying product attributes through conjoint analysis with special reference to Color Doppler. J. Med. Market. 2009, 9, 319–328. [Google Scholar] [CrossRef]
- Al-Omari, B.; Sim, J.; Croft, P.; Frisher, M. Patient preferences for the pharmacological treatment of osteoarthritis: A feasibility study using adaptive choice-based conjoint analysis (acbca). Eur. J. Pers. Cent. Healthc. 2015, 3, 253. [Google Scholar] [CrossRef] [Green Version]
- Bridges, J.F.P.; Hauber, A.B.; Marshall, D.; Lloyd, A.; Prosser, L.A.; Regier, D.A.; Johnson, F.R.; Mauskopf, J. Conjoint analysis applications in health—A checklist: A report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value Health 2011, 14, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Orme, B. Sawtooth Software Formulating Attributes and Levels in Conjoint Analysis. Available online: https://sawtoothsoftware.com/resources/technical-papers/formulating-attributes-and-levels-in-conjoint-analysis (accessed on 11 November 2020).
- Ryan, M. A role for conjoint analysis in technology assessment in health care? Int. J. Technol. Assess. Health Care 1999, 15, 443–457. [Google Scholar] [CrossRef]
- Steckel, J.H.; DeSarbo, W.S.; Mahajan, V. On the creation of acceptable conjoint analysis experimental designs. Decis. Sci. 1991, 22, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Sawtooth Software CBC Technical Paper. 2017. Available online: https://sawtoothsoftware.com/resources/technical-papers/cbc-technical-paper (accessed on 15 December 2021).
- Chrzan, K. Using partial profile choice experiments to handle large numbers of attributes. Int. J. Market. Res. 2010, 52, 827–840. [Google Scholar] [CrossRef]
- Kessels, R.; Jones, B.; Goos, P. Bayesian optimal designs for discrete choice experiments with partial profiles. J. Choice Model. 2011, 4, 52–74. [Google Scholar] [CrossRef] [Green Version]
- Kessels, R.; Jones, B.; Goos, P. An improved two-stage variance balance approach for constructing partial profile designs for discrete choice experiments. Appl. Stoch. Models Bus. Ind. 2015, 31, 626–648. [Google Scholar] [CrossRef] [Green Version]
- Luyten, J.; Kessels, R.; Goos, P.; Beutels, P. Public preferences for prioritizing preventive and curative health care interventions: A discrete choice experiment. Value Health 2015, 18, 224–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orme, B.K. Which Conjoint Method Should I Use? Available online: https://sawtoothsoftware.com/resources/technical-papers/which-conjoint-method-should-i-use (accessed on 7 January 2021).
- Harwood, R.H.; Rogers, A.; Dickinson, E.; Ebrahim, S. Measuring handicap: The London Handicap Scale, a new outcome measure for chronic disease. Qual. Health Care 1994, 3, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Til, J.A.; Ijzerman, M.J. Why should regulators consider using patient preferences in benefit-risk assessment? Pharmacoeconomics 2014, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Farber, S.; Griner, B. Using conjoint analysis to value ecosystem change. Environ. Sci. Technol. 2000, 34, 1407–1412. [Google Scholar] [CrossRef] [Green Version]
- Chachoua, L.; Dabbous, M.; François, C.; Dussart, C.; Aballéa, S.; Toumi, M. Use of Patient Preference Information in Benefit-Risk Assessment, Health Technology Assessment, and Pricing and Reimbursement Decisions: A Systematic Literature Review of Attempts and Initiatives. Front. Med. 2020, 7, 543046. [Google Scholar] [CrossRef]
- Benbenisty, R.L. Attitude research, conjoint analysis guided Ma Bell’s entry into data terminal market. Mark. News 1983, 13, 12. [Google Scholar]
- Lysaght, T.; Ballantyne, A.; Toh, H.J.; Lau, A.; Ong, S.; Schaefer, O.; Shiraishi, M.; van den Boom, W.; Xafis, V.; Tai, E.S. Trust and Trade-Offs in Sharing Data for Precision Medicine: A National Survey of Singapore. J. Pers. Med. 2021, 11, 921. [Google Scholar] [CrossRef]
- Ryan, M.; Ratcliffe, J.; Tucker, J. Using willingness to pay to value alternative models of antenatal care. Soc. Sci. Med. 1997, 44, 371–380. [Google Scholar] [CrossRef]
- Laba, T.-L.; Brien, J.; Fransen, M.; Jan, S. Patient preferences for adherence to treatment for osteoarthritis: The MEdication Decisions in Osteoarthritis Study (MEDOS). BMC Musculoskelet. Disord. 2013, 14, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauber, A.B.; Arden, N.K.; Mohamed, A.F.; Johnson, F.R.; Peloso, P.M.; Watson, D.J.; Mavros, P.; Gammaitoni, A.; Sen, S.S.; Taylor, S.D. A discrete-choice experiment of United Kingdom patients’ willingness to risk adverse events for improved function and pain control in osteoarthritis. Osteoarthr. Cartil. 2013, 21, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Lamiraud, K.; Geoffard, P.-Y. Therapeutic non-adherence: A rational behavior revealing patient preferences? Health Econ. 2007, 16, 1185–1204. [Google Scholar] [CrossRef] [PubMed]
- Al-Omari, B. Patient preferences for the pharmacological treatment of osteoarthritis using adaptive choice-based conjoint (ACBC) analysis: A pilot study. Eur. J. Pers. Cent. Healthc. 2017, 5, 220. [Google Scholar] [CrossRef] [Green Version]
- Tünneßen, M.; Hiligsmann, M.; Stock, S.; Vennedey, V. Patients’ preferences for the treatment of anxiety and depressive disorders: A systematic review of discrete choice experiments. J. Med. Econ. 2020, 23, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, R.; Sempere, A.P.; Ruiz-Beato, E.; Prefasi, D.; Carreño, A.; Roset, M.; Maurino, J. Conjoint analysis to understand preferences of patients with multiple sclerosis for disease-modifying therapy attributes in Spain: A cross-sectional observational study. BMJ Open 2017, 7, e014433. [Google Scholar] [CrossRef]
- Davidson, B.A.; Ehrisman, J.; Reed, S.D.; Yang, J.-C.; Buchanan, A.; Havrilesky, L.J. Preferences of women with epithelial ovarian cancer for aspects of genetic testing. Gynecol. Oncol. Res. Pract. 2019, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Mahanova, T.; Tkachenko, N. Conjoint analysis to understand preferences of contraceptives among women of reproductive age in Ukraine. PHAR 2021, 68, 291–299. [Google Scholar] [CrossRef]
- Larsen, A.; Tele, A.; Kumar, M. Mental health service preferences of patients and providers: A scoping review of conjoint analysis and discrete choice experiments from global public health literature over the last 20 years (1999–2019). BMC Health Serv. Res. 2021, 21, 589. [Google Scholar] [CrossRef]
- Lin, C.; Li, L.; Lee, S.-J.; Chen, L.; Pan, Y.; Guan, J. Using Conjoint Analysis to Investigate Hospital Directors’ Preference in Adoption of an Evidence-based Intervention. Int. J. Healthc. Manag. 2021, 14, 328–334. [Google Scholar] [CrossRef]
- Ghanouni, A.; Smith, S.G.; Halligan, S.; Plumb, A.; Boone, D.; Yao, G.L.; Zhu, S.; Lilford, R.; Wardle, J.; von Wagner, C. Public preferences for colorectal cancer screening tests: A review of conjoint analysis studies. Expert Rev. Med. Devices 2013, 10, 489–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, M.M.; Thurer, R.J.; Studts, J.L. Individual decision making about lung cancer screening: A conjoint analysis of perspectives among a high-risk national sample. Cancer Med. 2019, 8, 5779–5786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, W.; Almario, C.V.; Ishimori, M.; Park, Y.; Jusufagic, A.; Noah, B.; Gensler, L.S.; Venuturupalli, R.S.; Kay, J.; Weisman, M.H.; et al. Examining Treatment Decision-Making Among Patients With Axial Spondyloarthritis: Insights From a Conjoint Analysis Survey. ACR Open Rheumatol. 2020, 2, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Hiligsmann, M.; Pinto, D.; Dennison, E.; Al-Daghri, N.; Beaudart, C.; Branco, J.; Bruyère, O.; Conaghan, P.G.; Cooper, C.; Herrero-Beaumont, G.; et al. Patients’ preferences for osteoarthritis treatment: The value of stated-preference studies. Aging Clin. Exp. Res. 2019, 31, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammers, A.E.; Helm, P.C.; Bauer, U.M.; van Huelsen, A.-K.; Schneider, H.; Baumgartner, H.; Diller, G.-P. Optimizing Care for Adults with Congenital Heart Disease: Results of a Conjoint Analysis Based on a Nationwide Sample of Patients Included in the German National Register. J. Clin. Med. 2021, 10, 3483. [Google Scholar] [CrossRef] [PubMed]
- Liberman, A.L.; Pinto, D.; Rostanski, S.K.; Labovitz, D.L.; Naidech, A.M.; Prabhakaran, S. Clinical Decision-Making for Thrombolysis of Acute Minor Stroke Using Adaptive Conjoint Analysis. Neurohospitalist 2019, 9, 9–14. [Google Scholar] [CrossRef]
- Gale, R.; Eberlein, S.; Fuller, G.; Khalil, C.; Almario, C.V.; Spiegel, B.M.R. Public Perspectives on Decisions About Emergency Care Seeking for Care Unrelated to COVID-19 During the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e2120940. [Google Scholar] [CrossRef]
- Hosogaya, N.; Takazono, T.; Yokomasu, A.; Hiroi, S.; Ikeoka, H.; Iwasaki, K.; Takeshima, T.; Mukae, H. Estimation of the value of convenience in taking influenza antivirals in Japanese adult patients between baloxavir marboxil and neuraminidase inhibitors using a conjoint analysis. J. Med. Econ. 2021, 24, 244–254. [Google Scholar] [CrossRef]
- Bhagat, D.; Kirby, B.; Bhatt, H.; Jager, R.; George, M.; Sheth, V. Patient Preferences Associated with Anti-Vascular Endothelial Growth Factor Therapies for Neovascular Age-Related Macular Degeneration and Diabetic Macular Edema. Clin. Ophthalmol. 2020, 14, 2975–2982. [Google Scholar] [CrossRef]
- de la Cuesta, B.; Egami, N.; Imai, K. Improving the external validity of conjoint analysis: The essential role of profile distribution. Political Anal. 2021, 30, 19–45. [Google Scholar] [CrossRef]
- Heale, R.; Twycross, A. Validity and reliability in quantitative studies. Evid. Based Nurs. 2015, 18, 66–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moule, P.; Aveyard, H.; Goodman, M. Nursing Research: An Introduction, 3rd ed.; SAGE Publications Ltd: London, UK, 2016; ISBN 9781473998476. [Google Scholar]
- Bowling, A. Research Methods in Health: Investigating Health and Health Services (UK Higher Education OUP Humanities & Social Sciences Health), 4th ed.; Open University Press: Maidenhead, UK, 2014; ISBN 978-0335262748. [Google Scholar]
- Orme, B.K. Assessing the Validity of Conjoint Analysis. In Sawtooth Software Conference Proceedings; Sawtooth Software, Inc.: Sequim, WA, USA, 1997; pp. 209–226. Available online: https://sawtoothsoftware.com/resources/technical-papers/assessing-the-validity-of-conjoint-analysis-continued (accessed on 22 January 2022).
- Selka, S.; Baier, D.; Kurz, P. The validity of conjoint analysis: An investigation of commercial studies over time. In Data Analysis, Machine Learning and Knowledge Discovery; Spiliopoulou, M., Schmidt-Thieme, L., Janning, R., Eds.; Studies in classification, data analysis, and knowledge organization; Springer International Publishing: Cham, Switzerland, 2014; pp. 227–234. ISBN 978-3-319-01594-1. [Google Scholar]
- Melles, T. Validity and Reliability of Online Conjoint Analysis; Sawtooth Software: Sequim, WA, USA, 2000. [Google Scholar]
- Orme, B.K.; Alpert, M.I.; Christensen, E. Assessing the Validity of Conjoint Analysis. Available online: https://sawtoothsoftware.com/uploads/sawtoothsoftware/originals/0eca6196-1f27-401f-b515-c1eb63a0bc98.pdf (accessed on 19 March 2021).
- Kellett, N.; West, F.; Finlay, A.Y. Conjoint analysis: A novel, rigorous tool for determining patient preferences for topical antibiotic treatment for acne. A randomised controlled trial. Br. J. Dermatol. 2006, 154, 524–532. [Google Scholar] [CrossRef]
- Lancsar, E.; Louviere, J. Conducting discrete choice experiments to inform healthcare decision making: A user’s guide. Pharmacoeconomics 2008, 26, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Viney, R.; Lancsar, E.; Louviere, J. Discrete choice experiments to measure consumer preferences for health and healthcare. Expert Rev. Pharmacoecon. Outcomes Res. 2002, 2, 319–326. [Google Scholar] [CrossRef]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis: A Primer; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780511610356. [Google Scholar]
- Webb, E.J.D.; Meads, D.; Eskyte, I.; King, N.; Dracup, N.; Chataway, J.; Ford, H.L.; Marti, J.; Pavitt, S.H.; Schmierer, K.; et al. A Systematic Review of Discrete-Choice Experiments and Conjoint Analysis Studies in People with Multiple Sclerosis. Patient 2018, 11, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Fraenkel, L.; Nowell, W.B.; Michel, G.; Wiedmeyer, C. Preference phenotypes to facilitate shared decision-making in rheumatoid arthritis. Ann. Rheum. Dis. 2018, 77, 678–683. [Google Scholar] [CrossRef]
- Maciej, O.; Arentze, T.; Borgers, A.; Timmermans, H. The effects of pre-experimental training on the validity and reliability of conjoint analysis: The case of housing preference. J. Land Use Sci. 2013, 8, 224–233. [Google Scholar] [CrossRef]
- Roy, A.N.; Madhavan, S.S.; Lloyd, A. A Discrete Choice Experiment to Elicit Patient Willingness to Pay for Attributes of Treatment-Induced Symptom Relief in Comorbid Insomnia. Manag. Care 2015, 24, 42–48. [Google Scholar]
Research Areas | Number of Published Papers |
---|---|
Business Economics | n = 3663 |
Computer Science | n = 2652 |
Mathematics | n = 2495 |
Engineering | n = 2397 |
Healthcare Sciences Services | n = 1729 |
Psychology | n = 1624 |
Behavioral Sciences | n = 1365 |
Environmental Sciences Ecology | n = 1145 |
Science Technology Other Topics | n = 787 |
Public Environmental Occupational Health | n = 629 |
Attributes | Levels |
---|---|
Frequency of administration |
|
Type of medication |
|
Route of Administration |
|
Therapeutic effect |
|
Adverse events |
|
Insurance cost coverage |
|
Each Column Represents a Medication. Please Rank These Medications from the MOST Preferred (1) to the LEAST Preferred (3). | |||
---|---|---|---|
Attributes | Medication “A” | Medication “B” | Medication “C” |
Frequency of administration | Three times a day | Once a day | When needed |
Type of medication | Prescription drug | Non-prescription drug | Prescription drug |
Route of administration | Topical | Oral | Injection |
Therapeutic effect | Relief of severe pain | Relief of moderate pain | Relief of moderate pain |
Adverse events | High-risk stomach pain | Moderate risk stomach pain | High-risk stomach pain |
Insurance cost coverage | Covered by the insurance | Not covered by the insurance | Partially covered by the insurance |
Rank |
How Likely Are You to Take the Medication Below? Slide the Pointer to the Position on the Scale to Indicate Your Answer. A “0” Means You Definitely Would NOT Take This Drug and a “50” Means You Definitely Would Take This Drug. | ||
---|---|---|
Once a day Non-prescription drug Oral Relief of moderate pain Moderate risk stomach pain Not covered by the insurance | ||
Definitely would NOT take | Definitely would take | |
Each Column Represents a Medication. Please Select the ONE Medication That You Prefer the Most. | |||
---|---|---|---|
Attributes | Medication “A” | Medication “B” | Medication “C” |
Frequency of administration | Three times a day | Once a day | When needed |
Type of medication | Prescription drug | Non-prescription drug | Prescription drug |
Route of administration | Topical | Oral | Injection |
Therapeutic effect | Relief of severe pain | Relief of moderate pain | Relief of moderate pain |
Adverse events | High-risk stomach pain | Moderate-risk stomach pain | High-risk stomach pain |
Insurance cost coverage | Covered by the insurance | Not covered by the insurance | Partially covered by the insurance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Omari, B.; Farhat, J.; Ershaid, M. Conjoint Analysis: A Research Method to Study Patients’ Preferences and Personalize Care. J. Pers. Med. 2022, 12, 274. https://doi.org/10.3390/jpm12020274
Al-Omari B, Farhat J, Ershaid M. Conjoint Analysis: A Research Method to Study Patients’ Preferences and Personalize Care. Journal of Personalized Medicine. 2022; 12(2):274. https://doi.org/10.3390/jpm12020274
Chicago/Turabian StyleAl-Omari, Basem, Joviana Farhat, and Mai Ershaid. 2022. "Conjoint Analysis: A Research Method to Study Patients’ Preferences and Personalize Care" Journal of Personalized Medicine 12, no. 2: 274. https://doi.org/10.3390/jpm12020274
APA StyleAl-Omari, B., Farhat, J., & Ershaid, M. (2022). Conjoint Analysis: A Research Method to Study Patients’ Preferences and Personalize Care. Journal of Personalized Medicine, 12(2), 274. https://doi.org/10.3390/jpm12020274